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Abstract

This paper considers a tractable class of two-player quadratic games to examine
the relation between strategic interactions in actions and in information decisions.
We show that information choices become substitutes when actions are sufficiently
complementary. For levels of substitutability sufficiently high, information choices
become complements for some initial information decisions. When attention is re-
stricted to beauty contest games, our results contrast qualitatively with the case
studied by Hellwig and Veldkamp (2009), where the set of players is a continuum.
Also, for games different from beauty contests, we show that high levels of external
effects favor that information choices be complements for any degree of complemen-
tarity in actions.
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1 Introduction

The optimal action of a decision maker in a variety of environments—including oligo-

polistic industries, networks, investment activities, financial markets, and monopolistic

competition—depends on her expectation of both an exogenous state and other agents’

actions. In these environments, because optimal actions and the state are correlated,

information about the latter conveys information about other agents’ actions as well.
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Models incorporating these features have been extensively used to study particular prob-

lems in many fields.1 Most applications of these games have been confined to exogenously

given information. In practice, however, the information that a decision maker has about

unknown parameters depends to some extent on her decision of how much to learn. This

paper studies the relation between strategic interactions in the action choice and the infor-

mation choice using quadratic preferences. Analyzing this question is central to investigate

whether heterogenous beliefs can be endogenously sustained in dynamic situations where

players interact repeatedly, provided that there is a new realization of the state in each

period.

Consider a group of players and suppose that each of them chooses the informativeness

of a private signal about some payoff-relevant state prior to choosing actions. Assume

that signals are independent (conditionally on the state) across players. Do informa-

tion choices become strategic complements/substitutes when actions are strategic com-

plements/substitutes? In a beautiful recent paper, Hellwig and Veldkamp (2009)—hence-

forth, HV—show that the answer is affirmative when there is a large number of identical

small players engaged in a beauty contest game. In contrast, this paper shows that

the answer is not always affirmative when the set of players is finite or relatively small.

More precisely, Proposition 1 shows that if actions are very complementary, then a player

wants to learn less when others want to learn more. This result has interesting impli-

cations. When actions are very complementary, heterogeneous beliefs, usually assumed

in problems under asymmetric information and in industrial organization models, can be

endogenously sustained.

When others become better informed, this has two effects on our incentives to acquire

information. On the one hand, the actions of those players who improve their information

become more correlated to the state, which makes more valuable our own information

about the state when actions are complements. On the other hand, the variance of

their actions (conditioned on our signal) may change. Lower variance of others’ actions

makes our own information about the state less valuable. With a continuum of players,

the fact that each player is very small compared to the size of the group leads to a

negligible change in the variance of the action of a player who improves her information.

Consequently, the variance of the average action is not affected and hence we care only

about the reduction in the covariance between the state and the average action. Thus,

the second effect above plays no role in our incentives to acquire information. However,

with a small set of players, better information about the state may reduce the variance

1Incentives of this nature have been considered, among many others, by: (i) Cooper and John (1988)
to study coordination failures in macroeconomic models, (ii) Morris and Shin (2002), Hellwig (2005),
Cornand and Heinemann (2008), Angeletos and Pavan (2004, 2007), and Colombo and Femminis (2008)
to study the welfare effects of public information disclosure, (iii) Morris and Shin (2005) to study the
welfare implications of central bank transparency, (iv) Calvó-Armengol and de Mart́ı (2007, 2009) to
study efficiency properties of communication networks, (v) Calvó-Armengol, de Mart́ı, and Prat (2009),
and Hagenbach and Koessler (2010) to study endogenous information transmission in networks, and (vi)
Dewan and Myatt (2008, 2009) to study endogenous communication from party leaders to activists.
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of others’ actions. Furthermore, when actions are very complementary, the covariance

between a player’s action and the state is very small regardless her information choice

and, therefore, the first effect above vanishes. In this case, the reduction in the variance

of the average action overcomes the higher covariance between others’ actions and the

state, leading to a decrease in our incentives to acquire information. In short, if others’

actions are hardly correlated with the state and, in addition, vary less, knowing the state

becomes less valuable even when we wish to approximate to others’ actions.

In these games, optimal actions depend on arbitrarily higher-order iterated expecta-

tions of the state. As in Morris and Shin (2002), the assumption that the set of players is

a continuum enables HV to use an average expectation operator to keep track of higher-

order expectations. For a finite set of players, this approach is appropriate only when

higher-order beliefs are very homogeneous across players. But, if the players begin with

heterogeneous beliefs, then the heterogeneity would not necessarily vanish unless one im-

poses a very restrictive symmetric information structure. Thus, an average expectation

operator would be inappropriate to keep track of the required higher-order beliefs with a

finite number of players and a flexible information structure.

We consider a finite set of players and follow the approach introduced in the networks

literature by Calvó-Armengol and de Mart́ı (2007) of keeping track of higher-order beliefs

through a knowledge index. For tractability reasons, we conduct the analysis through a

two-player game, though our results continue to hold qualitatively provided that the set

of players is finite.

Perhaps more important than extending earlier work, this paper emphasizes that un-

derstanding strategic interactions in information depends crucially on whether one con-

siders a large or a small set of players. For a finite number of players, keeping track of

higher-order beliefs through a knowledge index leads to conclusions different from those

obtained using an average expectation operator. Clearly, the implications of our results

are more relevant in environments involving a relatively small number of players, such as

oligopolistic competition, organizations or a group of agents engaged in a common task.

Our results, however, do not go beyond the insights obtained by HV in markets with a

large number of players, as it is typical in models of monopolistic competition.

Our class of preferences also allows us to examine the role played by second order

external effects. Proposition 2 shows that, when actions are complements, high levels of

the externality favor that information choices be complements even when actions are very

complementary. This is intuitive since the externality provides an additional incentive for

players to be concerned about the suitability of others’ actions with the state.

