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Economists are often interested in the factors behind the decision-making of
individuals or enterprises. Examples are:

• Why do some people go to college while others do not?

• Why do some women enter the labor force while others do not?

• Why do some people buy houses while others rent?

• Why do some people migrate while others stay put?

The models that have been developed are known as binary choice or qualitative
response models with the outcome, which we will denote Y, being assigned a
value of 1 if the event occurs and 0 otherwise. Models with more than two
possible outcomes have been developed, but we will restrict our attention to
binary choice. The linear probability model apart, binary choice models are fitted
using maximum likelihood estimation. The chapter ends with an introduction
to this topic.

11.1 The linear probability model

The simplest binary choice model is the linear probability model where, as the
name implies, the probability of the event occurring, p, is assumed to be a linear
function of a set of explanatory variable(s):

pi = p(Yi = 1) = β1 + β2Xi. (11.1)

Graphically, the relationship is as shown in Figure 11.1, if there is just one
explanatory variable. Of course p is unobservable. One has data only on the
outcome, Y. In the linear probability model this is used as a dummy variable for
the dependent variable.

As an illustration, we investigate the factors influencing graduating from high
school. We will define a variable GRAD that is equal to 1 for those individ-
uals who graduated, and 0 for those who dropped out, and we will regress it
on ASVABC, the composite cognitive ability test score. The regression output
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Figure 11.1 Linear probability model

Table 11.1

. reg GRAD ASVABC

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 112.59

Model | 7.13422753 1 7.13422753 Prob > F = 0.0000
Residual | 35.9903339 568 .063363264 R-squared = 0.1654
---------+------------------------------ Adj R-squared = 0.1640

Total | 43.1245614 569 .07579009 Root MSE = .25172

--------------------------------------------------------------------------
GRAD | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+----------------------------------------------------------------
ASVABC | .0121518 .0011452 10.611 0.000 .0099024 .0144012
_cons | .3081194 .0583932 5.277 0.000 .1934264 .4228124

shows the result of fitting this linear probability model, using EAEF Data Set 21
(Table 11.1).

The regression result suggests that the probability of graduating from high
school increases by a proportion 0.012, that is, 1.2 percent, for every point
increase in the ASVABC score. ASVABC is scaled so that it has mean 50 and
standard deviation 10, so a one-standard deviation increase in the score would
increase the probability of graduating by 12 percent. The intercept implies that
if ASVABC were 0, the probability of graduating would be 31 percent. However
the ASVABC score is scaled in such a way as to make its minimum about 20,
and accordingly it is doubtful whether the interpretation should be taken at
face value.

Unfortunately, the linear probability model has some serious defects. First,
there are problems with the disturbance term. As usual, the value of the
dependent variable Yi in observation i has a nonstochastic component and
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a random component. The nonstochastic component depends on Xi and the
parameters and is the expected value of Yi given Xi, E(Yi|Xi). The random
component is the disturbance term.

Yi = E(Yi|Xi) + ui. (11.2)

It is simple to compute the nonstochastic component in observation i because
Y can take only two values. It is 1 with probability pi and 0 with probability
(1 − pi):

E(Yi) = 1 × pi + 0 × (1 − pi) = pi = β1 + β2Xi. (11.3)

The expected value in observation i is therefore β1 + β2Xi. This means that
we can rewrite the model as

Yi = β1 + β2Xi + ui. (11.4)

The probability function is thus also the nonstochastic component of the rela-
tionship between Y and X. It follows that, for the outcome variable Yi to be
equal to 1, as represented by the point A in Figure 11.2, the disturbance term
must be equal to (1 − β1 − β2Xi). For the outcome to be 0, as represented by
the point B, the disturbance term must be (−β1 − β2Xi). Thus the distribution
of the disturbance term consists of just two specific values. It is not even con-
tinuous, never mind normal. This means that the standard errors and the usual
test statistics are invalidated. For good measure, the two possible values of the
disturbance term change with X, so the distribution is heteroscedastic as well. It
can be shown that the population variance of ui is (β1 + β2Xi)(1 − β1 − β2Xi),
and this varies with Xi.

The other problem is that the predicted probability may be greater than 1 or
less than 0 for extreme values of X. In the example of graduating from high
school, the regression equation predicts a probability greater than 1 for the 176
respondents with ASVABC scores greater than 56.
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Figure 11.2 Disturbance term in the linear probability model
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Figure 11.3 Logistic function

The first problem is dealt with by fitting the model with a technique known
as maximum likelihood estimation, described in Section 11.6, instead of least
squares. The second problem involves elaborating the model as follows. Define
a variable Z that is a linear function of the explanatory variables. In the present
case, since we have only one explanatory variable, this function is

Zi = β1 + β2Xi. (11.5)

Next, suppose that p is a sigmoid (S-shaped) function of Z, for example as
shown in Figure 11.3. Below a certain value of Z, there is very little chance of the
individual graduating from high school. Above a certain value, the individual
is almost certain to graduate. In between, the probability is sensitive to the
value of Z.

This deals with the problem of nonsense probability estimates, but then there
is the question of what should be the precise mathematical form of this func-
tion. There is no definitive answer to this. The two most popular forms are the
logistic function, which is used in logit estimation, and the cumulative normal
distribution, which is used in probit estimation. According to one of the leading
authorities on the subject, Amemiya (1981), both give satisfactory results most of
the time and neither has any particular advantage. We will start with the former.

11.2 Logit analysis

In logit estimation one hypothesizes that the probability of the occurrence of the
event is determined by the function

pi = F(Zi) = 1
1 + e−Zi

. (11.6)
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This is the function shown in Figure 11.3. As Z tends to infinity, e−Z tends to
0 and p has a limiting upper bound of 1. As Z tends to minus infinity, e−Z tends
to infinity and p has a limiting lower bound of 0. Hence there is no possibility
of getting predictions of the probability being greater than 1 or less than 0.

The marginal effect of Z on the probability, which will be denoted f (Z), is
given by the derivative of this function with respect to Z:

f (Z) = dp
dZ

= e−Z

(1 + e−Z)2
. (11.7)

The function is shown in Figure 11.4. You can see that the effect of changes
in Z on the probability is very small for large positive or large negative values
of Z, and that the sensitivity of the probability to changes in Z is greatest at the
midpoint value of 0.

