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Antonio Jiménez-Mart́ınez

Centro de Investigación y Docencia Económicas
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1. Introduction

Consider a group of agents who are connected through an exogenously given network.

Each agent has an endowment of information which is valuable to every other agent,

so that pairs of agents have mutual interest in exchanging their pieces of information.

Agents negotiate over the relative prices of their pieces of information. We study how

the network structure influences these bilateral bargaining procedures. More precisely, we

model the negotiation process for each pair of agents as an infinite-period alternating-offers

bargaining model as in Rubinstein (1982). Each agent bargains simultaneously with each

of her neighbors. We assume that each agent can benefit from the exchange of information

with her neighbors only when the bargaining procedures with all of them finish. As a

consequence, an agent’s bargaining decisions, as well as her equilibrium payoffs, depend

on her position in the network.

Situations of this sort arise naturally when an agent faces a decision problem and others

have pieces of information which are useful to solve it. Consider an environment where

taking the action most suitable to solve the problem depends crucially on the amount of

information one has. Suppose that not using some relevant pieces of information decreases

drastically the probability of picking the right action. In such cases, the agent will wish

to gather the pieces of information possessed by others prior to solving the problem.

Calvó-Armengol (1999) analyzes a situation where one central agent bargains over a

certain surplus with two peripheral agents. The central agent bargains first for a given

number of periods with one of the peripheral agents and then switches to the other agent

for another negotiation process for a given number of periods. He studies whether the

central agent takes advantage in equilibrium of her position in the network. Corominas-

Bosch (2004) explores bargaining situations between sellers and buyers who are connected

through a network. Each seller can trade one unit of a good. In her model, an agent’s

bargaining power depends on her number of neighbors. Polanski (2007) investigates how

the network structure influences the pricing of a unit of information which circulates

along connected agents. In his model, the number of paths between a buyer and a seller

determines the seller’s relative bargaining power. Manea (2009) proposes a procedure to

determine limit equilibrium payoffs in an infinite horizon game in which pairs of linked

agents in a network are randomly chosen to bargain over a certain surplus. Agents who

reach an agreement are replaced by new agents in the same positions of the network. A

similar bargaining protocol, with the only difference that agents who reach an agreement

are removed from the network without replacement, is considered by Abreu and Manea

(2009). They study the efficiency properties of the Markov perfect equilibria of such a

game. They obtain that for each network there is a subgame perfect equilibrium which

is asymptotically efficient.

Section 2 presents the model and Section 3 states the main results. We restrict atten-

tion to two specific network structures: the star and the line. We obtain that, for such

networks, the proposed game of pairwise negotiations has a unique subgame perfect equi-
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librium outcome. Each agent’s equilibrium payoff is a fraction of the total payoffs that

the society can obtain given agents’ relative positions, so that there is no efficiency loss in

the negotiation processes through the network. Since each pair of agents trade with each

other independently of their other trading partners, the gain associated with each link

is pairwise. We abstract from situations where the gains of an agent from trading with

a neighbor have externality on her surplus derived from trading with other neighbors.

In the star, agents are favored when they propose first in their negotiation processes,

regardless of their position in the network. However, an agent prefers to be a central

agent when either the central agent or all the peripheral agents are restricted to propose

first in each link while she prefers to be a peripheral agent when either the central agent

or all the peripheral agents are restricted to propose second in each link. In the line,

ex-ante bargaining power propagates through the network and each agent benefits from

the position of agents who are indirectly connected. Section 4 discusses some extensions

of the model and concludes. All the proofs are relegated to the Appendix.

2. The Model

2.1. Network Notation

We consider a finite set of agents N = {1, . . . , n}, with n ≥ 3. A network g on N is a

collection of pairs from the set N and each pair {i, j} ∈ g is a link. A network g restricts

agents’ bargaining possibilities: two agents i, j ∈ N can bargain with each other only if

{i, j} ∈ g. Let N g
i denote the set of agent i’s neighbors in network g. We will restrict our

attention to two specific network structures, namely, the star and the line. Without loss

of generality, we will specify the star network as gS := {{1, 2} , {1, 3} , . . . , {1, n}} and the

line network as gL := {{1, 2} , {2, 3} , . . . , {n− 1, n}}.

