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Abstract

We consider a tractable class of two-player quadratic games to examine the relation

between strategic interactions in actions and in information decisions. We show that

information choices become substitutes when actions are sufficiently complementary. For

levels of substitutability sufficiently high, information choices become complements for

some initial information decisions. When attention is restricted to beauty contest games,

our results contrast qualitatively with the case studied by Hellwig and Veldkamp (2009),

where the set of players is a continuum. Also, we find that, for games different from

beauty contests, high levels of external effects may lead to complementary information

choices for any degree of complementarity in actions. We apply our theoretical results

to study strategic interactions in the information choice in commonly analyzed games,

including investment externalities, Cournot and Bertrand games.

JEL Classification Numbers: C72, D82, D83

Keywords: Incomplete information, information acquisition, strategic complements, strate-

gic substitutes, externalities
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1. Introduction

The optimal action of a decision maker in a variety of environments—including oligo-

polistic industries, networks, investment activities, financial markets, and monopolistic

competition—depends on her expectation of both an exogenous state of the world and

other agents’ actions. Regarding actions, the decision maker may wish either to ap-

proximate to (complementarity) or to differentiate from (substitutability) other agents’

actions.1 Models incorporating these features have been used to study particular prob-

lems in many fields.2 In these environments, information about the underlying state is

crucial in the whole decision making problem: since optimal actions and the state are cor-

related, information about the latter conveys information about the other agents’ actions

as well. In practice, the information that a decision maker has about unknown parameters

depends to some extent on her decision of how much to learn. This paper studies the

relation between strategic interactions in the action choice and the information choice

using quadratic preferences.

Consider a group of players where each of them can choose the informativeness of a

private signal about some unknown state of the world before they choose their actions.

Suppose that signals are (conditionally) independent across the players. Does it follow

that information choices become strategic complements (substitutes) when actions are

strategic complements (substitutes)? In beautiful recent paper, Hellwig and Veldkamp

(2009)—henceforth, HV—show that the answer is affirmative when there is a large number

of identical small players engaged in a beauty contest game. In contrast, this paper shows

that the answer is not always affirmative when the set of players is finite or relatively

small. In particular, Proposition 2 shows that if actions are very complementary in a

beauty contest game, then a player wants to learn less when others want to learn more.

Two reasons explain why our results differ from those in HV. The first one is related

to the shape of a player’s optimal action when preferences are quadratic. At least since

Morris and Shin (2002), and Calvó-Armengol and de Mart́ı (2007), it is well known that,

for the class of games studied in this paper, a player’s optimal action is linear in her

private signal. Then, when the set of players is small, the slope of an optimal action

is crucially more affected by others’ information choices than in the case with a large

number of players. The second reason is the assumed players’ risk aversion with respect

to the discrepancy between their actions, which makes them act cautiously when others’

information decisions affect considerably their own optimal actions.

1Consider, for instance, a group of firms engaged in an oligopolistic competition game where the
market demand depends on some uncertain parameter. Typically, prices are complements in a Bertrand
setting while quantities are substitutes in a Cournot setting.

2Incentives of this nature have been considered, among many others, by: (i) Cooper and John (1988)
to study coordination failures in macroeconomic models, (ii) Morris and Shin (2002), Hellwig (2005), Cor-
nand and Heinemann (2008), and Angeletos and Pavan (2007) to study the effects of public information
disclosure, (iii) Morris and Shin (2005) to study the welfare consequences of central bank transparency,
(iv) Calvó-Armengol and de Mart́ı (2007, 2009) to study efficiency properties of communication networks,
and (v) Calvó-Armengol, de Mart́ı, and Prat (2009) to study information transmission in networks.
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To illustrate how our results work, consider the two-player case with complementary

actions and suppose that a player, say player 2, improves her information. When the

degree of complementarity is moderate, player 2’s optimal action becomes more sensitive

to her private signal. Besides, the change induced by the increase in player 2’s information

in player 2’s optimal action is considerably higher than that caused in player 1’s optimal

action. Then, in order to align their actions, player 1 wishes to improve her information as

well. However, when instead complementarity in actions is very high, player 2’s optimal

action becomes less sensitive to her private signal regardless her information choice. In

particular, it approaches the optimal action associated with acquiring no information at

all. Then, player 1 wishes to decrease the sensitivity of her optimal action to her private

signal too. Furthermore, the increase in player 2’s information causes now a similar

change in both players’ optimal actions. Given this, player 1’s desire to insure against

the risk that her action deviates from that of player 2 could motivate her to reduce her

information.

In these games, optimal actions depend on arbitrarily higher-order iterated expecta-

tions of the state, that is, what the player expects that any other player expects that

any other player expects, and so forth, about the state. As in Morris and Shin (2002),

the assumption that the set of players is a continuum enables HV to use an average ex-

pectation operator to keep track of higher-order iterated expectations. For a finite set of

players, this approach is appropriate only when higher-order beliefs are very homogeneous

across players. But, if the players begin with heterogeneous beliefs, then the heterogeneity

would not necessarily vanish unless one imposes a very restrictive symmetric information

structure. Thus, an average expectation operator would be ill-suited to keep track of the

required higher-order beliefs with a finite number of players and a flexible information

structure.

This paper departs from the assumptions used by HV in two directions. First, we

consider a finite set of players and do not use an average expectation operator to account

for higher-order beliefs. Instead, we follow the approach introduced in the networks

literature by Calvó-Armengol and de Mart́ı (2007) and keep track of higher-order beliefs

using a knowledge index. This index depends on the covariances between the signals

received by each of the players and the state. Second, our class of quadratic games

includes the beauty contest game studied by HV as a special case but allows for a richer

set of external effects. For this broader class of preferences, Proposition 2 also shows

that, starting from some initial information decisions, players wish to complement the

information choices of others when actions are very substitutes. For tractability, we

conduct our analysis through a two-player game, though our results continue to hold

qualitatively so long as the set of players is finite.

Perhaps more important than extending earlier work, this paper emphasizes that un-

derstanding strategic interactions in information depends crucially on whether one consid-

ers a large or a small set of players. Because higher-order average expectation operators

approximate the average of higher-order expectations as the number of players tends to
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infinity, our results asymptotically converge to the HV result. However, for a finite num-

ber of players, keeping track of higher-order beliefs through a knowledge index leads to

conclusions different from those obtained using an average expectation operator. The

implications of our results are thus more relevant in environments involving a relatively

small number of players, such as oligopolistic competition, organizations or a group of

agents engaged in a common task. Our results, however, do not go beyond the insights

obtained by HV in markets with a large number of players, as it is typical in models of

monopolistic competition. Hence, one could in principle regard the HV model as more

relevant to examine the information choice in models with a general equilibrium or macro

flavor and our analysis as more suitable for micro applications.

The class of preferences assumed in this paper also allows us to examine the role

played by second order external effects in information decisions. Proposition 3 shows

that, when actions are complements, this role goes in the opposite direction to the role

played by a high degree of complementarity. High levels of the externality favor that

information choices be complements even when actions are very complementary. This

is intuitive since the externality gives players an additional incentive for coordination in

actions. More precisely, when the externality is high, each player cares more about the

suitability of others’ actions with the state. This makes complementing others’ informa-

tion decisions more valuable. Consider, for instance, a group of firms competing in a

Bertrand oligopoly where the market demand depends on some unknown parameter. The

second order externality is high when the offered products are very homogenous. In such

a case, each firm has an incentive to learn more about the parameter when others are

well informed in order to choose a price appropriate to the market conditions and slightly

below the prices set by its competitors.