In the case of the example of graduating from high school, the function is

pi = 1
1 + e−β1−β2ASVABCi

. (11.8)

If we fit the model, we get the output shown in Table 11.2.
The model is fitted by maximum likelihood estimation and, as the output

indicates, this uses an iterative process to estimate the parameters.
The z statistics in the Stata output are approximations to t statistics and

have nothing to do with the Z variable discussed in the text. (Some regression
applications describe them as t statistics.) The z statistic for ASVABC is highly
significant. How should one interpret the coefficients? To calculate the marginal
effect of ASVABC on p we need to calculate dp/dASVABC. You could calculate
the differential directly, but the best way to do this, especially if Z is a function

Z 

f(Z) 

0

0.1

0.2

–8 –6 –4 –2 0 2 4 6

Figure 11.4 Marginal effect of Z on the probability
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Table 11.2

. logit GRAD ASVABC

Iteration 0: Log Likelihood =-162.29468
Iteration 1: Log Likelihood =-132.97646
Iteration 2: Log Likelihood =-117.99291
Iteration 3: Log Likelihood =-117.36084
Iteration 4: Log Likelihood =-117.35136
Iteration 5: Log Likelihood =-117.35135

Logit Estimates Number of obs = 570
chi2(1) = 89.89
Prob > chi2 = 0.0000

Log Likelihood = -117.35135 Pseudo R2 = 0.2769

--------------------------------------------------------------------------
GRAD | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------
ASVABC | .1666022 .0211265 7.886 0.000 .1251951 .2080094
_cons | -5.003779 .8649213 -5.785 0.000 -6.698993 -3.308564

of more than one variable, is to break it up into two stages. p is a function of Z,
and Z is a function of ASVABC, so

dp
dASVABC

= dp
dZ

.
dZ

dASVABC
= f (Z).β, (11.9)

where f (Z) is as defined above. The probability of graduating from high school,
and the marginal effect, are plotted as functions of ASVABC in Figure 11.5.

How can you summarize the effect of the ASVABC score on the probability
of graduating? The usual method is to calculate the marginal effect at the mean
value of the explanatory variables. In this sample the mean value of ASVABC
was 50.15. For this value, Z is equal to 3.3514, and e−Z is equal to 0.0350.
Using this, f (Z) is 0.0327 and the marginal effect is 0.0054:

f (Z)β2 = e−Z

(1 + e−Z)2
β2 = 0.0350

(1.0350)2
× 0.1666 = 0.0054. (11.10)

In other words, at the sample mean, a one-point increase in ASVABC increases
the probability of going to college by 0.5 percent. This is a very small amount and
the reason is that, for those with the mean ASVABC, the estimated probability
of graduating is very high:

p = 1
1 + e−Z

= 1
1 + 0.0350

= 0.9661. (11.11)
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Figure 11.5 Cumulative and marginal effects of ASVABC

See also Figure 11.5. Of course we could calculate the marginal effect for other
values of ASVABC if we wished and in this particular case it may be of interest
to evaluate it for low ASVABC, where individuals are at greater risk of not
graduating. For example, when ASVABC is 30, Z is −0.0058, e−Z is 1.0058,
f (Z) is 0.2500, and the marginal effect is 0.0417, or 4.2 percent. It is much
higher because an individual with such a low score has only a 50 percent chance
of graduating and an increase in ASVABC can make a substantial difference.

Generalization to more than one explanatory variable

Logit analysis is easily extended to the case where there is more than one explana-
tory variable. Suppose that we decide to relate graduating from high school to
ASVABC, SM, the number of years of schooling of the mother, SF, the number
of years of schooling of the father, and a dummy variable MALE that is equal
to 1 for males, 0 for females. The Z variable becomes

Z = β1 + β2ASVABC + β3SM + β4SF + β5MALE. (11.12)

The corresponding regression output (with iteration messages deleted) is
shown is Table 11.3.

The mean values of ASVABC, SM, SF, and MALE were as shown in
Table 11.4, and hence the value of Z at the mean was 3.3380. From this one
obtains 0.0355 for e−Z and 0.0331 for f (Z). The table shows the marginal
effects, calculated by multiplying f (Z) by the estimates of the coefficients of the
logit regression.

According to the computations, a one-point increase in the ASVABC score
increases the probability of going to college by 0.5 percent, every additional



Binary choice and limited dependent models, and maximum likelihood estimation 287

Table 11.3

. logit GRAD ASVABC SM SF MALE
Logit Estimates Number of obs = 570

chi2(4) = 91.59
Prob > chi2 = 0.0000

Log Likelihood = -116.49968 Pseudo R2 = 0.2822

--------------------------------------------------------------------------
GRAD | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------
ASVABC | .1563271 .0224382 6.967 0.000 .1123491 .2003051

SM | .0645542 .0773804 0.834 0.404 -.0871086 .216217
SF | .0054552 .0616822 0.088 0.930 -.1154397 .12635

MALE | -.2790915 .3601689 -0.775 0.438 -.9850095 .4268265
_cons | -5.15931 .994783 -5.186 0.000 -7.109049 -3.209571

Table 11.4 Logit estimation. Dependent variable: GRAD

Variable Mean b Mean × b f (Z) bf (Z)

ASVABC 50.151 0.1563 7.8386 0.0331 0.0052

SM 11.653 0.0646 0.7528 0.0331 0.0021

SF 11.818 0.0055 0.0650 0.0331 0.0002

MALE 0.570 −0.2791 −0.1591 0.0331 −0.0092

Constant 1.000 −5.1593 −5.1593

Total 3.3380

year of schooling of the mother increases the probability by 0.2 percent, every
additional year of schooling of the father increases the probability by a negli-
gible amount, and being male reduces the probability by 0.9 percent. From the
regression output it can be seen that the effect of ASVABC was significant at the
0.1 percent level but the effects of the parental education variables and the male
dummy were insignificant.

Goodness of fit and statistical tests

There is no measure of goodness of fit equivalent to R2 in maximum likelihood
estimation. In default, numerous measures have been proposed for comparing
alternative model specifications. Denoting the actual outcome in observation i as
Yi, with Yi = 1 if the event occurs and 0 if it does not, and denoting the predicted
probability of the event occurring p̂i, the measures include the following:

• the number of outcomes correctly predicted, taking the prediction in
observation i as 1 if p̂i is greater than 0.5 and 0 if it is less;
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• the sum of the squared residuals
∑n

i=1 (Yi − p̂i)2;

• the correlation between the outcomes and predicted probabilities, rYip̂i
.

• the pseudo-R2 in the logit output, explained in Section 11.6.

Each of these measures has its shortcomings and Amemiya (1981) recommends
considering more than one and comparing the results.