2.2. Bargaining in the Network

Each agent is initially endowed with one unit of information and receives payoffs from

her use of information. In addition, each agent receives revenues from exchanging her

endowment of information with her neighbors in the network. We assume that an agent’s

payoffs due to the use of information are strictly increasing in any other agent’s piece of

information. Thus, the pieces of information held by different agents are complementary

in nature.1 Since information is a non-depletable good, it follows that each agent finally

receives the unit of information initially owned by each of her neighbors, provided that

an agreement is reached with each of them. Then, an agent’s payoffs due to the use of

information depends on her number of neighbors. Let vgi be the payoff that accrues to

agent i from the use of information in network g. Also, let V g =
∑n

i=1 v
g
i be the total

1Information structures where agents held complementary information about the state of the world
and each agent values the pieces of information possessed by others are considered, among others, by
Hagenbach and Koessler (2010), and Jiménez-Mart́ınez (2006).
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payoffs due to the use of information in the society when agents are connected through

network g.

Each pair of linked agents in a network bargain over the relative price of their initial

endowments of information following the bargaining game of alternating offers proposed

by Rubinstein (1982). The time period for the bargaining procedure within any link is

discrete and labelled by t ∈ T , where T is the set of positive integers. In each date

t ∈ T , one of the agents proposes an agreement price and the other agent either accepts

or rejects it.

To be precise about the agents’ interactions, we need to fix one of the agents in

each given link {i, j} as the reference agent for that link. The reference agent in a

link is the agent who starts proposing a price in the first period, so that she has an

ex-ante favorable bargaining position with respect to the other agent in the link. Let

M := {m ∈ {i, j} : {i, j} ∈ g} ⊂ N be the set of agents chosen as the reference agents

for network g. If i is the reference agent in link {i, j}, then the terms of transaction

between agents i and j are formally given by the ratio between the price of agent i’s

information over the sum of prices of both agents’ pieces of information. By construction,

this price, which we denote by qij, lies in the interval [0, 1]. Also, note that qji = 1− qij.
If the price offer is accepted, then the bargaining ends and the exchange takes place at

the agreed price. If the price offer is rejected, then the play passes on to the next date,

where the rejecting agent proposes in turn an agreement price. Bargaining continues in

this way with no limits to the number of dates. Each agent is engaged from date t = 1

onwards simultaneously in this bilateral bargaining procedure with each of her neighbors.

The bargaining procedures across different links are independent. Agents have perfect

recall.

Given the bilateral bargaining procedures between linked agents in the network, each

agent receives the revenue from exchanging her initial endowment of information with her

neighbors. If i is the reference agent in the link {i, j}, then the payoff that accrues to her

from the exchange of information with her neighbor j at price qij is the net revenue

rij(qij) = qij · 1− (1− qij) · 1 = 2qij − 1, (1)

and the payoff to agent j from trading with i is given by

rji(qij) = (1− qij) · 1− qij · 1 = 1− 2qij. (2)

Clearly, rji(qij) = −rij(qij).
Agents are impatient and discount their future payoffs using a common discount factor,

uniform across links, δ ∈ (0, 1).

We assume that each agent receives the payoffs due both to the use and exchange of

information at the date at which the bargaining procedures with each of her neighbors

ends. One way to interpret this assumption is by considering that each agent needs to

aggregate all pieces of information gathered from her neighbors in order to be able to

benefit from the use of information.
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Assumption 1. For a given network g, each agent i ∈ N can only benefit from the use

and the exchange of information at the date in which the bargaining procedures with all

of her neighbors finish.

The above assumption implies that an agent’s optimal bargaining decisions depend

on her relative position in the network. The agent cares about the date of agreement for

each of her neighbors and, therefore, her bargaining decisions for two different neighbors

must be correlated. Such a correlation depends on the number of her neighbors, on the

number of neighbors that each of her neighbors has, and so on.

