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Specificationof regression
variables:Apreliminary
skirmish

What are the consequences of including in the regression model a variable that
should not be there? What are the consequences of leaving out a variable that
should be included? What happens if you have difficulty finding data on a vari-
able and use a proxy instead? This chapter is a preliminary skirmish with these
issues in the sense that it focuses on the consequences of variable misspecifi-
cation, rather than on procedures for model selection, a much more complex
subject that is left to later in the text. The chapter concludes by showing how
simple restrictions on the parameters can be tested.

7.1 Modelspecification

The construction of an economic model involves the specification of the relation-
ships that constitute it, the specification of the variables that participate in each
relationship, and the mathematical function representing each relationship. The
last element was discussed in Chapter 5. In this chapter, we will consider the
second element, and we will continue to assume that the model consists of just
one equation. We will discuss the application of regression analysis to models
consisting of systems of simultaneous relationships in Chapter 10.

If we know exactly which explanatory variables ought to be included in the
equation when we undertake regression analysis, our task is limited to calculating
estimates of their coefficients, confidence intervals for these estimates, and so on.
In practice, however, we can never be sure that we have specified the equation
correctly. Economic theory ought to provide a guide, but theory is never perfect.
Without being aware of it, we might be including some variables that ought not
to be in the model, and we might be leaving out others that ought to be included.

The properties of the regression estimates of the coefficients depend cru-
cially on the validity of the specification of the model. The consequences of
misspecification of the variables in a relationship are summarized in Table 7.1.

1. If you leave out a variable that ought to be included, the regression estimates
are in general (but not always) biased. The standard errors of the coefficients
and the corresponding t tests are in general invalid.
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Table 7.1 Consequences of variable specification

Fitted model True model

Y = β1 + β2X2 + u Y = β1 + β2X2 + β3X3 + u

Ŷ = b1 + b2X2 Correct specification, Coefficients are biased
no problems (in general). Standard

errors are invalid

Ŷ = b1 + b2X2 + b3X3 Coefficients are unbiased Correct specification,
(in general) but inefficient. no problems
Standard errors are valid
(in general).

2. If you include a variable that ought not to be in the equation, the regression
coefficients are in general (but not always) inefficient but not biased. The
standard errors are in general valid but, because the regression estimation is
inefficient, they will be needlessly large.

We will begin by discussing these two cases and then come to some broader
issues of model specification.

7.2 The effect of omitting a variable that
ought to be included

The problem of bias

Suppose that the dependent variable Y depends on two variables X2 and X3

according to a relationship

Y = β1 + β2X2 + β3X3 + u, (7.1)

but you are unaware of the importance of X3. Thinking that the model should be

Y = β1 + β2X2 + u, (7.2)

you use regression analysis to fit

Ŷ = b1 + b2X2, (7.3)

and you calculate b2 using the expression Cov(X2, Y)/Var(X2), instead of the
correct expression

b2 = Cov(X2, Y)Var(X3) − Cov(X3, Y)Cov(X2, X3)
Var(X2)Var(X3) − [Cov(X2, X3)]2

. (7.4)
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By definition, b2 is an unbiased estimator of β2 if and only if E(b2) is equal to
β2. In fact, if (7.1) is true,

E
[

Cov(X2, Y)
Var(X2)

]
= β2 + β3

Cov(X2, X3)
Var(X2)

. (7.5)

We shall give first an intuitive explanation of this and then a formal proof.
If X3 is omitted from the regression model, X2 will appear to have a double

effect, as illustrated in Figure 7.1. It will have a direct effect and also a proxy
effect when it mimics the effect of X3. The apparent indirect effect of X2 on Y
depends on two factors: the apparent ability of X2 to mimic X3, and the effect
of X3 on Y.