Calvó-Armengol and de Mart́ı (2009) use a key result in team theory due to Radner

(1963) to demonstrate that Nash equilibrium (in pure strategies) is unique in a beauty

contest game with a finite number of players endowed with an exogenously given infor-

mation choice. In the quadratic game considered in this paper, the cross-derivatives (in

actions) of payoffs are symmetric, which allows us to extent their argument to our broader

class of preferences. Thus, for a given information choice, optimal action (pure) strate-

gies are well defined and unique in our game. Nevertheless, in a game with endogenous

information choice, multiple equilibria may arise even when equilibrium is unique in the

corresponding game without information choice. When information choices are comple-

ments, this problem is indeed present in the model considered by HV because it assumes

a discrete information choice. The model used in this paper assumes a continuous in-

formation choice in a compact set, which guarantees uniqueness of equilibrium for those

levels of coordination in actions under which information choices are either complements

or substitutes.

The question studied in this paper is central to investigate whether heterogenous beliefs

can be endogenously sustained in dynamic situations where players interact repeatedly

and there is a new realization of the state in each period. In particular, when infor-

5



mation decisions are substitutes, heterogeneous beliefs, commonly assumed in problems

under asymmetric information and in industrial organization models, can be endogenously

sustained. In Section 4, we use our theoretical results to analyze whether heterogenous

beliefs are likely to prevail in settings with information choice that inherently involve a

small number of players. We apply our analysis to two specific areas of research. We

begin with a typical model of production externalities where a group of investors choose

how much they invest in a new sector. The productivity of the sector depends on an

uncertain parameter and on the aggregate investment. For a given investment cost func-

tion, heterogeneous beliefs are more likely to persist when returns are very sensitive to

other players’ investment. In addition, less concavity of the return function facilitates

such persistence.

The second area of research is the problem of information acquisition in oligopolistic

industries. In Cournot games, heterogenous beliefs are likely to persist since the conditions

required to obtain complementarity in information decisions when actions are substitutes

are difficult to meet in these settings. In Bertrand games, we find that the persistence

of heterogenous beliefs crucially depends on the combination of two effects of opposite

sign. The first of these effects favors that firms wish to differentiate their information

choices and is due to the complementarity in prices. The second effect makes firms wish

to complement their information choices and comes from the second order externality

derived from prices.

The rest of the paper is organized as follows. Section 2 introduces the model. We

examine players’ optimal actions and the nature of their strategic interactions in the

information choice in Section 3. We turn to applications in Section 4 and conclude in

Section 5. The proofs of Propositions 1, 2, and 3 are grouped together in the Appendix.

2. The Model

2.1. Actions and Payoffs

We consider two players, i = 1, 2, who make decisions in a two-stage game. In the first

stage, nature selects a state of the world θ ∈ R, which is unobservable for the players.

Then, each player makes an information choice about the state. Information decisions

are taken simultaneously. In the second stage, each player i chooses an action ai ∈ R.

Actions are taken simultaneously too.

The final payoff ui to each player i depends on the state θ and on the action profile

a = (a1, a2). More precisely, ui is given by a twice-differentiable, real-valued function

U : R3 → R whose functional form is assumed to be common for both players. Throughout

the paper we shall take i = 1, without loss of generality, when we need to fix a given player

in the analysis. Fixing player i = 1, and denoting partial derivatives by subscripts in the

usual way, we measure the degree of strategic complementarity/substitutability in the
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players’ actions using parameter

λ := −Ua1a2
Ua1a1

.

Parameter λ above gives us information about the slope of player 1’s best response with

respect to player 2’s action. In addition, we use parameter

π :=
Ua2a2
Ua1a1

to identify the (second order) externality generated on player 1 by the action chosen by

player 2. This parameter π summarizes information about the slope of player 2’s action

strategy which is most preferred by player 1.

We assume that U is quadratic, which guarantees linearity of optimal action strategies.

Besides, we impose that each player’s payoff is strictly concave in her own action, which

ensures that best responses in actions are well defined and, further, that there exist a Nash

equilibrium in pure strategies for the corresponding game without information choice. We

also assume that each player’s payoff is concave in the other player’s action. From these

two last assumptions it follows π ≥ 0. Finally, to guarantee that optimal actions are

well defined and unique in each equilibrium, we need to assume that λ ∈ (−1, 1). For a

one-stage, beauty contest game with action choice but without information choice, Calvó-

Armengol and de Mart́ı (2009) showed that Nash equilibrium actions exist and are unique

if λ ∈ [0, 1). Their original argument can also be used for our class of preferences when

λ ∈ (−1, 1) to show that optimal action (pure) strategies are well defined and unique in

each perfect Bayes-Nash equilibrium of our game.

Assumption 1. —Preferences— For each player i = 1, 2 such that ui = U(ai, aj, θ),

(i) U is quadratic;

(ii) Uaiai < 0;

(iii) Uajaj ≤ 0;

(iv) Uaiθ 6= 0;

(v) λ = −Uaiaj/Uaiai ∈ (−1, 1).

Fixing player i = 1, Assumption 1 (i) above is equivalent to impose that U(a1, a2, θ) =

(a1, a2, θ)
′ · H · (a1, a2, θ), where H is the 3 × 3 Hessian matrix of U(a1, a2, θ). Other

than the restrictions imposed above to make the analysis tractable, this specification

of preferences is quite general and, in particular, allows for strategic complementarity

(λ > 0) and substitutability (λ < 0) in actions.3 Higher values of λ > 0 mean more

complementarity and lower values of λ < 0 mean more substitutability. We impose no

restrictions on how the state, or the relations between the state and actions, affect payoffs.

The payoff structure of a beauty contest game is a particular case of the preference

specification given by Assumption 1. Fixing player i = 1, the variant of the beauty contest

3Angeletos and Pavan (2007) use a similar class of quadratic preferences to analyze the social value
and the efficient use of public information in a setting with a continuum of players.
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game studied by HV (adapted to our two-player game) is given by the payoff function:

U(a1, a2, θ) = −(1− λ)−2
[
a1 − (1− λ)θ − λa2

]2
. (1)

This payoff function satisfies Assumption 1 on preferences. Furthermore, for the payoff

specification in (1) above, we have π = λ2.

2.2. Information Choice

We consider a Gaussian information structure for tractability. In the first stage of the

game, nature draws a state realization θ from a normal distribution with mean µ and

variance σ2. This distribution summarizes the (common) priors of the players about θ.

In addition, each player i observes a signal realization4 si ∈ R about the state.

We assume that each player i can choose in the first stage the informativeness of her

signal by choosing a value for the correlation coefficient between the random variables

with realizations θ and si. By doing so, the player makes a decision on her own belief

revision process, following Bayes’ rule, and ends up with some posteriors about θ. Then,

she uses those posteriors in the second stage to choose her action.5 We use z̃ to denote a

random variable with realization z.

Definition 1. An information choice for player i, xi ∈ [0, 1], is the square of a value for

the correlation coefficient between the random variables θ̃ and s̃i.

Assumption 2. —Information Structure— The random vector (θ̃, s̃1, s̃2) follows a

multi-normal distribution with mean vector (µ, µ, µ) ∈ R3 and variance-covariance matrix σ2 x
1/2
1 σγ x

1/2
2 σγ

x
1/2
1 σγ γ2 x

1/2
1 x

1/2
2 γ2

x
1/2
2 σγ x

1/2
1 x

1/2
2 γ2 γ2

 ,

where σ2 = Var[θ̃], γ2 = Var[s̃1] = Var[s̃2], and xi = (Cov[θ̃, s̃i]/σγ)2 for each player

i = 1, 2. Moreover, 0 < σ2, γ2 <∞.

Thus, we model information decision as a continuous choice. Higher values of xi
indicate higher degrees of informativeness for the signal chosen by player i. Assumption

2 above implies that θ̃ ∼ N(µ, σ2) and s̃i ∼ N(µ, γ2) for both players i = 1, 2. Further,

some basic algebra on normal distributions yields Var[θ̃ | si] = σ2(1 − xi), so that the

posterior variance of the state is differentiable and strictly decreasing in the information

4We regard a signal as a random variable and a signal realization simply as a particular realization of
the random variable.