Finally, note that in order to specify completely this game of pairwise negotiations for

a given network, one needs to label a reference agent for each link in the network. We

denote by Γ(g,M) the game of pairwise negotiations that we have described for a given

network g when M is the set of reference agents.

We introduce now formally the elements needed to specify final payoffs and to define

the equilibrium concept. Let A and R be two statements meaning, respectively, “Accept”

and “Reject.” Consider a network g and a given link {i, j} ∈ g, where agent i is taken as

the reference agent in the bargaining procedure with agent j. A strategy for agent i with

respect to her neighbor j is an infinite sequence with the form sij = (q1ij, y
2, q3ij, y

4, . . . ),

where qtij ∈ [0, 1] and yt ∈ {A,R} for each t ∈ T . In this case, a strategy for agent

j respect to agent i is an infinite sequence with the form sji = (y1, q2ij, y
3, q4ij, . . . ). Let

si = (sij)j∈Ng
i

be a strategy for agent i and let s = (si)i∈N be a strategy profile.2

Let (sij, sji)τ ∈ R2 be the pair of coordinates in the τ -th position of the strategy

pair (sij, sji). If (sij, sji)τ = (A, qτij), then the price qτij is accepted by agent i at date τ .

Analogously, if (sij, sji)τ = (qτij, A), then the price qτij is accepted by agent j at date τ .

Consider a strategy pair (sij, sji) and take a given date t < ∞. The acceptance date,

starting from date t, in the bargaining procedure between agents i and j is given by

τ ∗t (sij, sji) := min
τ≥t

{
τ ≥ t : either (sij, sji)τ = (A, qτij) or (sij, sji)τ = (qτij, A)

}
.

Given Assumption 1, we are interested in the latest acceptance date for agent i across all

her neighbors in the network. Starting from date t, this latest acceptance date is

τ ∗t (i, s) := max
j∈Ng

i

τ ∗t (sij, sji).

Note that the agreement dates τ ∗t (sij, sji) specified above may not exist for each date

t and each strategy profile s. This is the case when agents i and j do not reach an

agreement starting from date t. If there is no agreement between agent i and one of her

neighbors, the latest acceptance date τ ∗t (i, s) does not exist either. In this case, we write

τ ∗t (i, s) =∞.

2Notice that the specification of strategies also depends on the set M of agents who are chosen as the
reference agents for the network.
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Consider a given network g, and a given agent i who is taken as the reference agent

in the bargaining procedure with each of her neighbors k ∈ N g
i . For a strategy profile s,

let ugi, t(s) be the value at time t of the discounted aggregate payoff to agent i due to her

bargaining with her neighbors in the network. We assume that ugi, t(s) = 0 if τ ∗t (i, s) =∞.

The interpretation is that agent i receives a zero payoff at a given date if she does not

reach an agreement with any of her neighbors from that date onwards. If, instead, τ ∗t (i, s)

is a finite integer, then agent i exchanges her endowment of information with each of her

neighbors, and obtains her payoffs both from the use and the exchange of information.

Then, for a set M such that agent i is chosen as the reference agent in all links in which

she is included, we have3

ugi,t(s) =

{
0 if τ ∗t (i, s) =∞,

δτ
∗
t (i,s)−t

(
vgi +

∑
k∈Ng

i
rik(qik)

)
if t ≤ τ ∗t (i, s) <∞.

(3)

Note that, for a strategy profile s, the final payoff to agent i in the game Γ(g,M) is given

by ugi,1(s). Then, let us simply write ugi (s) = ugi,1(s) to ease notation.

Definition 1. Given a network g and a set of reference agents M for that network, a

subgame perfect Nash equilibrium (SPE) of the game Γ(g,M) is a strategy profile s∗ such

that for each agent i ∈ N and each date t ∈ T , we have ugi,t(s
∗) ≥ ugi,t(si, s

∗
−i) for each si.