A growing number of papers have recently drawn attention to quadratic games with

endogenous information acquisition. A paper closely related to ours is Myatt and Wallace

(2010), which considers a continuum of players endowed with beauty contest preferences.

They analyze information decisions when players are allowed to choose both which signals

they observe and the precision of such signals. An important difference with our model

is in that they allow signals to be correlated across players. This provides a nice frame-
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work to study how public information can emerge endogenously from private information

decisions. Although their information structure is different from that in HV, the result

that complementarity in actions always leads to complementarity in information decisions

also applies in their model. Colombo and Femminis (2008) introduce endogenous infor-

mation acquisition into the beauty contest game with a continuum of players proposed

by Morris and Shin (2002) to analyze whether public information can reduce welfare. In

their model, higher precision in public information is welfare-improving. Related work

can be also found in political science. Dewan and Myatt (2008) analyze communication

between leaders and activists in political parties. Party leaders can choose the precision

of the signals through which they communicate their opinions while activists can affect

the precision of the signals through which they learn leaders’ opinions.

All those papers above consider a continuum of players and, therefore, can invoke

an average expectation operator to compute higher-order beliefs. However, most related

work has not considered a finite set of players. One exception is Calvó-Armengol, de

Mart́ı, and Prat (2009). They study costly information transmission among players who

are connected through a network. In their model, players have quadratic preferences and

are both senders and receivers of information. They use a knowledge index to compute the

higher-order beliefs required to characterize optimal actions. The question analyzed in our

paper is different from theirs as we consider information acquisition from external sources.

Finally, Chatterjee and Harrison (1988) consider a two-player sealed-bid auction where

players can acquire private information about the value of the object before submitting

their bids. For this game of complementary actions, they show that information decisions

can be substitutes, a result which agrees with ours for a different payoff structure. Hence,

their assumption of a finite set of players may help explain why they obtain substitutive

information decisions when actions are complements.

The rest of the paper is organized as follows. Section 2 introduces the model. We

examine players’ optimal actions and the nature of their strategic interactions in the

information choice in Section 3. All the proofs are relegated to the Appendix.

2 The Model

2.1 Actions and Payoffs

We consider two players, i = 1, 2, who make decisions in a two-stage game. In the first

stage, nature selects a state of the world θ ∈ R, which is unobservable for the players.

Then, each player i makes an information choice xi ∈ [0, 1] about the state. Information

decisions are taken simultaneously. After this, nature sends a private signal si ∈ R about

the state to each player i. In the second stage, each player i observes her signal and

chooses an action ai ∈ R. Actions are taken simultaneously too.

Payoffs depend on the state θ and on the action profile a = (a1, a2). More precisely,
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the payoff to each player i is given by the (common) quadratic function:

u(ai, aj, θ) = (ai, aj, θ)

γii γij γiθ
γij γjj γjθ
γiθ γjθ γθθ

 (ai, aj, θ)
T ,

where γiθ 6= 0 and γjθ 6= 0. That is, there is a strategic relation between the state and

each action. The assumption that u is quadratic guarantees linearity of optimal action

strategies. We assume strict concavity at the individual level, γii < 0, as well as at the

aggregate level, γij + γii < 0. Strict concavity at the individual level guarantees that

best responses in actions are well-defined. In addition, to ensure that optimal actions are

well-defined and to guarantee equilibrium existence, we need to assume γij > γii. Finally,

in order to consider nonnegative (second order) external effects, we assume concavity in

the other player’s action, γjj ≤ 0.

Given those assumptions above on preferences, we specify the following pair of param-

eters: λ := −γij/γii and π := γjj/γii. By combining γii < 0, γij + γii < 0, and γij > γii,

it follows λ ∈ (−1, 1). Also, γii < 0 together with γjj ≤ 0 imply π ≥ 0. Parameter

λ measures the degree of strategic complementarity (λ > 0) or substitutability (λ < 0)

in actions. Parameter π is useful to measure the level of the externality generated on a

player by the other player’s action.

Remark 1. Beauty contest payoffs are a particular case satisfying our assumptions above

on preferences. The beauty contest game studied by HV (adapted to our two-player case)

is given by the payoff u(ai, aj, θ) = −(1 − λ)−2
[
ai − (1 − λ)θ − λaj

]2
. In this case, we

have: γii = −2/(1 − λ)2, γij = 2λ/(1 − λ)2, γjj = −2λ2/(1 − λ)2, γiθ = 2/(1 − λ), and

γjθ = −2λ/(1−λ). As a consequence, strategic interactions in actions and external effects

are related through the relation π = λ2.

2.2 Information Structure and Information Decisions

We consider a Gaussian information structure for tractability. In the first stage of the

game, nature draws a state realization θ from a normal distribution with mean µ and

variance σ2
θ . This distribution summarizes the (common) priors of the players about the

state. In addition, each player i makes an information decision xi and observes a signal

realization si. We assume that a player’s information decision determines the correlation

between the state and the private signal that she receives. Thus, the player makes a

decision on her own belief revision process (following Bayes’ rule) and ends up with some

posteriors about θ, which she can use in the second stage to choose her action. We use z̃

to denote a random variable with realization z.

Definition 1. An information choice for player i, xi ∈ [0, 1], is the square of a value for

the correlation coefficient between the random variables θ̃ and s̃i.
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Thus, we model information decision as a continuous choice. Higher values of xi indi-

cate higher degrees of informativeness for player i’s signal. Let x = (x1, x2) ∈ [0, 1]2 be an

information profile. We interpret an information choice as a decision on the quality of the

channel though which the player receives information about the state. We assume that

each player observes the information decision of the other before she chooses her action

in the second stage. This assumption is natural if we think that affecting the technol-

ogy through which we receive information requires some investments and has observable

consequences.2 Nevertheless, we assume that a player i does not observe the signal sj
received by the other player.