5Modeling decisions on information by allowing players to move from a prior distribution to a posterior
distribution, using Bayesian updating, is quite standard in the literature. For instance, this approach is
used by Allen (1983, 1986) in a more abstract setting from the perspective of information demand theory,
and by Bergemann and Välimäki (2002) in their work on mechanism design when players are allowed to
acquire information.
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choice xi ∈ [0, 1]. In this way, the informativeness of the signals is ranked according to

the induced posterior variances of the state.6

Notice that assuming Cov[s̃1, s̃2] = x
1/2
1 x

1/2
2 γ2 is the same as requiring

Cov[s̃1, s̃2] =
Cov[θ̃, s̃1]Cov[θ̃, s̃2]

Var[σ2]
,

which, in turn, is equivalent to assuming that signals are conditionally independent given

the state. Other than this restriction, we allow for a flexible structure of correlation

between the players’ signals. Let (x1, x2) ∈ [0, 1]2 denote an information profile.

The cost of information acquisition for each player i is given by a twice-differentiable

function C : [0, 1]→ R which satisfies C ′ ≥ 0 and C ′′ ≥ 0.7

Fixing player i = 1, we know from some basic results on normal distributions that the

random variable θ̃ | s1 has a normal distribution with mean

E[θ̃ | s1] = µ+
x

1/2
1 σ

γ
(s1 − µ) (2)

and the random variable s̃2 | s1 follows a normal distribution with mean

E[s̃2 | s1] = µ+ x
1/2
1 x

1/2
2 (s1 − µ). (3)

This is the only piece of information about player 1’s posteriors that we will need in our

subsequent analysis.

For a given pair of parameters (λ, π) ∈ (−1, 1)×R+, we shall use Γ(λ,π) to denote the

two-stage game that we have described.

2.3. Equilibrium

The backward induction process in equilibrium is as follows. Given an information

profile (x1, x2) ∈ [0, 1]2 (selected by the players in the first stage), each player i chooses

in the second stage an action ai, for each signal realization si that she observes, so as to

maximize her expected payoff E[U(ai, aj, θ̃) | si]. By solving this optimization problem,

we obtain player i’s best response in actions. Given an information choice xi ∈ [0, 1], let

6In their paper, HV assume that the player can choose a subset from a finite set of signals so that the
information choice is discrete. They rank the informativeness of the information choice in terms of the
induced posterior variance-covariance matrix. Our model specifies the information choice in a different
way and, in particular, assumes that the information choice is continuous. Nevertheless, both approaches
are conceptually similar in the sense that both rank analogously the informativeness of a signal using
posterior variances. More important, both papers pursue the same goal of examining whether ex-ante
payoffs satisfy either increasing or decreasing differences in the information choice. Our set up allows us
to do this exercise using differential calculus.

7Our results do not depend on any assumptions on the cost of information acquisition since this cost
does not affect the cross-derivatives of a player’s ex-ante payoff in the information choices. In particular,
the results regarding strategic interactions in the information choice (Propositions 1, 2, and 3) continue to
hold when there is no cost of information acquisition. A sufficiently convex cost function would guarantee
a concave maximization problem for the players in the first stage of the game.
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αxi : R → R be an action strategy for player i, so that αxi(si) is the action chosen by

player i upon observing signal realization si, conditional on having chosen xi in the first

stage.

Given a family of pairs of action strategies {(αx1 , αx2) : (x1, x2) ∈ [0, 1]2} that both

players follow in the second stage, each player i selects in the first stage an information

choice xi so as to maximize her expected payoff E[U(αxi(s̃i), αxj(s̃j), θ̃)]−C(xi). By solving

this optimization problem, we obtain player i’s best response in information decisions. Let

∆([0, 1]) denote the set of probability distributions over the feasible set of information

choices of each player.

Definition 2. A perfect Bayes-Nash equilibrium for the game Γ(λ,π) is a pair of action

strategies (α∗1, α
∗
2) and a pair of probability distributions (δ1, δ2) ∈ ∆([0, 1]) × ∆([0, 1])

such that, for each player i = 1, 2, the following conditions are satisfied:

(i) for each si ∈ R and each (x1, x2) ∈ [0, 1]2,

α∗xi(si) = arg max
ai∈R

E[U(ai, α
∗
xj

(s̃j), θ̃) | si], (SR2)

and

(ii) δi(x
∗
i ) > 0 implies

x∗i ∈ arg max
xi∈[0,1]

∫
[0,1]

E[U(αxi(s̃i), αxj(s̃j), θ̃)]dδj(xj)− C(xi). (SR1)

To answer the question addressed in this paper, our object of analysis is a player’s

expected payoff in the first stage given that both players follow their optimal action

strategies in the second stage. In particular, one needs to examine how the sign of

parameter λ influence whether this expected payoff exhibits either increasing or decreasing

differences. This paper does not characterize information decisions in equilibrium and does

not study the properties of the set of perfect Bayes-Nash equilibrium of the game Γ(λ,π).

When the players follow their optimal action strategies in the second stage, a player’s

expected payoff in the first stage depends only on the information profile (x1, x2). Fixing

player i = 1, we use a function F : [0, 1]2 → R specified as

F (x1, x2) := E[U(α∗x1(s̃1), α∗x2(s̃2), θ̃)]− C(x1) (4)

to denote the ex-ante payoff to player i = 1 in the first stage when both players follow

their optimal action strategies in the second stage. Thus, the goal of this paper is to

analyze the relation between the pair of parameters (λ, π) and the degree of strategic

complementarity/substitutability that the ex-ante expected payoff F exhibits. We do

this exercise by studying how the sign of parameter λ and the magnitude of parameter

π affect the sign of the second order derivative Fx1x2 . To do so, we need to derive first

the optimal action strategies (α∗x1 , α
∗
x2

) and then obtain a closed expression for F using

backward induction.
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3. Main Results

Obtaining a closed expression for the function F defined in (4) above is constructive.

We first derive optimal action strategies and then study the ex-ante expected payoff of

the players when they follow such action strategies.

3.1. Optimal Action Strategies

Let us fix player i = 1 throughout this section. Consider a given information profile

(x1, x2) ∈ [0, 1]2, selected by the players in the first stage, and a given signal realization

s1 ∈ R, observed by player 1 in the second stage. Given our differentiability assumptions

and the assumption that u1 = U(a1, a2, θ) is strictly concave in player 1’s own action,

Assumption 1 (ii), player 1’s optimal action strategy α∗x1(s1) is characterized by the con-

dition

E
[
Ua1(α

∗
x1

(s1), ã2, θ̃)
∣∣ s1

]
= 0.

It is useful to consider first the complete information case. Suppose that θ is known to

the players (consider, e.g., x1 = x2 = 1). Then, in equilibrium both players follow the same

optimal action strategy, which depends only on the state and not on signal realizations.

Let τ(θ) be the optimal action of any player under complete information when the state is

θ. Thus, τ(θ) is well defined as the unique solution to Ua1(τ(θ), τ(θ), θ) = 0. Furthermore,

since U is quadratic, τ(θ) must be linear in θ and, therefore, we can write τ(θ) = τ0 + τ1θ

for some τ0, τ1 ∈ R.

Now, using a first order Taylor expansion of Ua1(α
∗
x1

(s1), a2, θ) around (τ(θ), τ(θ), θ),

we obtain

Ua1(α
∗
x1

(s1), a2, θ) =Ua1a1(τ(θ), τ(θ), θ)[α∗x1(s1)− τ(θ)]

+ Ua1a2(τ(θ), τ(θ), θ)[a2 − τ(θ)],

where we have made use of Ua1(τ(θ), τ(θ), θ) = 0. Then, it follows that

E
[
Ua1(α

∗
x1

(s1), ã2, θ̃)
∣∣ s1

]
= 0

⇔ Ua1a1α
∗
x1

(s1)−
(
Ua1a1 + Ua1a2

)
E[τ(θ̃) | s1] + Ua1a2E[ã2 | s1] = 0.