3. Main Results

The following proposition characterizes equilibrium prices and payoffs for the star

network for two cases: (a) the peripheral agents are the reference agents, and (b) the

central agent is the reference agent.

Proposition 1. Consider the star network given by gS = {{1, 2} , {1, 3} , . . . , {1, n}}.
Suppose that either all the peripheral agents are chosen as the reference agents, i.e., M =

{2, 3, . . . , n}, or the central agent is chosen as the reference agent, i.e., M = {1}. Then,

under Assumption 1, the game Γ(gS, M) has a unique SPE where the prices and the

payoffs are given, respectively, by:

(a) for M = {2, 3, . . . , n},

q∗j1 =
1− vgSj

2
+

V gS

2(n− 1 + δ)
,

ugS1 (s∗) =

[
δ

n− 1 + δ

]
V gS , and ugSj (s∗) =

[
1

n− 1 + δ

]
V gS for j 6= 1;

3This specification of payoffs is without loss of generality. Notice that, in many networks, not all
agents can be chosen as the reference agent for all links in which they are included. If an agent i cannot
be chosen as the reference agent for some neighbor j, then we simply need to change the price in the
expression above from qij to qji.
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(b) for M = {1},

q∗∗j1 =
1− vgSj

2
+

δV gS

2[1 + (n− 1)δ]
,

ugS1 (s∗∗) =

[
1

1 + (n− 1)δ

]
V gS , and ugSj (s∗∗) =

[
δ

1 + (n− 1)δ

]
V gS for j 6= 1.

Note that, because ugSj (s∗) = δugS1 (s∗) and ugS1 (s∗∗) = δugSj (s∗∗) for any peripheral

agent j, agents who propose first take advantage in the bargaining processes regardless

of their position in the network. In other words, the gain from proposing first overcomes

any network effect.

Comparing the situations in which an agent proposes first and second, we can compute

her payoff gain in the star. As in Rubinstein (1982), for the extreme case with only two

agents the payoff gain is (1 − δ)V gS/(1 + δ). When more than two agents are connected

in the star, the results in Proposition 1 imply that an agent obtains a payoff gain

(1− δ)(1 + δ)V gS

(n− 1 + δ)[1 + (n− 1)δ]

for each link that she has. Therefore, this gain becomes very small in large populations.

Suppose that we restrict agents in her order of proposal and, for the two possible cases

of reference agents considered in Proposition 1, ask them about her preferred position in

the star. If we impose that either the central agent or all the peripheral agents propose

first in their negotiation processes, we have

ugS1 (s∗∗)− ugSj (s∗) =
(n− 2)(1− δ)

(n− 1 + δ)[1 + (n− 1)δ]
> 0,

so that an agent prefers to be a central agent. On the other hand, if we impose that

either the central agent or all the peripheral agents propose second in their negotiation

processes, we have

ugS1 (s∗)− ugSj (s∗∗) = − δ(n− 2)(1− δ)
(n− 1 + δ)[1 + (n− 1)δ]

< 0,

so that an agent prefers to be a peripheral agent. This is intuitive because there is a

payoff gain for each link in which an agent moves from proposing second to proposing

first.

Also notice that, at δ = 1, i.e., all the agents are perfectly patient, q∗j1 = q∗∗j1 for each

j 6= 1, and in both cases, i.e., M = {2, 3, . . . , n} and M = {1}, all of them consume the

same payoff equal to V gS/n. When the agents are not at all impatient, they can wait

forever for the bargaining procedures to end. This washes away both the advantages from

being the reference agent(s) and from their relative positions in the network.

The next proposition characterizes the equilibrium when the agents are connected

along a line in which they are ordered from left to right, and each agent is a reference

agent with respect to her immediate successor in the line according to this order.4

4Of course, the results in Proposition 2 continue to hold qualitatively if we reverse this order.
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Proposition 2. Consider the line network which is given by gL = {{1, 2} , {2, 3} , . . . , {n− 1, n}}.
Suppose that M = {1, 2, . . . , n− 1}. Then, under Assumption 1, the game Γ(gL,M) has

a unique SPE such that each agent i = 1, . . . , n− 1 charges a price

q∗i(i+1) =
1

2
+

∑n
k=i+1 v

gL
k

∑i−1
j=0 δ

j −
∑i

k=1 v
gL
k

∑n−1
j=i δ

j

2
∑n−1

j=0 δ
j

to each neighbor i + 1 along the line. Moreover, in this SPE, the each agent i’s payoff is

given by

ugLi (s∗) =

[
δi−1∑n−1
j=0 δ

j

]
V gL .