In order to capture information acquisition, the signals that players receive must be

correlated with the state. We should also expect some degree of correlation between

signals. The precise way in which signals relate with the state is the result of some

information-generating procedure. We abstract from this information-generating proce-

dure by considering the joint distribution of the state and the signals as a primitive in the

model. We assume that the vector of the state and signals follows a multi-normal distribu-

tion, (θ̃, s̃1, s̃2) ∼ (µ1,Σ), where a 1 is a 3-dimensional vector of ones and Σ = (σkl)k,l=θ,1,2
is a general variance-covariance matrix for the random triple. The only relevant as-

sumption that we impose on this information structure is that signals are independent,

conditionally on the state. In other words, we assume that there is no public information

component resulting from the underlying information-generating procedure. Formally,

we assume that σ12 = σθ1σθ2σ
−2
θ . Notice that this condition is satisfied if and only if

Cov[s̃1, s̃2 | θ] = 0. Also, for pure notational convenience, we assume that both signals

have the same variance, σ2
1 = σ2

2 = σ2
s . Taking into account these assumptions, the

variance-covariance matrix Σ, which characterizes our information structure, can be writ-

ten as:

Σ =

σ2
θ σθ1 σθ2

σθ1 σ2
s σθ1σθ2σ

−2
θ

σθ2 σθ1σθ2σ
−2
θ σ2

s

 . (1)

Also, given our specification above of an information choice xi, the definition of correlation

coefficient between and θ̃ and s̃i, leads to σθi =
√
xiσθσi and σθ1σθ2σ

−2
θ =

√
x1x2σ

2
s .

Some basic algebra on normal distributions yields Var[θ̃ | si, x] = (1− xi)σ2
θ . That is,

the posterior variance of the state is strictly decreasing in the information choice xi ∈ [0, 1]

and, therefore, the informativeness of a signal can be naturally ranked according to the

induced posterior variance of the state.

Remark 2. In their paper, HV assume that each player can choose a subset from a finite

set of signals so that the information choice is discrete. They rank the informativeness of

the information choice in terms of the induced posterior variance of the state, conditioned

on the signals observed. Our model specifies the information choice in a different way and,

2Consider, for instance, a university changing its library resources or a firm changing the hardware
employed for information acquisition and processing.
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in particular, it considers a continuous information choice. Nevertheless, both approaches

are similar in the sense that both rank analogously the informativeness of a signal using

posterior variances.

Remark 3. A number of papers that consider a continuum of players, including among

many others, Morris and Shin (2002), and Angeletos and Pavan (2007), assume an infor-

mation structure where players receive both private and public signals. Furthermore, they

assume that signals are equal to the state plus some idiosyncratic noise (private informa-

tion) and some common noise (public information). When there is no public information,

that information structure for our two-player game can be summarized by assuming:

θ̃ ∼ N(µ, σ2
θ), s̃i = θ̃ + ε̃i, ε̃i ∼ N(0, ψ2

i ), i = 1, 2,

where ψ2
i is the variance of the noise of player i’s signal, and θ̃ and ε̃i are assumed to

be independent, as well as ε̃1 and ε̃2. Notice that this information structure is obtained

by imposing conditions on the marginal distributions of the state and signals, and by

assuming a linear relation between signals and the state. Our information structure

follows instead by considering a general multi-normal distribution with the only restriction

of independence (conditionally on the state) between signals. Therefore, when there is no

public information, our information structure is more general than the one summarized

above. In particular, the information structure above is accommodated as a special case

by our information structure if we further impose σθi = σ2
θ and σ2

s = σ2
θ + ψ2

i for each

i = 1, 2. However, under this information structure, we cannot change Cov[θ̃, s̃i] without

affecting σ2
θ . Because θ̃ and ε̃i are independent, affecting the variance of ε̃i does not change

the covariance between the state and signal s̃i. Thus, under that information structure,

xi cannot be taken as endogenous when the variance of the state is exogenously given.

Regarding the Bayesian updating of beliefs under our information structure, some basic

results on normal distributions lead to that the random variables [θ̃ | si, x] and [s̃j | si, x]

are normally distributed with respective means:

E[θ̃ | si, x] = µ+
√
xi

(
σθ
σs

)
(si − µ), E[s̃j | si, x] = µ+

√
xixj(si − µ). (2)

Let us denote the incomplete information game that we have described by (u,N(µ1,Σ)).

2.3 Equilibrium

An action strategy for player i is a function αi : R × [0, 1]2 → R, where αi(si, x) is the

action chosen by player i when the information profile is x and the signal that she receives

is si. Let α = (α1, α2) denote an action strategy profile.

The backward induction process in equilibrium is as follows. Given an information

profile x, each player i chooses in the second stage, for each signal realization si, an

action ai in order to maximize the expected payoff E[u(ai, aj, θ̃) | si, x]. By solving this
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optimization problem, we obtain player i’s best response in actions. Given an action

strategy profile α, the expected payoff to player i in the first stage is defined by:

Vi(x;α) := E[u(αi(s̃i, x), αj(s̃j, x), θ̃) ]. (3)

Thus, given α, in the first stage player i chooses xi so as to maximize Vi(xi, xj;α). This

gives us player i’s best response in information decisions.

We restrict attention to equilibrium in pure strategies.

Definition 2. A strategy profile (x∗, α∗) is a Perfect Bayes-Nash Equilibrium (PBE) of

(u,N(µ1,Σ)) if the following conditions are satisfied for each player i = 1, 2:

(i) for each x ∈ [0, 1]2 and each si ∈ R,

E[u(α∗i (si, x), α∗j (s̃j, x), θ̃) | si, x] ≥ E[u(ai, α
∗
j (s̃j, x), θ̃) | si, x] for each ai ∈ R;

(ii) Vi(x
∗
i , x
∗
j ;α

∗) ≥ Vi(xi, x
∗
j ;α

∗) for each xi ∈ [0, 1];

(iii) for each x ∈ [0, 1]2 and each si ∈ R, the expectation operator E[·|si, x] satisfies the

conditions in (2).