To ease the notational burden, let us write Ei[·] instead of E[· | si], i = 1, 2, when no

possible confusion arises. Thus, after rewriting the last equality above, we are left with

α∗x1(s1) = (1− λ)E1[τ(θ̃)] + λE1[ã2].

Then, replacing ã2 by α∗x2(s̃2) = (1− λ)E2[τ(θ̃)] + λE2[ã1] in the expression above yields

α∗x1(s1) = (1− λ)E1[τ(θ̃)] + (1− λ)λE1

[
E2[τ(θ̃)]

]
+ λ2E1

[
E2[ã1]

]
,

so that, by iterating recursively, we obtain

α∗x1(s1) = (1− λ)

[
τ0

1− λ
+ τ1

(
E1[θ̃] + λE1

[
E2[θ̃]

]
+ λ2E1

[
E2

[
E1[θ̃]

]]
+ · · ·

)]
.
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Equivalently, we can write

α∗x1(s1) = τ0 + (1− λ)τ1

∞∑
k=0

λkE1E2E1 · · ·Ep(k)[θ̃], (5)

where E1E2E1 · · ·Ep(k)[θ̃] denotes the (k+1)-order iterated expectations of θ̃. These nested

expectations give us what player 1 expects that player 2 expects that player 1 expects,

and so on up to the k + 1 level of iteration, of the unknown state of the world θ. Here,

the subindex p(k) equals 1 if k is either zero or even and equals 2 if k is odd. Note that

the expression (5) above for α∗x1(s1) is well defined because λ ∈ (−1, 1), as imposed by

Assumption 1 (v).

Now, we can use the earlier distributional results in (2) and (3) to obtain

E1[θ̃] = µ+ x
1/2
1

(
σ

γ

)
(s1 − µ),

E1

[
E2[θ̃]

]
= µ+ x

1/2
2 (x1x2)1/2

(
σ

γ

)
(s1 − µ),

E1

[
E2

[
E1[θ̃]

]]
= µ+ x

1/2
1 (x1x2)

(
σ

γ

)
(s1 − µ),

and, by iterating recursively,

E1E2E1 · · ·Ep(k)[θ̃] = µ+ x
1/2
p(k)(x1x2)k/2

(
σ

γ

)
(s1 − µ).

At this point, we need an operator that allows us to keep track of the discounted k+1

order nested expectations of the players, in order to obtain a closed expression for optimal

action strategies that includes the fixed-point equilibrium calculation. To do so, we make

use of the knowledge index introduced by Calvó-Armengol and de Mart́ı (2007) in their

work on communication in networks. Consider the pair of matrices

φ :=

(
σ

γ

)
(x

1/2
1 , x

1/2
2 )1×2, Ω :=

(
0 x

1/2
1 x

1/2
2

x
1/2
1 x

1/2
2 0

)
2×2

.

These matrices φ and Ω can be used to rewrite the expression above for E1E2E1 · · ·Ep(k)[θ̃]

as

E1E2E1 · · ·Ep(k)[θ̃] = µ+ φ · Ωk · e1(s1 − µ), (6)

where e1 = (1, 0). By plugging the expression in (6) above into the expression for α∗x1(s1)

given by (5), we obtain

α∗x1(s1) = τ0 + τ1µ+ (1− λ)τ1 φ ·
∞∑
k=0

λkΩk · e1(s1 − µ)

= τ0 + τ1µ+ (1− λ)τ1 φ · [I − λΩ]−1 · e1 · (s1 − µ),
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where I denotes the 2 × 2 identity matrix. The infinite sum
∑∞

k=0 λ
kΩk = [I − λΩ]−1

above is well defined since we are assuming λ ∈ (−1, 1). More specifically, Debreu and

Herstein (1953) show that the convergence of
∑∞

k=0 λ
kΩk is guaranteed if |λ| is strictly less

than the inverse of the largest eigenvalue of Ω. Now, it can be verified that this largest

eigenvalue equals (x1x2)1/2.

Thus, the slope of player 1’s optimal action strategy with respect to her private signal

can be written as

m1 := (1− λ)τ1φ · [I − λΩ]−1 · e1.

This number m1 is known as the knowledge index for player 1. The knowledge index plays

a key role in the analysis of higher-order beliefs in quadratic settings where a group of

players is connected through a network. It can be related to standard network centrality

measures used in sociology.8

Since [I − λΩ] is a 2× 2 matrix, we can compute analytically its inverse to obtain

m1 = τ1

(
σ

γ

)
(1− λ)(1 + λx2)x

1/2
1

(1− λ2x1x2)
.

Calvó-Armengol and de Mart́ı (2009) rely on a result in team theory due to Radner

(1962) to show that equilibrium action strategies are unique in a one-stage, beauty contest

game with an exogenously given information choice. Their argument exploits the fact

that individual payoffs in a team game can be used to solve the optimization problem of

a player with quadratic payoffs. More precisely, as pointed out by Ui (2009), quadratic

payoffs with symmetric cross-derivatives in actions admit a potential payoff function9

V (a1, . . . , an, θ) which represents common interests for all n players in a team. Then,

it follows from Theorem 4 in Radner (1962) that uniqueness of optimal actions in the

quadratic game is guaranteed if the matrix Q = (∂2V (a, θ)/∂ai∂aj)i,j=1,...,n is negative

definite. The class of quadratic preferences considered in this paper satisfy the symmetry

property Ua1a2 = Ua2a1 . Therefore, we can invoke Lemma 6 in Ui (2009) to conclude that

the payoff function U admits a potential payoff given by

V (a1, a2, θ) = −(1− λ)
[
(a1 − θ)2 + (a2 − θ)2

]
− λ(a1 − a2)2.

Then, we obtain

Q = 2

(
−1 λ
λ −1

)
,

a square matrix with eigenvalues

ρ1,2 = −1±
√

1− (1− λ2) < 0

8Ballester, Calvó-Armengol, and Zenou (2006) establish a useful relation between a centrality measure
traditionally used in sociology (the Bonacich network centrality) and the set of Nash equilibrium actions
for a network game with linear-quadratic payoffs.

9Potential games are formally defined by Moderer and Shapley (1996) and Bayesian potential games
are formally defined by Heumen, Peleg, Tijs, and Borm (1996). See Ui (2009) for a general existence
result of Bayesian potential games for quadratic games with symmetric cross-derivatives of payoffs.
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for each λ ∈ (−1, 1). In other words, the matrix Q above is definite negative so that,

using the result in Theorem 4 in Radner (1962), it follows that optimal action strategies

in the game Γ(λ,π) are unique for each given information profile (x1, x2) ∈ [0, 1]2.

The following lemma follows by putting together all the arguments up to here.

Lemma 1. Assume 1 and 2. Then, for each given information profile (x1, x2) ∈ [0, 1]2,

the unique pair of optimal action strategies (α∗x1 , α
∗
x2

) in the game Γ(λ,π) is given by

α∗xi(si) = τ0 + τ1µ+mi (si − µ), i = 1, 2, (7)

where τ0, τ1 ∈ R, and

mi = τ1

(
σ

γ

)
(1− λ)(1 + λxj)x

1/2
i

(1− λ2x1x2)
, i = 1, 2. (8)

As indicated earlier, the shape of the slope mi, as a function of λ, x1 and x2, obtained

in Lemma 1 above, plays a crucial role in our results about equilibrium interactions in

the information choice.

Now, we can substitute the optimal action strategies identified in Lemma 1 into the ex-

ante expected payoff F . By doing so, we are left with a one-stage game where each player

i makes an information choice xi ∈ [0, 1] and receives her payoffs according to F (xi, xj).