Thus, the ex-ante relative bargaining power that any reference agent has over her im-

mediate successor is transmitted along the line through the indirectly connected agents.

This allows each agent to take advantage not only of the position of her immediate suc-

cessor but also of the position of the indirectly connected agents who are located at her

right-hand side. In other words, each agent extracts a surplus from the benefits that her

neighbor obtains from her own neighbor, and so on.

Comparing the star with the line, we observe that, in the star network, when the

number of agents tends to infinity, each agent’s equilibrium payoffs vanish. However, in

the line network, limn→∞ u
gL
i (s∗) = δi−1(1 − δ)V gL , so that equilibrium payoffs remain

positive for some agents, at least for those located on the left part of the line.

4. Concluding Comments

Equilibrium shares depend on the set of agents who are chosen as the reference agents.

For the star network, agents prefer to be the central agent if they are restricted to propose

first in each link, and they prefer to be the peripheral agents if they are restricted to

propose second. However, they care more about the order in which they propose than

about their position in the network. For the two possibilities of reference agents considered

in Proposition 1, ex-ante bargaining power does not propagate through the star since no

agent is a reference agent with respect to an agent who is a reference agent in another

link. Otherwise, we should expect that the ex-ante bargaining power propagates through

the network as in the line.

For the line network, one could propose a game in which some agents in the line

are not chosen as reference agents in any of the links in which they are included. This

amounts to give those agents less bargaining power ex-ante. It is straightforward to show

that these agents are harmed more in the equilibrium than any agent in the game studied

in Proposition 2. Instead, we have modeled a situation in which all agents, except those

at the ends of the line, have ex-ante symmetric bargaining power as each of them is a

reference agent in only one of the two links in which she is included.
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Although all agents have the same discount rate, their positions in the network, to-

gether with the assumption that they need to finish the procedures with all their neighbors

in order to benefit from the use and trade of information, affects their relative bargain-

ing power in the overall set of bilateral negotiations. As a result, the network structure

influences their final payoffs.

Appendix

Proof of Proposition 1. Consider the star network gS = {{1, 2} , {1, 3} , . . . , {1, n}} and

fix a given link {1, j} ∈ gS.

(a) Take the peripheral agent j as reference agent for the bargaining procedure with the

central agent 1. Then, equation

δ

(
vgS1 + r1j(q̃j1) +

∑
k 6=1,j

r1k(q
∗
k1)

)
= vgS1 + r1j(q

∗
j1) +

∑
k 6=1,j

r1k(q
∗
k1) (4)

is the indifference condition for agent 1 between exchanging her endowment of information

with agent j at price q̃j1 in period t = 2 or at price q∗j1 in period t = 1. Consider the

prices q∗k1, for k 6= 1, j, as exogenously given for the moment. Also, equation

δ
(
vgSj + rj1(q

∗
j1)
)

= vgSj + rj1(q̃j1) (5)

is the indifference condition for agent j between trading her endowment of information

with agent 1 at price q∗j1 in period t = 2 or at q̃j1 price in period t = 1. By applying the

expressions for agents’ revenue in (1) and (2) to agents 1 and j, and by substituting price

q̃j1 from equation (5) into equation (4), we obtain

(1 + δ)q∗j1 +
∑
k 6=1,j

q∗k1 =
vgS1 − δv

gS
j + n− 1 + δ

2
.

Now, consider simultaneously the bargaining procedures for all links {1, j}, j 6= 1.