Nevertheless, the standard significance tests are similar to those for the stan-
dard regression model. The significance of an individual coefficient can be
evaluated via its t statistic. However, since the standard error is valid only
asymptotically (in large samples), the same goes for the t statistic, and since
the t distribution converges on the normal distribution in large samples, the
critical values of the latter should be used. The counterpart of the F test of the
explanatory power of the model (H0: all the slope coefficients are 0, H1: at least
one is nonzero) is a chi-squared test with the chi-squared statistic in the logit
output distributed under H0 with degrees of freedom equal to the number of
explanatory variables. Details are provided in Section 11.6.

Exercises

11.1 Investigate the factors affecting going to college using your EAEF data
set. Define a binary variable COLLEGE to be equal to 1 if S > 12
and 0 otherwise. Regress COLLEGE on ASVABC, SM, SF, and MALE
(1) using ordinary least squares, and (2) using logit analysis. Calculate
the marginal effects in the logit analysis and compare them with those
obtained using OLS.

11.2∗ A researcher, using a sample of 2,868 individuals from the NLSY, is
investigating how the probability of a respondent obtaining a bachelor’s
degree from a four-year college is related to the respondent’s score on
ASVABC. 26.7 percent of the respondents earned bachelor’s degrees.
ASVABC ranged from 22 to 65, with mean value 50.2, and most scores
were in the range 40 to 60. Defining a variable BACH to be equal to 1 if
the respondent has a bachelor’s degree (or higher degree) and 0 otherwise,
the researcher fitted the OLS regression (standard errors in parentheses):

BACH = −0.864 + 0.023ASVABC. R2 = 0.21

(0.042) (0.001)

She also fitted the following logit regression:

Z = −11.103 + 0.189 ASVABC,

(0.487) (0.009)

where Z is the variable in the logit function. Using this regression, she plot-
ted the probability and marginal effect functions shown in the diagram:

(a) Give an interpretation of the OLS regression and explain why OLS is
not a satisfactory estimation method for this kind of model.
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(b) With reference to the figure, discuss the variation of the marginal effect
of the ASVABC score implicit in the logit regression and compare it with
that in the OLS regression.
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(c) Sketch the probability and marginal effect diagrams for the OLS regres-
sion and compare them with those for the logit regression. (In your
discussion, make use of the information in the first paragraph of this
question.)

11.3 Probit analysis

An alternative approach to the binary choice model is to use the cumula-
tive standardized normal distribution to model the sigmoid relationship F(Z).
(A standardized normal distribution is one with mean 0 and unit variance.) As
with logit analysis, you start by defining a variable Z that is a linear function of
the variables that determine the probability:

Z = β1 + β2X2 + · · · + βkXk. (11.13)

F(Z), the standardized cumulative normal distribution, gives the probability
of the event occurring for any value of Z:

pi = F(Zi). (11.14)

Maximum likelihood analysis is used to obtain estimates of the parameters.
The marginal effect of Xi is ∂p/∂Xi which, as in the case of logit analysis, is best
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computed as
∂p

∂Xi
= dp

dZ
.
∂Z
∂Xi

= f (Z).βi. (11.15)

Now since F(Z) is the cumulative standardized normal distribution, f (Z), its
derivative, is just the standardized normal distribution itself:

f (Z) = 1√
2π

e− 1
2 Z2

. (11.16)

Figure 11.6 plots F(Z) and f (Z) for probit analysis. As with logit analysis,
the marginal effect of any variable is not constant. It depends on the value of
f (Z), which in turn depends on the values of each of the explanatory variables.
To obtain a summary statistic for the marginal effect, the usual procedure is
parallel to that used in logit analysis. You calculate Z for the mean values of the
explanatory variables. Next you calculate f (Z), as in (11.16). Then you calculate
f (Z)βi to obtain the marginal effect of Xi.

This will be illustrated with the example of graduating from high school,
using the same specification as in the logit regression. The regression output,
with iteration messages deleted, is shown in Table 11.5.

The computation of the marginal effects at the sample means is shown in
Table 11.6. Z is 1.8418 when evaluated at the mean values of the variables and
f (Z) is 0.0732. The estimates indicate that a one-point increase in the ASVABC
score increases the probability of going to college by 0.6 percent, every additional
year of schooling of the mother increases the probability by 0.3 percent, every
additional year of schooling of the father increases the probability by a negligi-
ble amount, and being male reduces the probability by 1.4 percent. Generally
logit and probit analysis yield similar marginal effects. However, the tails of the
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Figure 11.6 Cumulative and marginal normal effects of Z
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Table 11.5

. probit GRAD ASVABC SM SF MALE

Probit Estimates Number of obs = 570
chi2(4) = 94.12
Prob > chi2 = 0.0000

Log Likelihood = -115.23672 Pseudo R2 = 0.2900

--------------------------------------------------------------------------
GRAD | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------
ASVABC | .0831963 .0117006 7.110 0.000 .0602635 .106129

SM | .0353463 .0425199 0.831 0.406 -.0479913 .1186838
SF | .0057229 .032375 0.177 0.860 -.0577309 .0691766

MALE | -.1883038 .1873426 -1.005 0.315 -.5554885 .178881
_cons | -2.702067 .5335551 -5.064 0.000 -3.747816 -1.656318

Table 11.6 Probit estimation. Dependent variable: GRAD

Variable Mean b Mean × b f (Z) bf (Z)

ASVABC 50.151 0.0832 4.1726 0.0732 0.0061

SM 11.653 0.0353 0.4114 0.0732 0.0026

SF 11.818 0.0057 0.0674 0.0732 0.0004

MALE 0.570 −0.1883 −0.1073 0.0732 −0.0138

Constant 1.000 −2.7021 −2.7021

Total 1.8418

logit and probit distributions are different and they can give different results if
the sample is unbalanced, with most of the outcomes similar and only a small
minority different. This is the case in the present example because only 8 per-
cent of the respondents failed to graduate, and in this case the estimates of the
marginal effects are somewhat larger for the probit regression.

Exercises

11.3 Regress the variable COLLEGE defined in Exercise 11.1 on ASVABC,
MALE, SM, and SF using probit analysis. Calculate the marginal effects
and compare them with those obtained using OLS and logit analysis.

11.4∗ The following probit regression, with iteration messages deleted, was
fitted using 2726 observations on females in the NLSY in 1994.