In this game, each player has infinitely many (pure) information strategies. Nevertheless,

since such strategies lie in the compact set [0, 1] and the payoff function F (xi, xj) is

continuous in (xi, xj) for each λ ∈ (−1, 1) and each π ≥ 0, the results in Fudenberg

and Levine (1986) regarding approximate games and approximate equilibrium10 can be

invoked to guarantee the existence of perfect Bayes-Nash equilibrium for our game Γ(λ,π).

3.2. Strategic Interactions in Information Decisions

To obtain a closed expression for the ex-ante expected payoff F , we use the expressions

obtained in Lemma 1 for (α∗x1 , α
∗
x2

) to compute the expected value of u1, as required by

the definition of F given by (4). Consider a given information profile (x1, x2) ∈ [0, 1]2.

Using a second order Taylor expansion of U(α∗x1(s1), α∗x2(s2), θ) around (τ(θ), τ(θ), θ), we

obtain

U(α∗x1(s1), α∗x2(s2), θ) = U(τ(θ), τ(θ), θ) +
1

2
Ua1a1 [α

∗
x1

(s1)− τ(θ)]2

+
1

2
Ua2a2 [α

∗
x2

(s2)− τ(θ)]2 + Ua1a2 [α
∗
x1

(s1)− τ(θ)][α∗x2(s2)− τ(θ)],

where we have made use of Ua1(τ(θ), τ(θ), θ) = Ua2(τ(θ), τ(θ), θ) = 0. Therefore, using

the definition of F given in (4), we have

F =E
[
U(τ(θ̃), τ(θ̃), θ̃)

]
+

1

2
Ua1a1E

[
[α∗x1(s̃1)− τ(θ̃)]2

]
+

1

2
Ua2a2E

[
[α∗x2(s̃2)− τ(θ̃)]2

]
+ Ua1a2E

[
[α∗x1(s̃1)− τ(θ̃)][α∗x2(s̃2)− τ(θ̃)]

]
− C(x1).

10Approximate equilibrium is formally defined by Radner (1980).
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By Assumption 1 (ii), −U−1
a1a1

is a positive constant, so that the sign of the second order

derivative Fx1,x2 coincides with the sign of −U−1
a1a1

Fx1,x2 . Using this, we find convenient

to propose the normalization F̂ := −U−1
a1a1

F and proceed with the rest of the analysis in

terms of F̂ instead of F . Using the definitions of λ and π, from the equation above we

can derive the expression for the function F̂ as

F̂ =− U−1
a1a1

E
[
U(τ(θ̃), τ(θ̃), θ̃)

]
− 1

2
E
[
[α∗x1(s̃1)− τ(θ̃)]2

]
− 1

2
πE
[
[α∗x2(s̃2)− τ(θ̃)]2

]
+ λE

[
[α∗x1(s̃1)− τ(θ̃)][α∗x2(s̃2)− τ(θ̃)]

]
+ U−1

a1a1
C(x1).

(9)

So, we need now to analyze the terms inside the expectation operators in equation (9)

above. Using the expression provided in Lemma 1 for α∗xi(si), we obtain

α∗xi(s̃i)− τ(θ̃) = −τ1(θ̃ − µ) +mi(s̃i − µ) = (−τ1 ,mi) ·
(
θ̃ − µ
s̃i − µ

)
.

From Assumption 2, we know that the pair (θ̃− µ , s̃i− µ) is normally distributed with a

mean vector of zeroes and variance-covariance matrix(
σ2 x

1/2
i σγ

x
1/2
i σγ γ2

)
.

Then, using some basic results on normal distributions, we can compute the variance of

the random variable α∗xi(s̃i)− τ(θ̃) as

E
[
[α∗xi(s̃i)− τ(θ̃)]2

]
=
[
τ 2

1σ
2 +m2

i γ
2 − 2τ1x

1/2
i miσγ

]
, i = 1, 2. (10)

Also, we can compute the covariance between [α∗x1(s̃1)− τ(θ̃)] and [α∗x2(s̃2)− τ(θ̃)] as

E
[
[α∗x1(s̃1)− τ(θ̃)][α∗x2(s̃2)− τ(θ̃)]

]
=
[
τ 2

1σ
2 + (x1x2)1/2m1m2γ

2 − τ1(x
1/2
1 m1 + x

1/2
2 m2)σγ

]
.

(11)

By plugging the expressions obtained in (10) and (11) above into (9), and by using

the expression for the slope mi (i = 1, 2) obtained in Lemma 1, we get

F̂ = −U−1
a1a1

E
[
U(τ(θ̃), τ(θ̃), θ̃)

]
+

(2λ− π − 1)(τ1σ)2

2

+
(1− λ)2(τ1σ)2

2

[
−x1q

2
1 − πx2q

2
2 + 2x1q1 − 2

(
λ− π
1− λ

)
x2q2 + 2λx1x2q1q2

]
+ U−1

a1a1
C(x1),

where qi : [0, 1]2 → R denotes the function specified as

qi(x1, x2) :=
1 + λxj

1− λ2x1x2

, i = 1, 2.
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All that remains then is to compute the second order derivative F̂x1x2 from the ex-

pression above. For the required algebra, it is useful to take into account that, for each

player i = 1, 2,

∂qi
∂xi

=
λ2xjqi

1− λ2x1x2

,
∂qi
∂xj

=
λqj

1− λ2x1x2

,
∂2qi
∂xi∂xj

=
λ3xjqj + λ2qi
(1− λ2x1x2)2

.

Using that, it can be verified that

F̂x1x2 =λ

[
(1− λ)τ1σ

1− λ2x1x2

]2 [
(2− π)λ2x1x2q1q2

+ λ
(
x1q1 −

λ− π
1− λ

x2q2 + (1− π)x2q
2
2

)
+ q2 −

λ− π
1− λ

q1 − πq1q2

]
.

(12)

Also, for the particular case of the beauty contest game with the preference specification

given by (1), we have π = λ2, and the second order derivative above becomes

F̂ bc
x1x2

=λ

[
(1− λ)σ

1− λ2x1x2

]2 [
− x1x2q1q2λ

4 − x2q
2
2λ

3

+ (2x1x2q1q2 − x2q2 − q1q2)λ2 + (x1q1 + x2q
2
2 − q1)λ+ q2

]
.

(13)

With the expressions for the ex-ante expected payoff of player 1 given by (12) and

(13) above at hand, we can state our main results.

Proposition 1. Assume 1 and 2. Then, F̂x1x2(x1, x2) = 0 for each (x1, x2) ∈ [0, 1]2 when

λ = 0. Moreover, for each π ≥ 0 there exists some ε > 0, bounded away from zero, such

that if λ ∈ (0, ε), then F̂x1x2(x1, x2) > 0 for each (x1, x2) ∈ [0, 1]2 while if λ ∈ (−ε, 0),

then F̂x1x2(x1, x2) < 0 for each (x1, x2) ∈ [0, 1]2.

Hence, in our model, strategic interactions in the information choice have the same

nature as those in the action choice when the degree of coordination is moderate, λ ∈
(−ε, ε) for some ε > 0. This is true for a more general class of games than a beauty contest

game. The result above agrees with the main result in HV for the case with a continuum

of players, provided that the degree of complementarity/substitutability in actions is not

too high.

However, the relation between strategic motives obtained in Proposition 1 can be

reversed when the degree of coordination in actions is sufficiently high. Proposition 2

below gives us precisely this result. Our results are driven by the shape of the slope of

the players’ optimal actions. Of particular importance is the observation that the slope

of a player’s optimal action (in her private signal) is quite sensitive to the information

choices of both players. In contrast, the influence of a player’s information choice on the

sensitivity of any player’s optimal action is crucially mitigated in a game with a continuum

of players.