3 Main Results

To answer the question addressed in this paper, we characterize optimal action strategies

and use them to study how the pair of parameters (λ, π) affects the sign of the second

order derivative ∂2Vi(x;α∗)/∂xi∂xj. We emphasize that this paper does not characterize

information decisions in equilibrium and does not study either the properties of the set

of PBE of the game (u,N(µ1,Σ)).

3.1 Optimal Action Strategies

To ease notation, let us denote by Ei[·] = E[· | si, x] player i’s expectation operator con-

ditioned on observing signal realization si and on any information profile x. From our

assumptions on preferences, it follows that, for each information profile x ∈ [0, 1]2, player

i’s optimal action strategy is given by:

α∗i (si, x) = (1− λ)Ei[τ0 + τ1θ̃] + λEi[αj(s̃j, x)],

where τ0, τ1 ∈ R are some constants. By iterating recursively, we obtain

α∗i (si, x) = τ0 + (1− λ)τ1

∞∑
k=0

λkEiEjEi · · ·Ep(k)[θ̃],

where EiEjEi · · ·Ep(k)[θ̃] denotes the (k+1)-order iterated expectations of θ̃. The subindex

p(k) equals i if k is either zero or even and equals j if k is odd.
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At this point, we need an operator that allows us to keep track of the discounted

nested expectations of the players, in order to obtain a closed expression for optimal action

strategies. In the case with a continuum of players, each player cares about the average

of higher-order iterated beliefs and one can invoke an average expectation operator to

approximate such beliefs, an approach introduced by Morris and Shin (2002). However,

with a finite number of players who have heterogeneous beliefs, one needs instead to

account for the iterated beliefs of each particular player. To do so, we make use of the

knowledge index introduced by Calvó-Armengol and de Mart́ı (2007) in their work on

communication in networks.

As it is common in the related literature, a player’s optimal action is linear in the

signal that she observes. The following lemma characterizes optimal action strategies for

our game.

Lemma 1. The unique optimal action strategy profile α∗ in any PBE of (u,N(µ1,Σ)) is

given by:

α∗i (si, x) = τ0 + τ1µ+mi (si − µ),

for each x ∈ [0, 1]2, each si ∈ R, and each player i=1,2, where τ0, τ1 ∈ R, and

mi = τ1

(
σθ
σs

)
(1− λ)(1 + λxj)

√
xi

(1− λ2xixj)
.

By substituting the optimal action strategy profile α∗, characterized in Lemma 1,

into the ex-ante expected payoffs, we obtain a single-stage game where players make

information choices and receive their payoffs according to Vi(xi, xj;α
∗). In this game, each

player has infinitely many (pure) information strategies, which could in principle lead to

equilibrium existence problems. Nevertheless, since such strategies lie in the compact set

[0, 1] and the payoff function Vi(xi, xj;α
∗) is continuous in (xi, xj), the results in Fudenberg

and Levine (1986) regarding approximate games and approximate equilibrium3 can be

invoked to guarantee the existence of PBE for our game (u,N(µ1,Σ)).

3.2 Strategic Interactions in Information Decisions

We state now our main result regarding a player’s incentives to acquire information when

the other player increases her own information.

Proposition 1. Let α∗ be the unique optimal action profile for (u,N(µ1,Σ)) character-

ized in Lemma 1 and suppose that player j increases locally her information choice xj.

(i) If there is no strategic interaction in actions (λ = 0), then player i has no incentives

to change her information choice, ∂2Vi(x;α∗)/∂xi∂xj = 0;

(ii) there exists some bound ε > 0 such that (a) if actions are moderately comple-

mentary (0 < λ < ε), then player i has incentives to increase her information choice,

3Approximate equilibrium is formally defined by Radner (1980).
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∂2Vi(x;α∗)/∂xi∂xj > 0, whereas (b) if actions are moderately substitutive (−ε < λ < 0),

then player i has incentives to decrease her information choice, ∂2Vi(x;α∗)/∂xi∂xj < 0;

(iii) for each level of the external effect π ∈ [0, 1), there exists some bound κ(π) ∈ (ε, 1)

such that if actions are sufficiently complementary (κ(π) < λ < 1), then player i has

incentives to decrease her information choice, ∂2Vi(x;α∗)/∂xi∂xj < 0;

(iv) for each level of the external effect π ∈ [0, 1), there exists some bound ρ(π) ∈ (−1, 0)

such that if actions are sufficiently substitutes (−1 < λ < ρ(π)), then player i has incen-

tives to increase her information choice for some initial values of the information profile

x, ∂2Vi(x;α∗)/∂xi∂xj > 0 for xi small enough and xj large enough;

(v) for the case of beauty contest payoffs (π = λ2), there exists some bound β ∈ (0, 1) such

that if actions are sufficiently complementary (β < λ < 1), then player i has incentives

to decrease her information choice, ∂2Vi(x;α∗)/∂xi∂xj < 0.

Figure 1 below illustrates the results stated in Proposition 1.
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Figure 1

For (λ, π) in the shadowed region, the information choice does not have the same strategic coordination

motives as the action choice. The line bc is π = λ2 and corresponds to the beauty contest game.

Thus, strategic interactions in the information choice have the same motives as those in

actions when the degree of coordination is moderate, as stated in Proposition 1 (i) and (ii).

This agrees with the main result by HV for a game with a continuum of players. However,

when actions are very complementary, information decisions turn out to be substitutes,

as stated in Proposition 1 (iii) and (v) above. This result contrasts qualitatively with the

main result in HV.