The apparent ability of X2 to explain X3 is determined by the slope coefficient
h in the pseudo-regression

X̂3 = g + hX2. (7.6)

h of course is given by the usual simple regression formula, in this case
Cov(X2, X3)/Var(X2). The effect of X3 on Y is β3, so the mimic effect via X3

may be written β3 Cov(X2, X3)/Var(X2). The direct effect of X2 on Y is β2, and
hence when Y is regressed on X2, omitting X3, the coefficient of X2 is given by

β2 + β3
Cov(X2, X3)

Var(X2)
+ sampling error. (7.7)

Provided that X2 and X3 are nonstochastic, the expected value of the coef-
ficient will be the sum of the first two terms. The presence of the second term
implies that in general the expected value of the coefficient will be different from
the true value β2 and therefore biased.
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The formal proof of (7.5) is straightforward. We begin by making a theoretical
expansion of the estimator b2:

b2 = Cov(X2, Y)
Var(X2)

= Cov(X2, [β1 + β2X2 + β3X3 + u])
Var(X2)

= 1
Var(X2)

[Cov(X2, β1) + Cov(X2, β2X2) + Cov(X2, β3X3) + Cov(X2, u)]

= 1
Var(X2)

[0 + β2Var(X2) + β3Cov(X2, X3) + Cov(X2, u)]

= β2 + β3
Cov(X2, X3)

Var(X2)
+ Cov(X2, u)

Var(X2)
. (7.8)

Provided that X2 and X3 are nonstochastic, the first two terms are unaffected
when we take expectations and the third is 0. Hence we obtain (7.5).

This confirms our earlier intuitive conclusion that b2 is biased by an amount
β3Cov(X2, X3)/Var(X2). The direction of the bias will depend on the signs of β3

and Cov(X2, X3). For example, if β3 is positive and the covariance is positive,
the bias will be positive and b2 will tend to overestimate β2. There is, however,
one exceptional case where b2 is unbiased after all. That is when the sample
covariance between X2 and X3 happens to be exactly 0. If Cov(X2, X3) is 0, the
bias term disappears. Indeed, the regression coefficient obtained using simple
regression will be exactly the same as if you had used a properly specified multiple
regression. Of course, the bias term would also be 0 if β3 were 0, but then the
model is not misspecified.

Invalidation of the statistical tests

Another serious consequence of omitting a variable that ought to be included in
the regression is that the standard errors of the coefficients and the test statistics
are in general invalidated. This means of course that you are not in principle
able to test any hypotheses with your regression results.

Example

The problem of omitted variable bias will first be illustrated with the educa-
tional attainment function using EAEF Data Set 21 (Table 7.2). For the present
purposes, it will be assumed that the true model is

S = β1 + β2ASVABC + β3SM + u, (7.9)

although obviously this is a great oversimplification. The first part of the regres-
sion output shows the result of this regression. The second and third parts of the
output then show the effects of omitting SM and ASVABC, respectively.
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Table 7.2

. reg S ASVABC SM

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 2, 567) = 156.81

Model | 1230.2039 2 615.101949 Prob > F = 0.0000
Residual | 2224.04347 567 3.92247526 R-squared = 0.3561
---------+------------------------------ Adj R-squared = 0.3539

Total | 3454.24737 569 6.07073351 Root MSE = 1.9805

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1381062 .0097494 14.166 0.000 .1189567 .1572556

SM | .154783 .0350728 4.413 0.000 .0858946 .2236715
_cons | 4.791277 .5102431 9.390 0.000 3.78908 5.793475

-----------------------------------------------------------------------

. reg S ASVABC

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 284.89

Model | 1153.80864 1 1153.80864 Prob > F = 0.0000
Residual | 2300.43873 568 4.05006818 R-squared = 0.3340
---------+------------------------------ Adj R-squared = 0.3329

Total | 3454.24737 569 6.07073351 Root MSE = 2.0125

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1545378 .0091559 16.879 0.000 .1365543 .1725213
_cons | 5.770845 .4668473 12.361 0.000 4.853888 6.687803

-----------------------------------------------------------------------

. reg S SM

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 83.59

Model | 443.110436 1 443.110436 Prob > F = 0.0000
Residual | 3011.13693 568 5.30129742 R-squared = 0.1283
---------+------------------------------ Adj R-squared = 0.1267

Total | 3454.24737 569 6.07073351 Root MSE = 2.3025

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
SM | .3445198 .0376833 9.142 0.000 .2705041 .4185354

_cons | 9.506491 .4495754 21.145 0.000 8.623458 10.38952
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When SM is omitted,