WORKING is a binary variable equal to 1 if the respondent was
working in 1994, 0 otherwise. CHILDL06 is a dummy variable equal
to 1 if there was a child aged less than 6 in the household, 0 otherwise.
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.probit WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

Probit estimates Number of obs = 2726
LR chi2(7) = 165.08
Prob > chi2 = 0.0000

Log likelihood = -1403.0835 Pseudo R2 = 0.0556

--------------------------------------------------------------------------
WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------
S | .0892571 .0120629 7.399 0.000 .0656143 .1129

AGE | -.0438511 .012478 -3.514 0.000 -.0683076 -.0193946
CHILDL06 | -.5841503 .0744923 -7.842 0.000 -.7301525 -.4381482
CHILDL16 | -.1359097 .0792359 -1.715 0.086 -.2912092 .0193897
MARRIED | -.0076543 .0631618 -0.121 0.904 -.1314492 .1161407

ETHBLACK | -.2780887 .081101 -3.429 0.001 -.4370436 -.1191337
ETHHISP | -.0191608 .1055466 -0.182 0.856 -.2260284 .1877068

_cons | .673472 .2712267 2.483 0.013 .1418775 1.205066
--------------------------------------------------------------------------

CHILDL16 is a dummy variable equal to 1 if there was a child aged
less than 16, but no child less than 6, in the household, 0 otherwise.
MARRIED is equal to 1 if the respondent was married with spouse
present, 0 otherwise. The remaining variables are as described in EAEF
Regression Exercises. The mean values of the variables are given in the
output below:

.sum WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

Variable | Obs Mean Std. Dev. Min Max
---------+-----------------------------------------------------
WORKING | 2726 .7652238 .4239366 0 1

S | 2726 13.30998 2.444771 0 20
AGE | 2726 17.64637 2.24083 14 22

CHILDL06 | 2726 .3991196 .4898073 0 1
CHILDL16 | 2726 .3180484 .4658038 0 1
MARRIED | 2726 .6228907 .4847516 0 1

ETHBLACK | 2726 .1305943 .3370179 0 1
ETHHISP | 2726 .0722671 .2589771 0 1

Calculate the marginal effects and discuss whether they are plausible.
[The data set and a description are posted on the website.]

11.4 Censored regressions: Tobit analysis

Suppose that one hypothesizes the relationship

Y∗ = β1 + β2X + u, (11.17)



Binary choice and limited dependent models, and maximum likelihood estimation 293

with the dependent variable subject to either a lower bound YL or an upper
bound YU . In the case of a lower bound, the model can be characterized as

Y∗ = β1 + β2X + u

Y = Y∗ for Y∗ > YL (11.18)

Y = YL for Y∗ ≤ YL

and similarly for a model with an upper bound. Such a model is known as a
censored regression model because Y∗ is unobserved for Y∗ < YLor Y∗ > YU . It
is effectively a hybrid between a standard regression model and a binary choice
model, and OLS would yield inconsistent estimates if used to fit it. To see this,
consider the relationship illustrated in Figure 11.7, a one-shot Monte Carlo
experiment where the true relationship is

Y = −40 + 1.2X + u, (11.19)

the data for X are the integers from 11 to 60, and u is a normally distributed ran-
dom variable with mean 0 and standard deviation 10. If Y were unconstrained,
the observations would be as shown in Figure 11.7. However we will suppose
that Y is constrained to be non-negative, in which case the observations will be
as shown in Figure 11.8. For such a sample, it is obvious that an OLS regression
that included those observations with Y constrained to be 0 would yield incon-
sistent estimates, with the estimator of the slope downwards biased and that of
the intercept upwards biased.

The remedy, you might think, would be to use only the subsample of uncon-
strained observations, but even then the OLS estimators would be biased.
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An observation i will appear in the subsample only if Yi > 0, that is, if

−40 + 1.2Xi + ui > 0. (11.20)

This requires
ui > 40 − 1.2Xi (11.21)

and so ui must have the truncated distribution shown in Figure 11.9. In this
example, the expected value of ui must be positive and a negative function of Xi.
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Figure 11.10

Since ui is negatively correlated with Xi, the fourth Gauss–Markov condition is
violated and OLS will yield inconsistent estimates.

Figure 11.10 displays the impact of this correlation graphically. The observa-
tions with the four lowest values of X appear in the sample only because their
disturbance terms (marked) are positive and large enough to make Y positive. In
addition, in the range where X is large enough to make the nonstochastic com-
ponent of Y positive, observations with large negative values of the disturbance
term are dropped. Three such observations, marked as circles, are shown in the
figure. Both of these effects cause the intercept to tend to be overestimated, and
the slope to be underestimated, in an OLS regression.

If it can be assumed that the disturbance term has a normal distribution, one
solution to the problem is to use tobit analysis, a maximum likelihood estimation
technique that combines probit analysis with regression analysis. A mathemat-
ical treatment will not be attempted here. Instead it will be illustrated using
data on expenditure on household equipment from the Consumer Expenditure
Survey data set. Figure 11.11 plots this category of expenditure, HEQ, and
total household expenditure, EXP. For 86 of the 869 observations, expendi-
ture on household equipment is 0. The output from a tobit regression is shown
(Table 11.7). In Stata the command is tobit and the point of left-censoring is indi-
cated by the number in parentheses after ‘ll’. If the data were right-censored,
‘ll’ would be replaced by ‘ul’. Both may be included.

OLS regressions including and excluding the observations with 0 expenditure
on household equipment yield slope coefficients of 0.0472 and 0.0468 respec-
tively, both of them below the tobit estimate, as expected. The size of the bias
tends to increase with the proportion of constrained observations. In this case
only 10 percent are constrained, and hence the difference between the tobit and
OLS estimates is small.
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Figure 11.11 Expenditure on household equipment and total household expenditure

Table 11.7

. tobit HEQ EXP, ll(0)

Tobit Estimates Number of obs = 869
chi2(1) = 315.41
Prob > chi2 = 0.0000

Log Likelihood = -6911.0175 Pseudo R2 = 0.0223

-------------------------------------------------------------------------
HEQ | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---------------------------------------------------------------
EXP | .0520828 .0027023 19.273 0.000 .0467789 .0573866

_cons | -661.8156 97.95977 -6.756 0.000 -854.0813 -469.5499
---------+---------------------------------------------------------------

_se | 1521.896 38.6333 (Ancillary parameter)
-------------------------------------------------------------------------

Obs. summary: 86 left-censored observations at HEQ<=0
783 uncensored observations

Tobit regression yields inconsistent estimates if the disturbance term does not
have a normal distribution or if it is subject to heteroscedasticity (Amemiya,
1984). Judging by the plot in Figure 11.11, the observations in the example
are subject to heteroscedasticity and it may be preferable to use expenditure on
household equipment as a proportion of total expenditure as the dependent vari-
able, in the same way that in his seminal study, which investigated expenditure on
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consumer durables, Tobin (1958) used expenditure on durables as a proportion
of disposable personal income.