If the state were known to player i, then her optimal action would be

a∗i = (1− λ)(τ0 + τ1θ) + λaj,

which summarizes her desire to match both the underlying state and the other player’s

action. In our incomplete information game, player i observes the information profile

x and her private signal si, but her optimal action is uncertain. Then, the posterior

variance Var[ã∗i | si, x] gives us a measure of how valuable is the information about the
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state to player i. More variance of the player’s optimal action is associated with a more

uncertain objective. More uncertainty reflects that information is more valuable to the

player. We have

Var[ã∗i |si, x] = (1− λ)2τ 2
1 Var[θ̃|si, x] + λ2Var[ãj|si, x] + 2(1− λ)λτ1Cov[θ̃, ãj|si, x]. (4)

Thus, when actions are complements (0 < λ < 1), more covariance between the state

and the other player’s action increases the variance of our optimal action and, therefore,

makes information more valuable for us. One can imagine that as the other player becomes

better informed, her beliefs are closer to the true value of the state so that her action

is more correlated with the state. In that case, her action reflects with better precision

the true value of the state. This is indeed the reason for the result in HV’s model that a

player wants to increase her information when others do so. In our model, we obtain this

effect too. As the other player increases (locally) her information, we have

∂Cov[θ̃, ãj|si, x]

∂xj
=

(1− λ)τ1σ
2
θ(1− xi)(1 + λxi)

(1− λ2xixj)2
> 0.

Note, however, that when λ approaches one this effect becomes very small. In other

words, when actions are very complementary, any player’s optimal action approaches the

optimal action that she chooses when she acquires no information at all. Thus, regardless

players’ information choices, this effect is very weak when complementarity in actions is

large.

On the other hand, the variance of the other player’s action can also be affected by her

information decision. As the other player becomes better informed, one can expect that

the variance of her action decreases because she is more certain about the actual value of

the state. This effect makes less valuable our own information about the state. This effect

is absent in HV’s model because each player is very small with respect to the size of the

group. In that case, the variance of a player’s action is not affected by her information

decision, neither is affected the variance of the average action. It can be verified that

∂Var[ãj|si, x]

∂xj
=

(1− λ)2τ 2
1σ

2
θ(1 + λxi)

2

(1− λ2xixj)3

[
1− (2− λ2)xixj

]
,

which takes negative values for 0 < λ < 1, for some values of x. Then, we observe from

the expression in (4) that, when λ is high enough, the reduction in the variance of the

other player action’s can compensate for the (low) increase in the covariance between her

action and the state, leading to a decrease in the value of our information.

Notice, however, that those arguments above make use of the precision 1/Var[ã∗i |si, x]

as indicative of the value of information while Proposition 1 uses Vi(x;α∗) to measure the

value of information. This is why the external effect captured by parameter π plays no

role in the intuitions given above.

Remark 4. Our restriction to the two-player case is for tractability. With a larger

number of players, one must resort to computational numerical methods to obtain the
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required inverse of matrix [I−λΩ]. This inverse determines the slope of a player’s optimal

action in her private signal. Nevertheless, the implication that the variance of the action of

a player who improves her information decreases (for some information profiles) continues

to hold with an arbitrary finite number of players. Suppose instead that our game is

played by a finite set of players N = {1, . . . , n} and take two players i, j ∈ N , i 6= j. The

assumed information structure implies Var[s̃j|si, x] = (1 − xixj)σ2
s . Since Var[ãj|si, x] =

m2
jVar[s̃j|si, x], it can be checked that

∂Var[ãj|si, x]

∂xj
= mjσ

2
s

[
2
∂mj

∂xj
(1− xixj)− ximj

]
,

which takes negative values for each λ ∈ (0, 1), for some values of x. Then, from the

expression in (4), we obtain ∂Var[ã∗i |si, x
]
/∂xj < 0 by choosing λ > 0 sufficiently close

to one. Thus, the result that information decisions are substitutes when actions are very

complementary continues to hold provided that the number of players is finite. However,

because higher-order average expectations approximate the average of higher-order expec-

tations when the number of players tends to infinity, our results asymptotically converge

to the result by HV.

Remark 5. Multiple equilibria may arise in a game with endogenous information deci-

sions even when equilibrium is unique for the corresponding game without information

choice. When information choices are complements, this problem is indeed present in

HV’s model because it assumes a discrete information choice. In our model, information

acquisition is a continuous choice in a compact set, which ensures uniqueness of PBE for

those values of (λ, π) under which the value of additional information is either strictly

increasing or decreasing in the other player’s information. To see this, suppose that player

i increases her initial information choice xi by a certain amount ∆xi > 0. Then,

η(xj) := Vi(xi + ∆xi, xj;α
∗)− Vi(xi, xj;α∗)

gives us the value of the additional information ∆xi to player i. Because there is no

cost of information acquisition, two information choices xj, x
′
j ∈ [0, 1], xj 6= x′j, by player

j can be part of a PBE only if η(xj) = 0 and η(x′j) = 0. However, both equalities

cannot hold simultaneously when ∂Vi(x;α∗)/∂xi is either strictly increasing or strictly

decreasing in xj. As a result, for those values of (λ, π), identified in Proposition 1, under

which ∂2Vi(x;α∗)/∂xi∂xj is either positive or negative, there is a unique x∗j ∈ [0, 1] which

satisfies the equilibrium requirement η(x∗j) = 0.

External effects have also an important role in the analysis of the question studied in

this paper. When actions are complements, the shape of the shadowed regions in Figure

1 suggests that the threshold level of complementarity above which information decisions

become substitutes increases with the second order externality. In addition, those regions

seem to indicate that, for a level of the externality high enough (π ≥ 1), information

12



decisions are complements for any degree of complementarity in actions. These results

indeed follow in our model, as stated in the next proposition.