Then, we obtain n − 1 equations as the one above, one equation for each j 6= 1. This

gives us a linear system whose solutions are the prices q∗j1, j 6= 1. Using matrix notation,

this system can be written as A · q∗ = b, where

A =


(1 + δ) 1 . . . 1

1 (1 + δ) . . . 1
...

...
. . .

...
1 1 . . . (1 + δ)

 , q∗ =


q∗21
q∗31
...
q∗n1

 ,

and

b =
1

2


vgS1 − δv

gS
2 + n− 1 + δ

vgS1 − δv
gS
3 + n− 1 + δ

...
vgS1 − δvgSn + n− 1 + δ

 .
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Each bilateral bargaining procedure within the star network corresponds to an infinite-

horizon alternating-offers procedure between two agents. Then, the existence of a unique

solution to the system A · q∗ = b above implies Rubinstein’s (1982) conditions for the

existence of a SPE for the collection of all bilateral alternating offers procedures within

the network. Application of Cramer’s rule gives us

q∗j1 =
1− vgSj

2
+

∑n
k=1 v

gS
k

2(n− 1 + δ)
.

By using the expression for payoffs in equation (3), we obtain that, in this SPE, the payoff

to agent 1 is

ugS1 (s∗) =

[
δ

n− 1 + δ

] n∑
k=1

vgSk ,

and the payoff to each peripheral agent j 6= 1 is

ugSj (s∗) =

[
1

n− 1 + δ

] n∑
k=1

vgSk .

(b) Take the central agent 1 as reference agent for the bargaining procedure with the

peripheral agent j. Then, equation

vgS1 + r1j(q̃j1) +
∑
k 6=1,j

r1k(q
∗∗
k1) = δ

(
vgS1 + r1j(q

∗∗
j1) +

∑
k 6=1,j

r1k(q
∗∗
k1)

)
(6)

is the indifference condition for agent 1 between exchanging her endowment of information

with agent j at price q̃j1 in period t = 2 or at price q∗∗j1 in period t = 1. Consider the

prices q∗∗k1, for k 6= 1, j, as exogenously given for the moment. Also, equation

vgSj + rj1(q
∗∗
j1) = δ

(
vgSj + rj1(q̃j1)

)
(7)

is the indifference condition for agent j between trading her endowment of information

with agent 1 at price q∗∗j1 in period t = 2 or at q̃j1 price in period t = 1. By applying the

expressions for agents’ revenue in (1) and (2) to agents 1 and j, and by substituting price

q̃j1 from equation (7) into equation (6), we obtain

(1 + δ)q∗∗j1 + δ
∑
k 6=1,j

q∗∗k1 =
δvgS1 − v

gS
j + 1 + (n− 1)δ

2
.

Now, consider simultaneously the bargaining procedures for all links {1, j}, j 6= 1.

Then, we obtain n − 1 equations as the one above, one equation for each j 6= 1. This

gives us a linear system whose solutions are the prices q∗∗j1 , j 6= 1. Using matrix notation,

this system can be written as A · q∗∗ = b, where

A =


(1 + δ) δ . . . δ
δ (1 + δ) . . . δ
...

...
. . .

...
δ δ . . . (1 + δ)

 , q∗∗ =


q∗∗21
q∗∗31
...
q∗∗n1

 ,
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and

b =
1

2


δvgS1 − v

gS
2 + 1 + (n− 1)δ

δvgS1 − v
gS
3 + 1 + (n− 1)δ

...
δvgS1 − vgSn + 1 + (n− 1)δ

 .

Each bilateral bargaining procedure within the star network corresponds to an infinite-

horizon alternating-offers procedure between two agents. Then, the existence of a unique

solution to the system A · q∗∗ = b above implies Rubinstein’s (1982) conditions for the

existence of a SPE for the collection of all bilateral alternating offers procedures within

the network. Application of Cramer’s rule gives us

q∗∗j1 =
1− vgSj

2
+

δ
∑n

k=1 v
gS
k

2[1 + (n− 1)δ]
.