E(b2) = β2 + β3
Cov(ASVABC, SM)

Var(ASVABC)
. (7.10)

The correlation between ASVABC and SM is positive (0.38). Therefore the
covariance term is positive. Since variances are always positive (unless equal
to 0), the only other relevant factor for determining the sign of the bias is β3. It
is reasonable to assume that this is positive, and the fact that its estimate in the
first regression is indeed positive and highly significant provides overwhelming
corroborative evidence. One would therefore anticipate that the coefficient of
ASVABC will be upwards biased when SM is omitted, and you can see that it
is indeed higher. Not all of the difference should be attributed to bias. Part of
it may be attributable to the effects of the disturbance term, which could go
either way.

Similarly, when ASVABC is omitted,

E(b3) = β3 + β2
Cov(ASVABC, SM)

Var(SM)
. (7.11)

Since β2 is also likely to be positive, the coefficient of SM in the third regression
should be upwards biased. The estimate in the third regression is indeed higher
than that in the first.

In this example, the omission of one explanatory variable causes the coeffi-
cient of the other to be overestimated. However, the bias could just as easily be
negative. The sign of the bias depends on the sign of the true coefficient of the
omitted variable and on the sign of the sample covariance between the included
and omitted variables, and these will depend on the nature of the model being
investigated.

It should be emphasized that the analysis above applies only to the case where
the true model is a multiple regression model with two explanatory variables.
When there are more explanatory variables, it may be difficult to predict the
impact of omitted variable bias mathematically. Nevertheless it may be possible
to conclude that the estimates of the coefficients of some of the variables may
have been inflated or deflated by the bias.

R2 in the presence of omitted variable bias

In Section 4.5 it was asserted that in general it is impossible to determine the
contribution to R2 of each explanatory variable in multiple regression analysis,
and we are now in a position to see why.

We will discuss the issue first with reference to the educational attainment
model above. In the regression of S on ASVABC alone, R2 was 0.33. In the
regression on SM alone, it was 0.13. Does this mean that ASVABC explains
33 percent of the variance in S, and SM 13 percent? No, because this would
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imply that together they would explain 46 percent of the variance, and this
conflicts with the finding in the multiple regression that their joint explanatory
power is 0.36.

The explanation is that in the simple regression of S on ASVABC, ASVABC
is acting partly as a variable in its own right and partly as a proxy for the miss-
ing SM, as in Figure 7.1. R2 for that regression therefore reflects the combined
explanatory power of ASVABC in both of these roles, and not just its direct
explanatory power. Hence 0.33 overestimates the latter.

Similarly, in the simple regression of S on SM, SM is acting partly as a proxy for
the missing ASVABC, and the level of R2 in that regression reflects the combined
explanatory power of SM in both those roles, and not just its direct explanatory
power.

In this example, the explanatory power of the two variables overlapped, with
the consequence that R2 in the multiple regression was less than the sum of R2

in the individual simple regressions. However it is also possible for R2 in the
multiple regression to be greater than the sum of R2 in the individual simple
regressions, as is shown in the accompanying regression output for an earnings
function model. It is assumed that the true model is

LGEARN = β1 + β2S + β3MALE + u, (7.12)

where MALE is a dummy variable equal to 1 for males and 0 for females. The
first part of the regression output shows the result of fitting (7.12), and the
second and third parts show the results of omitting, first MALE, and then S (see
Table 7.3). R2 in the multiple regression is 0.188, while it is 0.141 and 0.038 in
the simple regressions, the sum being 0.179. As in the previous example, it can be
assumed that both β2 and β3 are positive. However S and MALE are negatively
correlated, so in this case the coefficients of S and MALE in the second and
third regressions may be expected to be biased downwards. As a consequence,
the apparent explanatory power of S and MALE in the simple regressions is
underestimated.

Exercises

7.1 Using your EAEF data set, regress LGEARN (1) on S and ASVABC, (2) on
S only, and (3) on ASVABC only. Calculate the correlation between S
and ASVABC. Compare the coefficients of S in regressions (1) and (2).
Give both mathematical and intuitive explanations of the direction of the
change. Also compare the coefficients of ASVABC in regressions (1) and
(3) and explain the direction of the change.