Exercise

11.5 Using the CES data set, perform a tobit regression of expenditure on your
commodity on total household expenditure, and compare the slope coef-
ficient with those obtained in OLS regressions including and excluding
observations with 0 expenditure on your commodity.

11.5 Sample selection bias

In the tobit model, whether or not an observation falls into the regression cat-
egory (Y > YL or Y < YU) or the constrained category (Y = YL or Y = YU)
depends entirely on the values of the regressors and the disturbance term. How-
ever, it may well be that participation in the regression category may depend on
factors other than those in the regression model, in which case a more general
model specification with an explicit two-stage process may be required. The first
stage, participation in the regression category, or being constrained, depends on
the net benefit of participating, B∗, a latent (unobservable) variable that depends
on a set of m − 1 variables Qj and a random term ε:

B∗
i = δ1 +

m∑
j=2

δjQji + εi. (11.22)

The second stage, the regression model, is parallel to that for the tobit model:

Y∗
i = β1

k∑
j=2

βjXji + u1

Yi = Y∗
i for B∗

i > 0, (11.23)

Yiis not observed for B∗
i ≤ 0.

For an observation in the sample,

E(ui|B∗
i > 0) = E

(
ui|εi > −δ1 −

m∑
j=2

δjQji

)
. (11.24)

If εi and ui are distributed independently, E(ui|εi > −δ1 − ∑m
j=2 δjQji) reduces

to the unconditional E(ui) and the selection process does not interfere with the
regression model. However if εi and ui are correlated, E(ui) will be nonzero
and problems parallel to those in the tobit model arise, with the consequence
that OLS estimates are inconsistent (see Box 11.1 on the Heckman two-step
procedure). If it can be assumed that εi and ui are jointly normally distributed
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BOX 11.1 The Heckman two-step procedure

The problem of selection bias arises because the expected value of u is nonzero for
observations in the selected category if u and ε are correlated. It can be shown that,
for these observations,

E


ui | εi > −δ1 −

m∑
j=2

δjQji


 = σuε

σε
λi,

where σuε is the population covariance of u and ε, σε is the standard deviation of ε,
and λi, described by Heckman (1976) as the inverse of Mill’s ratio, is given by

λi = f (vi)
F(vi)

,

where

vi = εi

σε
=

−δ1 −∑m
j=2 δjQji

σε

and the functions f and F are as defined in the section on probit analysis: f (νi) is the
density function for ε normalized by its standard deviation and F(νi) is the probability
of B∗

i being positive. It follows that

E


Yi | εi > −δ1 −

m∑
j=2

δjQji


 = E


β1 +

k∑
j=2

βjXji + ui | εi > −δ1 −
m∑

j=2

δjQji




= β1 +
k∑

j=2

βjXji + σuε

σε
λi.

The sample selection bias arising in a regression of Y on the X variables using only
the selected observations can therefore be regarded as a form of omitted variable
bias, with λ the omitted variable. However, since its components depend only on the
selection process, it can be estimated from the results of probit analysis of selection
(the first step). If it is included as an explanatory variable in the regression of Y on
the X variables, least squares will then yield consistent estimates.

As Heckman acknowledges, the procedure was first employed by Gronau (1974),
but it is known as the Heckman two-step procedure in recognition of its devel-
opment by Heckman into an everyday working tool, its attraction being that it
is computationally far simpler than maximum likelihood estimation of the joint
model. However, with the improvement in computing speeds and the development of
appropriate procedures in regression applications, maximum likelihood estimation
of the joint model is no more burdensome than the two-step procedure and it has the
advantage of being more efficient.

with correlation ρ, the model may be fitted by maximum likelihood estimation,
with null hypothesis of no selection bias H0: ρ = 0. The Q and X variables may
overlap, identification requiring in practice that at least one Q variable is not
also an X variable.
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The procedure will be illustrated by fitting an earnings function for females
on the lines of Gronau (1974), the earliest study of this type, using the LFP94
subsample from the NLSY data set described in Exercise 11.4 (Table 11.8).
CHILDL06 is a dummy variable equal to 1 if there was a child aged less than

Table 11.8

. heckman LGEARN S ASVABC ETHBLACK ETHHISP if MALE==0, select(S AGE CHILDL06

> CHILDL16 MARRIED ETHBLACK ETHHISP)

Iteration 0: log likelihood = -2683.5848 (not concave)
...
Iteration 8: log likelihood = -2668.8105

Heckman selection model Number of obs = 2661
(regression model with sample selection) Censored obs = 640

Uncensored obs = 2021

Wald chi2(4) = 714.73
Log likelihood = -2668.81 Prob > chi2 = 0.0000

--------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------
LGEARN |

S | .095949 .0056438 17.001 0.000 .0848874 .1070106
ASVABC | .0110391 .0014658 7.531 0.000 .0081663 .0139119

ETHBLACK | -.066425 .0381626 -1.741 0.082 -.1412223 .0083722
ETHHISP | .0744607 .0450095 1.654 0.098 -.0137563 .1626777
_cons | 4.901626 .0768254 63.802 0.000 4.751051 5.052202

---------+----------------------------------------------------------------
select |

S | .1041415 .0119836 8.690 0.000 .0806541 .1276288
AGE | -.0357225 .011105 -3.217 0.001 -.0574879 -.0139572

CHILDL06 | -.3982738 .0703418 -5.662 0.000 -.5361412 -.2604064
CHILDL16 | .0254818 .0709693 0.359 0.720 -.1136155 .164579
MARRIED | .0121171 .0546561 0.222 0.825 -.0950069 .1192412
ETHBLACK | -.2941378 .0787339 -3.736 0.000 -.4484535 -.1398222
ETHHISP | -.0178776 .1034237 -0.173 0.863 -.2205843 .1848292
_cons | .1682515 .2606523 0.646 0.519 -.3426176 .6791206