Proposition 2. Suppose that actions are complements (0 < λ < 1), then the critical

threshold κ(π) identified in Proposition 1 (iii) (above which information decisions become

substitutes) is continuous and nondecreasing in π. Moreover, for a level of the exter-

nal effect sufficiently high, information decisions are complements regardless the level of

complementarity in actions, κ(1) = 1.

Thus, when the external effect is sufficiently high, the message delivered by the main

result in HV’s model is restored. Notice, however, that this implication follows in our

model for quadratic payoffs different from the beauty contest case. The second order

externality serves as an additional incentive for players to coordinate their actions. They

become more concerned about the suitability of others’ actions with the state, which makes

them value more learning about the state when others do so. Consider, for instance, a

group of firms competing in a Bertrand oligopoly where the market demand depends

on some unknown parameter. In this case, the second order externality is high when the

offered products are very homogenous. Then, each firm has a huge incentive to learn more

about the parameter when others are well informed in order to choose a price appropriate

to the market conditions but slightly below the prices set by its competitors.

4 Concluding Remarks

This paper investigated the relation between strategic interactions in information deci-

sions and interactions in actions for a tractable class of games with complementary or

substitutive actions, externalities, and a fairly general information structure.

Our analysis highlighted the differences in the nature of interactions when the set of

players is finite with respect to the case with a continuum of players. From a methodolog-

ical viewpoint, keeping track of players’ higher-order beliefs through a knowledge index

leads to conclusions different to those obtained using an average expectation operator.

The main reason behind this discrepancy is in the implication that, with a small number

of players, the variance of others’ actions may decrease as they become better informed,

making less valuable our own information about the state.

As the number of players increase, our results (for the beauty contest game) converge

to the main result obtained by HV and, therefore, information decisions tend to inherit

the same strategic motives as actions. Our results are relevant in environments with

a relatively small number of players, such as industrial competition settings, but lose

importance for the case of markets with many traders. For such large markets, usually

studied in general equilibrium and macro models, the insights obtained by HV are very

useful for the analysis of strategic interactions in information decisions.

The role played by external effects in our model points out the importance of consid-
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ering payoffs that allow for a relation between strategic interactions and external effects

more flexible than that imposed by beauty contests.

This paper has not analyzed the welfare consequences of strategic interactions in in-

formation decisions. A full characterization of the set of PBE for our game is required

to conduct such analysis. Angeletos and Pavan (2007) have successfully examined the

comparative statics of welfare with respect to the information structure in a setting with

a continuum of players and without endogenous information choice. With endogenous

information choice and a finite set of players, a comparative statics exercise along those

lines seems an interesting direction for future research.

Appendix

Proof of Lemma 1. Using the posterior expectations in (2), we obtain

α∗i (si, x) = τ0 + (1− λ)τ1

∞∑
k=0

λk
[
µ+

√
xp(k)(x1x2)k

(
σθ
σs

)
(si − µ)

]
.

Now, consider the pair of matrices

φ :=

(
σθ
σs

)
(
√
x1 ,
√
x2)1×2, Ω :=

(
0

√
x1x2√

x1x2 0

)
2×2

.

Then,

α∗i (si, x) = τ0 + τ1µ+ (1− λ)τ1 φ ·
∞∑
k=0

λkΩk · ei(si − µ)

= τ0 + τ1µ+ (1− λ)τ1 φ · [I − λΩ]−1 · ei (si − µ),

where I denotes the 2× 2 identity matrix and ei is the ith vector of the canonical basis of

R2. The infinite sum
∑∞

k=0 λ
kΩk = [I−λΩ]−1 above is well-defined since we are assuming

λ ∈ (−1, 1). More precisely, Debreu and Herstein (1953) show that the convergence of∑∞
k=0 λ

kΩk is guaranteed if |λ| is strictly less than the inverse of the largest eigenvalue of

Ω. It can be easily verified that this largest eigenvalue equals
√
x1x2 so that its inverse is

strictly larger than one.

Let mi := (1 − λ)τ1φ · [I − λΩ]−1 · ei. Since [I − λΩ] is a 2 × 2 matrix, it is easy to

compute analytically its inverse to obtain

mi = τ1

(
σθ
σs

)
(1− λ)(1 + λxj)

√
xi

(1− λ2xixj)
.

To show that the action strategy profile α∗ is unique, we follow the approach used

by Calvó-Armengol and de Mart́ı (2009) to prove uniqueness of Nash equilibrium for a

one-stage, beauty contest game with an exogenously given information choice (Theorem

1). First, define the following two-player team payoff function:

Ψ(ai, aj, θ) = −(1− λ)
[
(ai − θ)2 + (aj − θ)2

]
− λ(ai − aj)2.
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Consider a given information profile x ∈ [0, 1]2. Since the payoff function u is common

for both players, the cross-derivatives in actions are the same for them (γij). Then, since

u is quadratic, it follows from Lemma 6 in Ui (2009) that the payoff u admits Ψ as a

potential. In other words, when x is fixed, a player’s decision problem in actions for the

game (u,N(µ1,Σ)) can be solved using the payoff function Ψ.4 Second, Theorem 4 in

Radner (1962) can be used to show that optimal actions are unique in the team game

with payoffs Ψ if the matrix Q := (∂2Ψ(a, θ)/∂ai∂aj) is negative definite. We obtain

Q = 2

(
−1 λ
λ −1

)
,

with eigenvalues ρ1,2 = −1 ±
√

1− (1− λ2) < 0 for each λ ∈ (−1, 1). Thus, since the

matrix Q above is definite negative, optimal actions are unique for the given x.

Derivation of a closed expression for the value of information: For the information

profile x = (1, 1) information is complete and the exact value of θ is known by the players.

In that case, both players have the same optimal action, which depends only on the state.