7.2∗ The table gives the results of multiple and simple regressions of LGFDHO,
the logarithm of annual household expenditure on food eaten at home,
on LGEXP, the logarithm of total annual household expenditure, and
LGSIZE, the logarithm of the number of persons in the household, using
a sample of 868 households in the 1995 Consumer Expenditure Survey.
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Table 7.3

. reg LGEARN S MALE

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 2, 567) = 65.74

Model | 28.951332 2 14.475666 Prob > F = 0.0000
Residual | 124.850561 567 .220194992 R-squared = 0.1882
---------+------------------------------ Adj R-squared = 0.1854

Total | 153.801893 569 .270302096 Root MSE = .46925

-----------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
S | .0818944 .0079976 10.240 0.000 .0661858 .097603

MALE | .2285156 .0397695 5.746 0.000 .1504021 .3066291
_cons | 1.19254 .1134845 10.508 0.000 .9696386 1.415441

-----------------------------------------------------------------------

. reg LGEARN S

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 93.21

Model | 21.681253 1 21.681253 Prob > F = 0.0000
Residual | 132.12064 568 .23260676 R-squared = 0.1410
---------+------------------------------ Adj R-squared = 0.1395

Total | 153.801893 569 .270302096 Root MSE = .48229

-----------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
S | .0792256 .0082061 9.655 0.000 .0631077 .0953435

_cons | 1.358919 .1127785 12.049 0.000 1.137406 1.580433
-----------------------------------------------------------------------

. reg LGEARN MALE

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 22.51

Model | 5.86288165 1 5.86288165 Prob > F = 0.0000
Residual | 147.939011 568 .260456005 R-squared = 0.0381
---------+------------------------------ Adj R-squared = 0.0364

Total | 153.801893 569 .270302096 Root MSE = .51035

-----------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
MALE | .2048652 .0431797 4.744 0.000 .1200538 .2896767
_cons | 2.313324 .032605 70.950 0.000 2.249282 2.377365
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(1) (2) (3)

LGEXP 0.29 0.48 —

(0.02) (0.02)

LGSIZE 0.49 — 0.63

(0.03) (0.02)

constant 4.72 3.17 7.50

(0.22) (0.24) (0.02)

R2 0.52 0.31 0.42

The correlation coefficient for LGEXP and LGSIZE was 0.45. Explain the
variations in the regression coefficients.

7.3 Suppose that Y is determined by X2 and X3 according to the relationship

Y = β1 + β2X2 + β3X3 + u,

and that Cov(X2, X3) is 0. Use this to simplify the multiple regression
coefficient b2 given by

b2 = Cov(X2, Y)Var(X3) − Cov(X3, Y)Cov(X2, X3)
Var(X2)Var(X3) − [Cov(X2, X3)]2

and show that it reduces to the simple regression expression. What are the
implications for the specification of the regression equation?

7.4 In a Monte Carlo experiment, a variable Y was generated as a linear
function of two variables X2 and X3:

Y = 10.0 + 10.0X2 + 0.5X3 + u,

where X2 was the sequence of integers 1, 2, ldots, 30, X3 was generated
from X2 by adding random numbers, and u was a normally distributed
disturbance term with mean 0 and standard deviation 100. The correlation
between X2 and X3 was 0.95. The sample variance of X2 was 74.92 and
that of X3 was 82.67. The sample covariance between X2 and X3 was
74.94. The table shows the result of fitting the following regressions for
ten samples:

Model A Ŷ = b1 + b2X2 + b3X3.

Model B Ŷ = b1 + b2X2.

Comment on all aspects of the regression results, giving full explanations
of what you observe.