16



To illustrate how the relation between information decisions and the slope of the

players’ optimal actions drives our results, consider the case with complementary actions,

λ ∈ (0, 1). Note that, using the expressions for m1 and m2 given by Lemma 1, one obtains

∂m2

∂x2

= τ1

(
σ

γ

)
(1− λ)(1 + λx1)(x−1

2 + λ2x1)x
1/2
2

2(1− λ2x1x2)2
,

∂m1

∂x2

= τ1

(
σ

γ

)
(1− λ)λ(1 + λx1)x

1/2
1

(1− λ2x1x2)2
,

and
∂m2

∂x2

− ∂m1

∂x2

= τ1

(
σ

γ

)
(1− λ)(1 + λx1)

2x
1/2
2 (1− λ2x1x2)2

[
1− λx1/2

1 x
1/2
2

]2

.

The logic behind the result in Proposition 1 is as follows. When λ is close to zero, we

see from the expression for ∂m2/∂x2 above that an increase in x2 causes a significative

change in m2. Therefore, it is valuable for player 1 to change m1 in such a way so as to

respond to the variation in m2. From the expression for ∂m1/∂x2 above, we observe that

m1 changes already in the required direction due only to the increase in x2. However,

this induced change is small since λ is close to zero. In other words, the difference

∂m2/∂x2 − ∂m1/∂x2 is relatively large in this case. In particular, note that

lim
λ→0+

[
∂m2

∂x2

− ∂m1

∂x2

]
= τ1

(
σ

γ

)
1

2x
1/2
2

.

As a consequence, to reach the required change in m1, player 1 must increase m1 further

than the variation induced solely by the increase in x2. To do this, she needs to increase

x1 as well.

On the other hand, suppose that instead λ is close to one. Then, m2 approaches zero

and player 2’s optimal action approaches E[τ(θ̃)] = τ0 + τ1µ. In other words, player 2

behaves as if she acquires no information at all. Furthermore, we see from the expression

for ∂m2/∂x2 above that any increase in x2 causes almost no change in m2. In this case,

note that

lim
λ→1−

[
∂m2

∂x2

− ∂m1

∂x2

]
= 0.

That is, when actions are almost perfect complements, player 1 hardly needs to increase

x1 to compensate for the change in player 2’s optimal action.

Player 1 knows that one way of matching m1 with m2 is achieved by acquiring little

amount of information herself. This makes it valuable for her to decrease x1. Furthermore,

recall that, given our class of preferences, player 1 is risk-averse with respect to the

difference of actions. Player 1 wishes to insure herself against the risk of m1 deviating

from m2. As a consequence, she might find valuable to reduce x1 when player 2 increases

x2. This is the intuition behind the results in Proposition 2.
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Proposition 2. Assume 1 and 2. Then,

(i) for each π ∈ [0, 1) there exists some κ(π) ∈ (0, 1), bounded away from 1, such that

if λ ∈ (κ(π), 1), then F̂x1x2(x1, x2) < 0 for each (x1, x2) ∈ (0, 1)2,

(ii) for each π ∈ [0, 1) there exists some ε(π), δ(π) > 0 and some κ(π) ∈ (−1, 0),

bounded away from −1, such that if λ ∈ (−1, κ(π)), then F̂x1x2(x1, x2) > 0 for each

0 ≤ x1 < ε(π) and each (1− δ(π)) < x2 ≤ 1,

(iii) for the beauty contest game given by the payoff function in (1), there exists some

κ ∈ (0, 1), bounded away from 1, such that if λ ∈ (κ, 1), then F̂ bc
x1x2

(x1, x2) < 0 for each

(x1, x2) ∈ (0, 1)2.

Proposition 2 (i) says that information choices are strategic substitutes if the degree

of complementarity in actions is sufficiently high. In other words, the value of additional

information to each player is strictly decreasing in the other player’s information. Propo-

sition 2 (ii) shows that, starting from a situation in which player i acquires little amount

of information while the other player acquires a large amount of information, a suffi-

ciently high level of substitutability in actions implies that player i’s information choice

complements that of the other player. Figure 1 below illustrates these results.
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(a) x1 = x2 = 0.5 (b) x1 = 0.1, x2 = 0.9 (c) x1 = 0.05, x2 = 0.95

Figure 1

For (λ, π) in the shadowed region, the information choice does not have the same strategic coordination

motives as the action choice. The line bc is π = λ2 and corresponds to the beauty contest game.

The result provided by Proposition 2 (iii) contrasts qualitatively the main result in HV

for a game with a continuum of players. In our model, for the beauty contest game consid-

ered by HV, information choices are strategic substitutes if the degree of complementarity

in actions is high enough. This result is also illustrated in Figure 2 below.
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(a) x1 = x2 = 0.5 (b) x1 = 0.2, x2 = 0.8 (c) x1 = 0.8, x2 = 0.2

Figure 2

Beauty contest game. For λ < 0, g(λ) > 0 implies F̂ bc
x1x2

< 0 (information choices are substitutes). For

λ > 0, g(λ) > 0 implies F̂ bc
x1x2

> 0 (information choices are complements) and g(λ) < 0 implies F̂ bc
x1x2

< 0

(information choices are substitutes).

Propositions 1 and 2 identify values for the degree of coordination in actions under

which the value of additional information to each player (in the other player’s information)

is either strictly increasing or strictly decreasing. These results, combined with the result

that optimal action strategies are unique for each information profile (Lemma 1) and

with the fact that information is a continuous choice in a compact set, ensure that the

game Γ(λ,π) has a unique perfect Bayes-Nash equilibrium when information decisions are

either complements or substitutes. To see this, suppose that player 1 increases her initial

information choice x1 by a certain amount ∆x1 > 0. For the given x1 + ∆x1, let

ξ(x2) = E[U(α∗x1+∆x1
(s̃1), α∗x2(s̃2), θ̃)]− E[U(α∗x1(s̃1), α∗x2(s̃2), θ̃)]

be the value of this additional information ∆x1 to player 1. Then, two different informa-

tion choices of player 2, x2, x
′
2 ∈ [0, 1], can be part of a perfect Bayes-Nash equilibrium of

the game Γ(λ,π) only if ξ(x′2) = C(x1 + ∆x1)− C(x1) and ξ(x2) = C(x1 + ∆x1)− C(x1).

However, both equalities cannot hold simultaneously for those values of (λ, π) under which

propositions 1 and 2 imply that ξ is either strictly increasing or strictly decreasing in x2.

Consequently, for those values of (λ, π), there must be a unique x∗2 ∈ [0, 1] that satisfies

the equilibrium condition

E[U(α∗x1+∆x1
(s̃1), α∗x∗2(s̃2), θ̃)]− E[U(α∗x1(s̃1), α∗x∗2(s̃2), θ̃)] = C(x1 + ∆x1)− C(x1).

Most of our results hold regardless the second order external effect captured by pa-

rameter π. However, external effects play also an important role in the analysis of the

question studied in this paper. The shape of the shadowed regions in Figure 1 suggests

that, when actions are complements, the discrepancy in the nature of strategic interactions
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between information choices and actions (i) decreases when the (second order) external

effect increases and, in particular, (ii) disappears when the external effect is high enough

so that π ≥ 1. This is formally stated in the next proposition.

Proposition 3. Assume 1 and 2. Then, the critical threshold κ(π) identified in Propo-

sition 2 (i) is (i) nondecreasing in π for each π ∈ [0, 1], and (ii) κ(1) = 1.

High levels of the second order externality offset the effect caused by high levels of

complementarity in actions. This favors that strategic interactions in information end

up having the same nature as strategic interactions in actions even for high levels of

complementarity in actions. The second order externality serves as an additional incentive

for the players to coordinate their actions. Then, a player, say player 1, finds more valuable

to learn about the state when player 2 does so as a mean to be well informed about the

relation between the state and player 2’s optimal action. In particular, Proposition 3

(ii) says that, when the externality is sufficiently high (π ≥ 1), information choices are

strategically complements whenever actions are complements. In this case, the level of

the externality is not compatible with a beauty contest. Nevertheless, for these high levels

of the externality, the implications agree with those in HV.