---------+----------------------------------------------------------------
/athrho | 1.01804 .0932533 10.917 0.000 .8352669 1.200813
/lnsigma | -.6349788 .0247858 -25.619 0.000 -.6835582 -.5863994
---------+----------------------------------------------------------------

rho | .769067 .0380973 .683294 .8339024
sigma | .5299467 .0131352 .5048176 .5563268
lambda | .4075645 .02867 .3513724 .4637567

--------------------------------------------------------------------------
LR test of indep. eqns. (rho = 0): chi2(1) = 32.90 Prob > chi2 = 0.0000
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6 in the household, 0 otherwise. CHILDL16 is a dummy variable equal to 1 if
there was a child aged less than 16, but no child less than 6, in the household, 0
otherwise. MARRIED is equal to 1 if the respondent was married with spouse
present, 0 otherwise. The other variables have the same definitions as in the
EAEF data sets. The Stata command for this type of regression is ‘heckman’

and as usual it is followed by the dependent variable and the explanatory vari-
ables and qualifier, if any (here the sample is restricted to females). The variables
in parentheses after select are those hypothesized to influence whether the depen-
dent variable is observed. In this example it is observed for 2,021 females and is
missing for the remaining 640 who were not working in 1994. Seven iteration
reports have been deleted from the output.

First we will check whether there is evidence of selection bias, that is,
that ρ �= 0. For technical reasons, ρ is estimated indirectly through atanh
ρ = 1

2 log ((1 + ρ)/(1 − ρ)), but the null hypothesis H0: atanh ρ = 0 is equivalent
to H0: ρ = 0. atanh ρ is denoted ‘athrho’ in the output and, with an asymptotic
t statistic of 10.92, the null hypothesis is rejected. A second test of the same null
hypothesis that can be effected by comparing likelihood ratios is described in
Section 11.6.

The regression results indicate that schooling and the ASVABC score have
highly significant effects on earnings, that schooling has a positive effect on
the probability of working, and that age, having a child aged less than 6, and
being black have negative effects. The probit coefficients are different from those
reported in Exercise 11.4, the reason being that, in a model of this type, probit
analysis in isolation yields inefficient estimates (Table 11.9).

Table 11.9

. reg LGEARN S ASVABC ETHBLACK ETHHISP if MALE==0

Source | SS df MS Number of obs = 2021
---------+------------------------------ F( 4, 2016) = 168.55

Model | 143.231149 4 35.8077873 Prob > F = 0.0000
Residual | 428.301239 2016 .212451012 R-squared = 0.2506
---------+------------------------------ Adj R-squared = 0.2491

Total | 571.532389 2020 .282936826 Root MSE = .46092

--------------------------------------------------------------------------
lgearn | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+----------------------------------------------------------------
S | .0807836 .005244 15.405 0.000 .0704994 .0910677

ASVABC | .0117377 .0014886 7.885 0.000 .0088184 .014657
ETHBLACK | -.0148782 .0356868 -0.417 0.677 -.0848649 .0551086
ETHHISP | .0802266 .041333 1.941 0.052 -.0008333 .1612865
_cons | 5.223712 .0703534 74.250 0.000 5.085739 5.361685
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It is instructive to compare the regression results with those from an OLS
regression not correcting for selection bias. The results are in fact quite similar,
despite the presence of selection bias. The main difference is in the coefficient of
ETHBLACK. The probit regression indicates that black females are significantly
less likely to work than whites, controlling for other characteristics. If this is the
case, black females, controlling for other characteristics, may require higher
wage offers to be willing to work. This would reduce the apparent earnings
discrimination against them, accounting for the smaller negative coefficient in
the OLS regression. The other difference in the results is that the schooling
coefficient in the OLS regression is 0.081, a little lower than that in the selection
bias model, indicating that selection bias leads to a modest underestimate of the
effect of education on female earnings.

One of the problems with the selection bias model is that it is often difficult to
find variables that belong to the selection process but not the main regression.
Having a child aged less than 6 is an excellent variable because it clearly affects
the willingness to work of a female but not her earning power while working,
and for this reason the example discussed here is very popular in expositions of
the model.

One final point, made by Heckman (1976): if a selection variable is illegiti-
mately included in a least squares regression, it may appear to have a significant
effect. In the present case, if CHILDL06 is included in the earnings function,
it has a positive coefficient significant at the 5 percent level. The explanation
would appear to be that females with young children tend to require an espe-
cially attractive wage offer, given their education and other endowments, to be
induced to work.

Exercise

11.6∗ Using your EAEF data set, investigate whether there is evidence that
selection bias affects the least squares estimate of the returns to col-
lege education. Define COLLYEAR = S − 12 if S > 12, 0 otherwise,
and LGEARNCL = LGEARN if COLLYEAR > 0, missing otherwise.
Use the Heckman procedure to regress LGEARNCL on COLLYEAR,
ASVABC MALE, ETHBLACK, and ETHHISP, with ASVABC SM, SF,
and SIBLINGS being used to determine whether the respondent attended
college. Run the equivalent-regression using least squares. Comment on
your findings.

11.7∗ Show that the tobit model may be regarded as a special case of a selection
bias model.

11.8 Investigate whether having a child aged less than 6 is likely to be an
especially powerful deterrent to working if the mother is unmarried by
downloading the LFP94 data set from the website and repeating the
regressions in this section adding an interactive dummy variable MARL06
defined as the product of MARRIED and CHILDL06 to the selection part
of the model.
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11.6 An introduction to maximum likelihood estimation

Suppose that a random variable X has a normal distribution with unknown
mean µ and standard deviation σ . For the time being we will assume that we
know that σ is equal to 1. We will relax this assumption later. You have a
sample of two observations, values 4 and 6, and you wish to obtain an estimate
of µ. The common-sense answer is 5, and we have seen that this is scientifically
respectable as well since the sample mean is the least squares estimator and
as such an unbiased and efficient estimator of the population mean, provided
certain assumptions are valid.

However, we have seen that in practice in econometrics the necessary assump-
tions, in particular the Gauss–Markov conditions, are often not satisfied and as
a consequence least squares estimators lose one or more of their desirable prop-
erties. We have seen that in some circumstances they may be inconsistent and we
have been concerned to develop alternative estimators that are consistent. Typ-
ically we are not able to analyze the finite-sample properties of these estimators
and we just hope that the estimators are well behaved.

Once we are dealing with consistent estimators, there is no guarantee that
those based on the least squares criterion of goodness of fit are optimal. Indeed it
can be shown that, under certain assumptions, a different approach, maximum
likelihood estimation, will yield estimators that, besides being consistent, are
asymptotically efficient (efficient in large samples).