Further, because u is quadratic, such optimal action is linear in θ. Let τ(θ) := τ0 + τ1θ,

where τ0, τ1 ∈ R, be any player’s optimal action under complete information. Consider

now the incomplete information case and fix an information profile x ∈ [0, 1]2. A first-

order Taylor expansion of u(α∗i (si, x), α∗j (sj, x), θ) around (τ(θ), τ(θ), θ) yields

u(α∗i (si, x),α∗j (sj, x), θ) = u(τ(θ), τ(θ), θ) + (γii/2)[α∗i (si, x)− τ(θ)]2

+ (γjj/2)[α∗j (sj, x)− τ(θ)]2 + γij[α
∗
i (si, x)− τ(θ)][α∗j (sj, x)− τ(θ)],

where we have used ∂u(τ(θ), τ(θ), θ)/∂ai = ∂u(τ(θ), τ(θ), θ)/∂aj = 0. Then, using the

expression for α∗ obtained in Lemma 1 and the definition of Vi given in (3), we have

Vi =E[u(τ(θ̃), τ(θ̃), θ̃)] + (τ 2
1 /2)[γii + γjj + 2γij]E[(θ̃ − µ)2]

+ ([γiim
2
i + γjjm

2
j ]/2)E[(s̃i − µ)2] + γijmimjE[(s̃i − µ)(s̃j − µ)]

− τ1[γii + γij]miE[(s̃i − µ)(θ̃ − µ)]− τ1[γjj + γij]mjE[(s̃j − µ)(θ̃ − µ)].

Applying the expectation operators and using the information structure summarized by

the variance-covariance matrix Σ in (1), we obtain

Vi = E[u(τ(θ̃), τ(θ̃), θ̃)] +
τ 2
1σ

2
θ

2

[
γii + γjj + 2γij

]
+

1

2

[
γiim

2
iσ

2
s + γjjm

2
jσ

2
s + 2γijmimjσiθσjθσ

−2
θ − 2τ1(γii + γij)miσiθ − 2τ1(γjj + γij)mjσjθ

]
.

Because (−1/γii) is a positive constant, the sign of ∂2Vi/∂xi∂xj coincides with the

sign of (−1/γii)∂
2Vi/∂xi∂xj. Using this, we find convenient to propose the normalization

4Potential games are formally defined by Moderer and Shapley (1996) and Bayesian potential games
are formally defined by Heumen, Peleg, Tijs, and Borm (1996). See Ui (2009) for a general existence
result of Bayesian potential games for quadratic games with symmetric cross-derivatives of payoffs.
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V̂i := (−1/γii)Vi and proceed in terms of V̂i instead of Vi. For each player i = 1, 2, let us

define the function qi : [0, 1]2 → R, specified by

qi(x) :=
1 + λxj

1− λ2xixj
.

Then, with the normalization indicated above and by developing the terms in mi and mj,

we obtain

V̂i = (−1/γii)E[u(τ(θ̃), τ(θ̃), θ̃)] +
τ 2
1σ

2
θ

2

[
2λ− π − 1

]
+

(1− λ)2τ 2
1σ

2
θ

2

[
− q2

i xi − πq2
jxj + 2λqiqjxixj + 2qixi − 2

(λ− π
1− λ

)
qjxj

]
.

We now compute the second order derivative ∂2V̂i/∂xi∂xj from the expression above.

For the required algebra, it is useful to take into account

∂qi
∂xi

=
λ2xjqi

1− λ2xixj
,

∂qi
∂xj

=
λqj

1− λ2xixj
,

∂2qi
∂xi∂xj

=
λ3xjqj + λ2qi
(1− λ2xixj)2

.

Using that, it can be verified that

∂2V̂i
∂xi∂xj

=λ

[
(1− λ)τ1σθ
1− λ2xixj

]2 [
(2− π)λ2xixjqiqj

+ λ
[
xiqi −

(λ− π
1− λ

)
xjqj + (1− π)xjq

2
j

]
+ qj −

(λ− π
1− λ

)
qi − πqiqj

]
.

(5)

For the particular case of a beauty contest, we impose π = λ2 to obtain

∂2V̂i
∂xi∂xj

∣∣∣∣
λ=π2

=λ

[
(1− λ)τ1σθ
1− λ2xixj

]2 [
− xixjqiqjλ4 − xjq2

jλ
3

+ (2xixjqiqj − xjqj − qiqj)λ2 + (xiqi + xjq
2
j − qi)λ+ qj

]
.

(6)

With the expressions for the ex-ante expected payoff given by (5) and (6) at hand, we

proceed to the proofs of the propositions.

Proof of Proposition 1. Given an information profile x ∈ (0, 1)2, let h : [−1, 1]×R+ → R
be the function specified as

h(λ, π) :=(1− λ)
[
xixjqiqj(2− π)λ2 + xiqiλ+ (1− π)xjq

2
jλ+ qj − πqiqj

]
− (λ− π) [xjqjλ+ qi] .

Then, for each λ ∈ (−1, 1), we have

∂2V̂i
∂xi∂xj

=

[
(1− λ)τ1σθ
1− λ2xixj

]2 [
λ

1− λ

]
h(λ, π).
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Note that ∂2V̂i/∂xi∂xj and h have the same sign when actions are complements (λ ∈ (0, 1))

and different sign when actions are substitutes (λ ∈ (−1, 0)).

Also, given x ∈ (0, 1)2, let g : [−1, 1]→ R be the function specified as

g(λ) := −xixjqiqjλ4 − xjq2
jλ

3 + (2xixjqiqj − xjqj − qiqj)λ2 + (xiqi + xjq
2
j − qi)λ+ qj.

Then, we have

∂2V̂i
∂xi∂xj

∣∣∣∣
λ=π2

= λ

[
(1− λ)τ1σθ
1− λ2xixj

]2

g(λ).