4. Applications

From the results provided by Proposition 2, one concludes that, if the degree of comple-

mentarity in actions is high enough, heterogeneous beliefs can be sustained endogenously

in dynamic settings where there is a new realization of the state in each period. Also,

starting from some initial information decisions, heterogenerous beliefs maybe reduced

for high levels of substitutability. Presumably, a wide class of models with a finite (or

a relatively small) number of players might meet the conditions leading to our results.

To illustrate this, we discuss in this section some strategic settings where the results in

Propositions 1, 2, and 3 are of interest. Recall from Proposition 2 that, for a given value

π ≥ 0 of the second order externality, κ(π) denotes the critical threshold for λ above

which information choices become substitutes when actions are complements.

4.1. Investment Complementarities

Consider the canonical model of production externalities where ai is interpreted as the

amount of investment chosen by investor i. The payoff to investor i = 1 is given by

U(a1, a2, θ) = R(a2, θ)a1 − c(a1),

where c(a1) is a twice-differentiable cost function and R(a2, θ) is a twice-differentiable

return function that measures the externality to investor 1 due to the adequacy of agent

2’s investment to the underlying state. A typical example would be that of an R&D

activity. Assume c′′ > 0, Ra2 , Rθ > 0, Ra2a2 < 0, and Ra2/c
′′ < 1. Thus, the coordination

motive in actions has the form of a complementarity.
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Using our results, one directly obtains that heterogenous beliefs can be endogenously

sustained if the ratio λ = Ra2/c
′′ exceeds the critical threshold κ(π). In addition, we have

π = −a1Ra2a2/c
′′ so that, from the result in Proposition 3 (i), threshold κ(π) increases

as −Ra2a2 increases. In other words, for a given cost function c, more sensitivity and less

concavity of the return function R (with respect to the other investor’s action) facilitate

the persistence of heterogeneous beliefs. Nevertheless, to obtain the result in Proposition

3 (ii) that information decisions are complements for any degree of complementarity in

actions, one needs −Ra2a2 > (1/a1)c′′ for each a1 > 0. Then, since −Ra2a2 must be

bounded, there is a set of values for Ra2 under which information decisions are substitutes.

Heterogeneous beliefs are endogenously sustained for those high levels of sensitivity of the

return function R in the other agent’s investment (measured by Ra2).

Corollary 1. In the investment model described above, (i) investor 1 wishes to learn less

about the state when investor 2 learns more if Ra2 > κ(π)c′′, and (ii) for investor 1, κ(π)

is nondecreasing with −Ra2a2.

4.2. Cournot Duopoly

Consider a model of Cournot competition where ai is interpreted as the quantity of the

good offered by firm i. The market price of the good is given by P = d0 +d1θ−d2(a1 +a2)

(with d0, d1, d2 > 0) and the cost for firm i = 1 is given by c0a1 + c1a
2
1 (with c0, c1 > 0).

Then, the payoff function for firm i = 1 can be expressed as

U(a1, a2, θ) =
[
(d0 − c0) + d1θ − (d2 + c1)a1 − d2a2

]
a1.

One obtains λ = −d2/2(d2 + c1) < 0 so that actions are substitutes. The assumptions

of our model are satisfied since c1 > 0 implies λ > −1. Also, we have π = 0. From

our earlier results it follows that heterogeneous beliefs are likely to prevail in this setting.

Note that, to obtain the result in Proposition 2 (ii) that information decisions become

complements, one must start from an initial situation where firm 1 acquires little amount

of information while firm 2 is very well informed. Furthermore, one needs that λ be close

enough to −1. However, we see that −1/2 is the lowest value that λ can achieve in this

duopoly.

4.3. Bertrand Duopoly

Consider a model of Bertrand competition with heterogenous goods where ai is in-

terpreted as the price set by firm i. The market demand for firm i = 1 is given by

Q1 = e0 + e1θ− e2(a1− a2) (with e0, e1, e2 > 0) and its cost is given by c0Q1 + c1Q
2
1 (with

c0, c1 > 0). Then, the payoff function for firm i = 1 can be expressed as

U(a1, a2, θ) =
[
e0 + e1θ − e2(a1 − a2)

][
a1 − c0 − c1

(
e0 + e1θ − e2(a1 − a2)

)]
.
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One obtains λ = (1+2c1e2)/2(1+c1e2) ∈ (0, 1) so that actions are complementary. We

also have π = c1e2/(1+c1e2). Therefore, we see that the product c1e2 is the key parameter

to analyze whether heterogenous beliefs will be sustained endogenously in this model. For

this to happen, our results tell us that c1e2 must be sufficiently high but below a certain

bound. As c1e2 increases, both λ and π increase and get closer to one. Thus, the result in

Proposition 2 (i) will be obtained when c1e2 is high enough, so that λ exceeds the required

threshold κ(π), but not too high so as to avoid that π gets too close to one. We see that

in this Bertrand model, the effects on strategic interactions in the information choice of

the complementarity in pricing decisions and the second order externality have opposite

sign. For particular situations, we should be interested in knowing which of these two

effects dominates. Nevertheless, as in the Cournot case, since c1 and e2 must be bounded,

the result in Proposition 3 (ii) does not follow as we have κ(π) → 1 only if c1e2 → ∞.

Consequently, it is not guaranteed that homogenous beliefs will be endogenously sustained

for any degree of complementarity associated to the parameters c1 and e2.

Corollary 2. In the Bertrand game described above, (i) firm 1 wishes to learn less about

the state when firm 2 learns more if c1e2 > [2κ(π) − 1]/2[1− κ(π)], and (ii) for firm 1,

κ(π) is nondecreasing with c1e2.

5. Concluding Remarks

This paper investigated the relation between endogenous interactions in information

decisions and strategic interactions in actions for a tractable class of games with comple-

mentary or substitutive actions, externalities, and a fairly general information structure.

Our analysis highlighted the differences in the nature of interactions when the set of

players is finite with respect to the case with a continuum of players. From a methodolog-

ical viewpoint, keeping track of players’ higher-order beliefs through a knowledge index

leads to conclusions different to those obtained using an average expectation operator.

The main reason behind this discrepancy is in the fact that, with a small number of play-

ers, information acquisition affects considerably the sensitivity of each player’s optimal

action to her private signal.

Our restriction to two-player games is for tractability reasons. With a larger number of

players, computing the required inverse of matrix [I − λΩ] is exceedingly challenging and

one must resort to computational numerical methods. This inverse is a crucial ingredient

in the slope of a player’s optimal action in her private signal. However, the functional

form of the entries of the inverse [I − λΩ]−1 is not affected by increasing the number

of players. Each of these entries is a polynomial in λ whose degree increases with the

number of players. Then, increasing the number of players does not affect the form of

ratio between polynomial functions (with respect to λ) of the slope of a player’s optimal

action. Consequently, our results continue to hold qualitatively so long as the number of
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players is finite.

As the number of players increase, our results (for the beauty contest game) converge

asymptotically to the main result obtained by HV and, therefore, complementarity (sub-

stitutability) in actions tends to induce complementarity (substitutability) in information

decisions. Our results are relevant in environments with a relatively small number of play-

ers, such as industrial competition settings, but lose importance for the case of markets

with many traders. For such large markets, usually studied in general equilibrium and

macro models, the insights obtained by HV are very useful for the analysis of strategic

interactions in information decisions.

The applications analyzed in Section 4 give a rough feeling of how to avoid hetero-

geneous beliefs in dynamic settings where there is a new realization of the state in each

period. With investment complementarities, it is tempting to suggest that many investors

take part in the new sector. This would facilitate that the second order externality from

the investment of each of them be small enough. Also, the application to Bertrand

oligopoly could suggest that the offered goods tend to be homogeneous as a mean to

increase the effect of the second order externality. However, it would not be wise to give

a normative connotation to the results obtained in this paper since it lacks an analysis

of the welfare consequences of endogenous information decisions. Such a welfare analysis

requires one to compute equilibrium information choices and to conduct a statics com-

parative exercise when λ varies. Unfortunately, to do this, we need first to understand

well the properties of the set of perfect Bayes-Nash equilibria of the proposed game Γ(λ,π).