To return to the numerical example, suppose for a moment that the true value
of µ is 3.5. The probability density function of the normal distribution is given by

f (X) = 1

σ
√

2π
e−1/2((X−µ)/σ )2

. (11.25)

Figure 11.12 shows the distribution of X conditional on µ = 3.5 and σ = 1.
In particular, the probability density is 0.3521 when X = 4 and 0.0175 when
X = 6. The joint probability density for the two observations is the product,
0.0062.

Now suppose that the true value of µ is 4. Figure 11.13 shows the distribution
of X conditional on this value. The probability density is 0.3989 when X = 4
and 0.0540 when X = 6. The joint probability density for the two observations
is now 0.0215. We conclude that the probability of getting values 4 and 6 for
the two observations would be three times as great if µ were 4 than it would
be if µ were 3.5. In that sense, µ = 4 is more likely than µ = 3.5. If we had
to choose between these estimates, we should therefore choose 4. Of course we
do not have to choose between them. According to the maximum likelihood
principle, we should consider all possible values of µ and select the one that
gives the observations the greatest joint probability density.

Table 11.10 computes the probabilities of X = 4 and X = 6 for values
of µ from 3.5 to 6.5. The fourth column gives the joint probability density,
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Figure 11.12 Probability densities at X1 = 4 and X2 = 6 conditional on µ = 3.5
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Figure 11.13 Probability densities at X1 = 4 and X2 = 6 conditional on µ = 4.0

which is known as the likelihood function. The likelihood function is plotted in
Figure 11.14. You can see that it reaches a maximum for µ = 5, the average
value of the two observations. We will now demonstrate mathematically that
this must be the case.

First, a little terminology. The likelihood function, written L(µ | X1 =
4, X2 = 6) gives the joint probability density as a function of µ,
given the sample observations. We will choose µ so as to maximize this
function.

In this case, given the two observations and the assumption σ = 1, the
likelihood function is given by

L(µ) =
(

1√
2π

e−1/2(4−µ)2

)(
1√
2π

e−1/2(6−µ)2

)
. (11.26)
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Table 11.10

µ p(4|µ) p(6|µ) L log L

3.5 0.3521 0.0175 0.0062 −5.0879

4.0 0.3989 0.0540 0.0215 −3.8379

4.5 0.3521 0.1295 0.0456 −3.0879

4.6 0.3332 0.1497 0.0499 −2.9979

4.7 0.3123 0.1714 0.0535 −2.9279

4.8 0.2897 0.1942 0.0563 −2.8779

4.9 0.2661 0.2179 0.0580 −2.8479

5.0 0.2420 0.2420 0.0585 −2.8379

5.1 0.2179 0.2661 0.0580 −2.8479

5.2 0.1942 0.2897 0.0563 −2.8779

5.3 0.1714 0.3123 0.0535 −2.9279

5.4 0.1497 0.3332 0.0499 −2.9979

5.5 0.1295 0.3521 0.0456 −3.0879

6.0 0.0540 0.3989 0.0215 −3.8379

6.5 0.0175 0.3521 0.0062 −5.0879
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Figure 11.14 Likelihood and log-likelihood functions for µ

We will now differentiate this with respect to µ and set the result equal to 0
to obtain the first-order condition for a maximum. We will then differentiate a
second time to check the second-order condition. Well, actually we won’t. Even
with only two observations in the sample, this would be laborious, and when
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we generalize to n observations it would be very messy. We will use a trick to
simplify the proceedings. log L is a monotonically increasing function of L. So
the value of µ that maximizes L also maximizes log L, and vice versa. log L is
much easier to work with, since

log L = log
[(

1√
2π

e−1/2(4−µ)2

)(
1√
2π

e−1/2(6−µ)2

)]

= log
(

1√
2π

e−1/2(4−µ)2

)
+ log

(
1√
2π

e−1/2(6−µ)2

)

= log
(

1√
2π

)
− 1

2
(4 − µ)2 + log

(
1√
2π

)
− 1

2
(6 − µ)2. (11.27)

The maximum likelihood estimator, which we will denote µ̂, is the value of µ

that maximizes this function, given the data for X. It is given by the first-order
condition

d log L
dµ

= (4 − µ̂) + (6 − µ̂) = 0. (11.28)

Thus µ̂ = 5. The second derivative is −2, so this gives a maximum value for
log L, and hence L. [Note that − 1

2 (a − µ)2 = − 1
2a2 + aµ − 1

2µ2. Hence the
differential with respect to µ is (a − µ).]

Generalization to a sample of n observations

Consider a sample that consists of n observations X1, . . . , Xn. The likelihood
function L(µ|X1, . . . , Xn) is now the product of n terms:

L(µ) =
(

1√
2π

e−1/2(X1−µ)2

)
× · · · ×

(
1√
2π

e−1/2(Xn−µ)2

)
. (11.29)

The log-likelihood function is now the sum of n terms:

log L = log
(

1√
2π

e−1/2(X1−µ)2

)
+ · · · + log

(
1√
2π

e−1/2(Xn−µ)2

)

= log
(

1√
2π

)
− 1

2
(X1 − µ)2 + · · · + log

(
1√
2π

)
− 1

2
(Xn − µ)2.

(11.30)

Hence the maximum likelihood estimator of µ is given by

d log L
dµ

= (X1 − µ̂) + · · · + (Xn − µ̂) = 0. (11.31)

Thus
n∑

i=1

Xi − nµ = 0 (11.32)

and the maximum likelihood estimator of µ is the sample mean. Note that the
second derivative is −n, confirming that the log-likelihood has been maximized.
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Generalization to the case where σ is unknown

We will now relax the assumption that σ is equal to 1 and accept that in practice it
would be unknown, like µ. We will investigate the determination of its maximum
likelihood graphically using the two-observation example and then generalize to
a sample of n observations.

Figure 11.15 shows the probability distribution for X conditional on µ being
equal to 5 and σ being equal to 2. The probability density at X1 = 4 and X2 = 6
is 0.1760 and the joint density 0.0310. Clearly we would obtain higher densities,
and higher joint density, if the distribution had smaller variance. If we try σ equal
to 0.5, we obtain the distribution shown in Figure 11.16. Here the individual
densities are 0.1080 and the joint density 0.0117. Clearly we have made the
distribution too narrow, for X1 and X2 are now in its tails with even lower
density than before.

Figure 11.17 plots the joint density as a function of σ . We can see that it is
maximized when σ is equal to 1, and this is therefore the maximum likelihood
estimate, provided that we have been correct in assuming that the maximum
likelihood estimate of µ is 5.