By using the expression for payoffs in equation (3), we obtain that, in this SPE, the payoff

to agent 1 is

ugS1 (s∗∗) =

[
1

1 + (n− 1)δ

] n∑
k=1

vgSk ,

and the payoff to each peripheral agent j 6= 1 is

ugSj (s∗∗) =

[
δ

1 + (n− 1)δ

] n∑
k=1

vgSk .

Proof of Proposition 2. Consider the line network gL = {{1, 2} , {2, 3} , . . . , {n− 1, n}}.
Fix link {1, 2} and take agent 1 as reference agent in the bargaining procedure with agent

2. Then, equation

δ (vgL2 + r21(q̃12)− r23(q∗23)) = vgL2 + r21(q
∗
12)− r23(q∗23) (8)

specifies the indifference condition for agent 2 between exchanging her endowment of

information with agent 1 at price q̃12 in period t = 2 or at price q∗12 in period t = 1. Take

price q∗23 as exogenously given for the moment. Analogously, equation

δ (vgL1 + r12(q
∗
12)) = vgL1 + r12(q̃12) (9)

gives us the indifference condition for agent 1 between exchanging her endowment of

information with agent 1 at price q∗12 in period t = 2 or at price q̃12 in period t = 1.

By applying the expressions for agents’ revenue in (1) and (2) to agents 1 and 2, and by

substituting price q̃12 from equation (9) into equation (8), we obtain

(1 + δ)q∗12 − q∗23 =
vgL2 − δv

gL
1 + δ

2
.
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Now, fix a link {i, i+ 1}, connecting agents who are not at the ends of the line, i.e.,

i = 2, . . . , n − 2, and take agent i as the reference agent in the bargaining procedure

with agent i + 1. Suppose for the moment that the bargaining prices corresponding to

any other link are exogenously given. By proceeding analogously as done above for link

{1, 2}, we obtain

−δq∗(i−1)i + (1 + δ)q∗i(i+1) − q∗(i+1)(i+2) =
vgLi+1 − δv

gL
i

2
.

Finally, by doing the analogous computations for link {n− 1, n}, we obtain

−δq∗(n−1)(n−1) + (1 + δ)q∗(n−1)n =
vgLn − δv

gL
n−1 + 1

2
.

Now, consider simultaneously the bargaining procedures across all links {i, i+ 1},
i = 1, . . . , n− 1, in the network. Then, we obtain a linear system of n− 1 equations with

n−1 unknowns, q∗i(i+1), i = 1, . . . , n−1. All prices are simultaneously obtained by solving

this linear system. Using matrix notation, this system can be expressed as An−1 · q∗ = b,

where

An−1 =



(1 + δ) −1 0 . . . 0 0
−δ (1 + δ) −1 . . . 0 0
0 −δ (1 + δ) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . (1 + δ) −1
0 0 0 . . . −δ (1 + δ)


, q∗ =



q∗12
q∗23
q∗34
...

q∗(n−2)(n−1)
q∗(n−1)n


,

and

b =
1

2



vgL2 − δv
gL
1 + δ

vgL3 − δv
gL
2

vgL4 − δv
gL
3

...
vgLn−1 − δv

gL
n−2

vgLn − δv
gL
n−1 + 1


.

Each bilateral bargaining procedure within the line network corresponds to an infinite-

horizon alternating-offers procedure between two agents. Then, the existence of a unique

solution to the system An−1 · q∗ = b above implies Rubinstein’s (1982) conditions for the

existence of a PBE for the collection of all bilateral alternating offers procedures within

the network.

Application of Cramer’s rule gives us

q∗i(i+1) =
1

2
+

∑n
k=i+1 v

gL
k

∑i−1
j=0 δ

j −
∑i

k=1 v
gL
k

∑n−1
j=i δ

j

2
∑n−1

j=0 δ
j

.
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By using the expression for payoffs in equation (3), we obtain that, in this PBE, the payoff

to each agent i = 1, . . . , n is given by

ugLi (s∗) =

[
δi−1∑n−1
j=0 δ

j

]
n∑
k=1

vgLk ,

as stated.
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