Angeletos and Pavan (2007) have successfully examined the comparative statics of welfare

with respect to the information structure in a setting with a continuum of players and

without endogenous information choice. With endogenous information choice, a compar-

ative statics exercise along those lines seems a challenging and interesting direction for

future research.
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Appendix

For a given (x1, x2) ∈ (0, 1)2, let h : [−1, 1]× R+ → R be the function specified as

h(λ, π) :=(1− λ)
[
x1x2q1q2(2− π)λ2 + x1q1λ+ (1− π)x2q

2
2λ+ q2 − πq1q2

]
− (λ− π) [x2q2λ+ q1] .

Then, for each λ ∈ (−1, 1), we have

F̂x1x2 =

[
(1− λ)τ1σ

1− λ2x1x2

]2 [
λ

1− λ

]
h(λ, π).

Analogously, for a given (x1, x2) ∈ (0, 1)2, let g : [−1, 1]→ R be the function specified as

g(λ) = −x1x2q1q2λ
4 − x2q

2
2λ

3 + (2x1x2q1q2 − x2q2 − q1q2)λ2 + (x1q1 + x2q
2
2 − q1)λ+ q2.

Then, we have

F̂ bc
x1x2

= λ

[
(1− λ)σ

1− λ2x1x2

]2

g(λ),

so that the sign of F̂ bc
x1x2

coincides with the sign of g for each λ ∈ (0, 1). With the functions

h(λ, π) and g(λ) at hand, we proceed with the proofs of the propositions.

Proof of Proposition 1. The first claim in the proposition follows directly from the speci-

fication of the function F̂x1x2 given by (12).

As for the second claim, take a given (x1, x2) ∈ [0, 1]2. We obtain

h(0, π) = q2 − πq1q2 + πq1 = 1.

The result follows since h(0, π) > 0, F̂x1x2 = 0 for λ = 0, F̂x1x2 is a continuous function in

λ ∈ (−1, 1), and λ/(1− λ) > 0 if λ ∈ (0, 1) while λ/(1− λ) < 0 if λ ∈ (−1, 0). 2

Proof of Proposition 2. Take a given (x1, x2) ∈ (0, 1)2. It can be checked that h(0, π) = 1

for each π ∈ [0, 1).

(i) Take a given π ∈ [0, 1). Then,

h(1, π) = (π − 1)[x2q2 + q1]

= (π − 1)

[
x2(1 + x1) + (1 + x2)

1− x1x2

]
< 0.

Since h(0, π) > 0, h(1, π) < 0, and h(·, π) is a continuous function in λ, there is some

κ(π) ∈ (0, 1), bounded away from 1, such that h(λ, π) < 0 for each λ ∈ (κ(π), 1). The

result follows since λ/(1− λ) > 0 for each λ ∈ (0, 1).
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(ii) Take a given π ∈ [0, 1), and consider x1 = 0 and x2 = 1. Then,

h(−1, π) = 2
[
−(1− π)q2

2 + q2 − πq1

]
− (−1− π) [−q2 + q1] = π − 1 < 0.

Since h(0, π) > 0, h(−1, π) < 0 for x1 = 0 and x2 = 1, and h(·, π) is a continuous function

in λ, in x1, and in x2, then there is some ε(π), δ(π) > 0 and some κ(π) ∈ (−1, 0), bounded

away from −1, such that h(λ, π) < 0 for each λ ∈ (−1, κ(π)), each 0 ≤ x1 < ε(π), and

each (1− δ(π)) < x2 ≤ 1. The result follows since λ/(1− λ) < 0 for each λ ∈ (−1, 0).

(iii) Take a given (x1, x2) ∈ (0, 1)2. It can be checked that

g(1) = (x1x2 − 1)q1q2 + (x1 − 1)q1 − (x2 − 1)q2

=
(x1 − 1)− (x1 + 3)x2

1− x1x2

< 0.

The result follows since g is a continuous function in λ ∈ (−1, 1), and g(0) > 0 while

g(1) < 0. 2

Proof of Proposition 3. For λ ∈ (0, 1), let ψ(λ) be the value of π such that h(λ, ψ(λ)) = 0.

From the result in Proposition 2 (i), we know that there exists some κ(0) ∈ (0, 1) such

that F̂x1x2(x1, x2) = 0 for each (x1, x2) ∈ (0, 1)2. This happens if and only if h(κ(0), 0) = 0

so that ψ(κ(0)) = 0 with κ(0) < 1. Also, it can be easily checked that h(1, 1) = 0 so that

limλ→1− ψ(λ) = 1. Suppose that the mapping ψ : (0, 1) → R+ is not a correspondence

but a function. Then, since h(λ, π) is continuous for each (λ, π) ∈ (0, 1)×R+, it must be

the case that ψ(λ) is nondecreasing in λ ∈ (0, 1). Therefore, we only need to verify that

ψ is indeed a function.

To show that ψ is a function, take π, π′ ∈ R+ such that π 6= π′ and suppose that,

for some given λ ∈ (0, 1), we have ψ(π) = ψ(π′). This happens if and only if h(λ, π) =

h(λ, π′) = 0. Then, on the one hand, h(λ, π) = h(λ, π′) implies

(π − π′)
[
(1− λ)[x1x2q1q2λ

2 + x2q
2
2λ+ q1q2]− [x2q2λ+ q1]

]
= 0.

So, since π 6= π′, it must be the case that

[x1x2q1q2λ
2 + x2q

2
2λ+ q1q2] =

1

1− λ
[x2q2λ+ q1].

On the other hand, h(λ, π) = 0 implies

1

λ− π
[
x1x2q1q2(2− π)λ2 + x1q1λ+ (1− π)x2q

2
2λ+ q2 − πq1q2

]
=

1

1− λ
[x2q2λ+ q1]

Therefore, by combining the two equalities above, it follows that λ ∈ (0, 1) must neces-

sarily satisfy the equation

x1x2q1q2(2− λ)λ2 + x2q
2
2(1− λ)λ+ x1q1λ+ q2 − λq1q2 = 0.
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Now, using the definition of the functions qi(x1, x2), i = 1, 2, we know that if the equation

above is satisfied, then we must necessarily have

(1+λx2)(1 + λx1)λ
[
(2− λ)λx1x2 − 1

]
+ x2(1 + λx1)2(1− λ)λ+ [x1(1 + λx2)λ+ (1 + λx1)](1− λ2x1x2) = 0.

(14)

But equation (14) above cannot hold for λ ∈ (0, 1) because

(1 + λx2)(1 + λx1)λ
[
(2− λ)λx1x2 − 1

]
> −λ

and

x2(1 + λx1)2(1− λ)λ+ [x1(1 + λx2)λ+ (1 + λx1)](1− λ2x1x2) > 1.

The last claim of the proposition holds since limλ→1− ψ(λ) = 1 implies κ(1) = 1. 2

26



References

Allen, B. (1983): “Neighboring Information and Distributions of Agents’ Characteristics

Under Uncertainty,” Journal of Mathematical Economics, 12, 63-101.

Allen, B. (1986): “The Demand for (Differentiated) Information,” Review of Economic

Studies, 23, 311-323.

Angeletos, G.-M., and A. Pavan (2007): “Efficient Use of Information and Social

Value of Information,” Econometrica, 75, 4, 1103-1142.
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Calvó-Armengol, A., and J. de Mart́ı (2009): “Information Gathering in Organi-

zations: Equilibrium, Welfare, and Optimal Network Structure ,” Journal of the European

Economic Association, 7, 1, 116-161.
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