Note that the sign of ∂2V̂i/∂xi∂xj|λ=π2 coincides with the sign of g when actions are

complements (λ ∈ (0, 1)).

(i) The result follows directly from the specification of the function ∂2V̂i/∂xi∂xj in (5).

(ii) For a given x ∈ [0, 1]2, we have

h(0, π) = qj − πqiqj + πqi = 1.

The result follows since h(0, π) > 0, ∂2V̂i/∂xi∂xj = 0 for λ = 0, ∂2V̂i/∂xi∂xj is a contin-

uous function in λ ∈ (−1, 1), and (a) λ/(1− λ) > 0 if λ ∈ (0, 1) while (b) λ/(1− λ) < 0

if λ ∈ (−1, 0).

(iii) Take a given x ∈ (0, 1)2 and a given π ∈ [0, 1). It can be checked that h(0, π) = 1

and

h(1, π) = (π − 1)[xjqj + qi] = (π − 1)

[
xj(1 + xi) + (1 + xj)

1− xixj

]
< 0.

Since h(0, π) > 0, h(1, π) < 0, and h(·, π) is a continuous function in λ, there is some

κ(π) ∈ (0, 1), bounded away from 1, such that h(κ(π), π) = 0 and h(λ, π) < 0 for each

λ ∈ (κ(π), 1). The result follows since λ/(1− λ) > 0 for each λ ∈ (0, 1).

(iv) Take a given π ∈ [0, 1), and consider x1 = 0 and x2 = 1. Then,

h(−1, π) = 2
[
−(1− π)q2

j + qj − πqi
]
− (−1− π) [−qj + qi] = π − 1 < 0.

Since h(0, π) > 0, h(−1, π) < 0 for xi = 0 and xj = 1, and h(·, π) is a continuous function

in λ, in xi, and in xj, then there are some ε(π), δ(π) > 0 and some κ(π) ∈ (−1, 0), bounded

away from −1, such that h(λ, π) < 0 for each λ ∈ (−1, κ(π)), each 0 ≤ xi < ε(π), and

each (1− δ(π)) < xj ≤ 1. The result follows since λ/(1− λ) < 0 for each λ ∈ (−1, 0).

(v) For a given x ∈ (0, 1)2, we have

g(1) = (xixj − 1)qiqj + (xi − 1)qi − (xj − 1)qj =
(xi − 1)− (xi + 3)xj

1− xixj
< 0.

Since g is a continuous function in λ ∈ (−1, 1), and g(0) > 0 while g(1) < 0, there is some

β ∈ (0, 1), bounded away from 1, such that g(β) = 0 and g(λ) < 0 for each λ ∈ (β, 1).

The result follows since we are considering λ > 0.
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Proof of Proposition 2. For λ ∈ (0, 1), let ψ(λ) be the value of π such that h(λ, ψ(λ)) = 0.

From the result in Proposition 1 (iii), we know that there exists some κ(0) ∈ (0, 1) such

that ∂2V̂i/∂xi∂xj = 0 for each x ∈ (0, 1)2. This happens if and only if h(κ(0), 0) = 0.

Therefore, ψ(κ(0)) = 0 with κ(0) < 1. Also, it can be easily checked that h(1, 1) = 0 so

that limλ→1− ψ(λ) = 1. Suppose that the mapping ψ : (0, 1)→ R+ is a function and not

a correspondence. Then, since h(λ, π) is continuous for each (λ, π) ∈ (0, 1)×R+, it must

be the case that ψ(λ) is continuous and nondecreasing in λ ∈ (0, 1) and, therefore, the

critical threshold κ(π) identified in Proposition 1 (iii) is continuous and nondecreasing in

π. Therefore, we only need to verify that ψ is indeed a function and not a correspondence.

To show that ψ is a function, take π, π′ ∈ R+ such that π 6= π′ and suppose that,

for some given λ ∈ (0, 1), we have ψ(π) = ψ(π′). This happens if and only if h(λ, π) =

h(λ, π′) = 0. Then, on the one hand, h(λ, π) = h(λ, π′) implies

(π − π′)
[
(1− λ)[xixjqiqjλ

2 + xjq
2
jλ+ qiqj]− [xjqjλ+ qi]

]
= 0.

Because π 6= π′, it must be the case that

[xixjqiqjλ
2 + xjq

2
jλ+ qiqj] =

1

1− λ
[xjqjλ+ qi].

On the other hand, h(λ, π) = 0 implies

1

λ− π
[
xixjqiqj(2− π)λ2 + xiqiλ+ (1− π)xjq

2
jλ+ qj − πqiqj

]
=

1

1− λ
[xjqjλ+ qi]

Therefore, by combining the two equalities above, it follows that λ ∈ (0, 1) must neces-

sarily satisfy the equation

xixjqiqj(2− λ)λ2 + xjq
2
j (1− λ)λ+ xiqiλ+ qj − λqiqj = 0.

Now, using the definition of qi and qj, we know that if the equation above is satisfied,

then we must necessarily have

(1+λxj)(1 + λxi)λ
[
(2− λ)λxixj − 1

]
+ xj(1 + λxi)

2(1− λ)λ+ [xi(1 + λxj)λ+ (1 + λxi)](1− λ2xixj) = 0.
(7)

But equation (7) above cannot hold for λ ∈ (0, 1) because

(1 + λxj)(1 + λxi)λ
[
(2− λ)λxixj − 1

]
> −λ,

xj(1 + λxi)
2(1− λ)λ+ [xi(1 + λxj)λ+ (1 + λxi)](1− λ2xixj) > 1,

and 1− λ > 0. From this contradiction, it follows that ψ is a function.

The last claim of the proposition holds since limλ→1− ψ(λ) = 1 implies κ(1) = 1.
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