We will now derive the maximum likelihood estimators of both µ and σ

simultaneously, for the general case of a sample of n observations. The likelihood
function is

L(µ, σ | X1, . . . , Xn) =
(

1

σ
√

2π
e−1/2((X1−µ)/σ )2

)
× · · · ×

(
1

σ
√

2π
e−1/2((Xn−µ))/σ 2

)
(11.33)
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Figure 11.15 Probability densities at X1 = 4 and X2 = 6 conditional on σ = 2
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and so the log-likelihood function is

log L = log
[(

1

σ
√

2π
e−1/2((X1−µ)/σ )2

)
× · · · ×

(
1

σ
√

2π
e−1/2((Xn−µ)/σ )2

)]

= log
(

1

σ
√

2π
e−1/2(X1−µ)/σ 2

)
+ · · · + log

(
1

σ
√

2π
e−1/2(Xn−µ)/σ 2

)

= n log
(

1

o
√

2π

)
− 1

2

(
X1 − µ

σ

)2

− · · · − 1
2

(
Xn − µ

σ

)2

= n log
1
σ

+ n log
1√
2π

+ 1
σ 2

(
−1

2
(X1 − µ)2 − · · · − 1

2
(Xn − µ)2

)
.

(11.34)
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The partial derivative of this with respect to µ is

∂ log L
∂µ

= 1
σ 2

[(X1 − µ) + · · · + (Xn − µ)]. (11.35)

Setting this equal to 0, one finds that the maximum likelihood estimator of µ

is the sample mean, as before. The partial derivative with respect to σ is

− n
σ

+ 1
σ 3

n∑
i=1

(Xi − µ)2. (11.36)

Substituting its maximum likelihood estimator for µ and putting the expres-
sion equal to 0, we obtain

σ̂ 2 = 1
n

n∑
i=1

(Xi − X̄)2. (11.37)

Note that this is actually biased downwards in finite samples, the unbiased
estimator being given by the same expression with n replaced by (n − 1). How-
ever it is asymptotically more efficient using the mean square error criterion,
its smaller variance more than compensating for the bias. The bias in any case
attenuates as the sample size becomes large.

Application to the simple regression model

Suppose that Yi depends on Xi according to the simple relationship

Yi = β1 + β2Xi + ui. (11.38)

Potentially, before the observations are generated, Yi has a distribution around
(β1 +β2Xi), according to the value of the disturbance term. We will assume that
the disturbance term is normally distributed with mean 0 and standard deviation
σ , so

f (u) = 1

σ
√

2π
e−1/2(u/σ )2

. (11.39)

The probability that Y will take a specific value Yi in observation i is deter-
mined by the probability that ui is equal to (Yi −β1 −β2Xi). Given the expression
above, the corresponding probability density is

1

σ
√

2π
e−1/2((Yi−β1−β2Xi)/σ )2

. (11.40)

The joint probability density function for the observations in the sample is
the product of the terms for each observation. Taking the observations as given,



Binary choice and limited dependent models, and maximum likelihood estimation 309

and treating the unknown parameters as variables, we say that the likelihood
function for β1, β2 and σ is given by

L(β1, β2, σ |Y1, . . . , Yn) =
(

1

σ
√

2π
e−1/2(( Y1−β1−β2X1

) /σ )2
)

× · · · ×
(

1

σ
√

2π
e−1/2((Yn−β1−β2Xn)/σ )2

)
. (11.41)

The log-likelihood function is thus given by

log L = n log
(

1

σ
√

2π

)
− 1

2σ
[(Y1 − β1 − β2X1)2 + · · · + (Yn − β1 − β2Xn)2].

(11.42)

The values of β1 and β2 that maximize this function are exactly the same as those
obtained using the least squares principle. However, the estimate of σ is slightly
different.

Goodness of fit and statistical tests

As noted in the discussion of logit analysis, there is no measure of goodness of fit
equivalent to R2 in maximum likelihood estimation. The pseudo-R2 seen in some
regression output, including that of Stata, compares its log-likelihood, log L,
with the log-likelihood that would have been obtained with only the intercept in
the regression, log L0. A likelihood, being a joint probability, must lie between
0 and 1, and as a consequence a log-likelihood must be negative. The pseudo-R2

is the proportion by which log L is smaller, in absolute size, than log L0:

pseudo-R2 = 1 − log L
log L0

. (11.43)

While it has a minimum value of 0, its maximum value must be less than 1 and
unlike R2 it does not have a natural interpretation. However variations in the
likelihood, like variations in the residual sum of squares in a standard regression,
can be used as a basis for tests. In particular the explanatory power of the model
can be tested via the likelihood ratio statistic.

2 log
L
L0

= 2( log L − log L0). (11.44)

This distributed as a chi-squared statistic with k − 1 degrees of freedom, where
k − 1 is the number of explanatory variables, under the null hypothesis that the
coefficients of the variables are all jointly equal to 0. Further, the validity of a
restriction can be tested by comparing the constrained and unconstrained likeli-
hoods, in the same way that it can be tested by comparing the constrained and
unconstrained residual sum of squares in a least squares regression model. For
example, the null hypothesis H0: ρ = 0 in the selection bias model can be tested
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by comparing the unconstrained likelihood LU with the likelihood LR when the
model is fitted assuming that u and ε are distributed independently. Under the
null hypothesis H0: ρ = 0, the test statistic 2 log LU/LR is distributed as a chi-
squared statistic with one degree of freedom. In the example in Section 11.4 the
test statistic, 32.90, appears in the last line of the output and the null hypothesis
is rejected, the critical value of chi-squared with one degree of freedom being
10.83 at the 0.1 percent level.

As was noted in Section 11.2, the significance of an individual coefficient can
be evaluated via its asymptotic t statistic, so-called because the standard error
is valid only in large samples. Since the t distribution converges on the normal
distribution in large samples, the critical values of the latter should be used.

Exercise

11.8∗ An event is hypothesized to occur with probability p. In a sample of
n observations, it occurred m times. Demonstrate that the maximum
likelihood estimator of p is m/n.

11.9∗ In Exercise 11.4, log L0 is the log-likelihood reported on iteration 0.
Compute the pseudo-R2 and confirm that it is equal to that reported in
the output.

11.10∗ In Exercise 11.4, compute the likelihood ratio statistic 2(log L− log L0),
confirm that it is equal to that reported in the output, and perform the
likelihood ratio test.