Specification of regression variables 205

Sample Model A Model B

b2 s.e.(b2) b3 s.e.( b3) R2 b2 s.e.( b2) R2

1 10.68 6.05 0.60 5.76 0.5800 11.28 1.82 0.5799

2 7.52 7.11 3.74 6.77 0.5018 11.26 2.14 0.4961

3 7.26 6.58 2.93 6.26 0.4907 10.20 1.98 0.4865

4 11.47 8.60 0.23 8.18 0.4239 11.70 2.58 0.4239

5 13.07 6.07 −3.04 5.78 0.5232 10.03 1.83 0.5183

6 16.74 6.63 −4.01 6.32 0.5966 12.73 2.00 0.5906

7 15.70 7.50 −4.80 7.14 0.4614 10.90 2.27 0.4523

8 8.01 8.10 1.50 7.71 0.3542 9.51 2.43 0.3533

9 1.08 6.78 9.52 6.45 0.5133 10.61 2.11 0.4740

10 13.09 7.58 −0.87 7.21 0.5084 12.22 2.27 0.5081

7.3 The effect of including a variable that
ought not to be included

Suppose that the true model is

Y = β1 + β2X2 + u (7.13)

and you think it is
Y = β1 + β2X2 + β3X3 + u, (7.14)

and you estimate b2 using (7.4) instead of Cov(X2,Y)/Var(X2).
In general there is no problem of bias, even though b2 has been calculated

incorrectly. E(b2) will still be equal to β2, but in general b2 will be an inefficient
estimator. It will be more erratic, in the sense of having a larger variance about
β2, than if it had been calculated correctly. This is illustrated in Figure 7.2

This is easy to explain intuitively. The true model may be rewritten

Y = β1 + β2X2 + 0X3 + u. (7.15)

So if you regress Y on X2 and X3, b2 will be an unbiased estimator of β2 and b3

will be an unbiased estimator of 0, provided that the Gauss–Markov conditions
are satisfied. Effectively, you are discovering for yourself that β3 is 0. If you
realized beforehand that β3 is 0, you would be able to exploit this information
to exclude X3 and use simple regression, which in this context is more efficient.

The loss of efficiency caused by including X3 when it ought not to be included
depends on the correlation between X2 and X3. Compare the expressions for the
variances of b2 using simple and multiple regression in Table 7.4. The variance
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Table 7.4

Simple regression Multiple regression

σ 2
b2

= σ 2
u

nVar(X2)
σ 2

b2
= σ 2

u

nVar(X2)
1

1 − r2
X2X3

will in general be larger in the case of multiple regression, and the difference will
be the greater the closer the correlation coefficient is to plus or minus 1. The one
exception to the loss of efficiency occurs when the correlation coefficient happens
to be exactly equal to 0. In that case the estimator b2 for multiple regression will
be identical to that for simple regression. The proof of this will be left as an easy
exercise.

There is one exception to the unbiasedness conclusion that ought to be kept
in mind. If X3 is correlated with u, the regression coefficients will be biased
after all. Writing the model as (7.15), this amounts to the fourth Gauss–Markov
condition not being satisfied with respect to X3.

Example

The regression output shows the results of regressions of LGFDHO, the loga-
rithm of annual household expenditure on food eaten at home, on LGEXP, the
logarithm of total annual household expenditure, and LGSIZE, the logarithm
of the number of persons in the household, using a sample of 868 households
in the 1995 Consumer Expenditure Survey (Table 7.5). In the second regres-
sion, LGHOUS, the logarithm of annual expenditure on housing services, has
been added. It is safe to assume that LGHOUS is an irrelevant variable and,
not surprisingly, its coefficient is not significantly different from 0. It is how-
ever highly correlated with LGEXP (correlation coefficient 0.81), and also, to a
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Table 7.5

. reg LGFDHO LGEXP LGSIZE

Source | SS df MS Number of obs = 868
---------+------------------------------ F( 2, 865) = 460.92

Model | 138.776549 2 69.3882747 Prob > F = 0.0000
Residual | 130.219231 865 .150542464 R-squared = 0.5159
---------+------------------------------ Adj R-squared = 0.5148

Total | 268.995781 867 .310260416 Root MSE = .388

-----------------------------------------------------------------------
LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003
LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

-----------------------------------------------------------------------

. reg LGFDHO LGEXP LGSIZE LGHOUS

Source | SS df MS Number of obs = 868
---------+------------------------------ F( 3, 864) = 307.22

Model | 138.841976 3 46.2806586 Prob > F = 0.0000
Residual | 130.153805 864 .150640978 R-squared = 0.5161
---------+------------------------------ Adj R-squared = 0.5145

Total | 268.995781 867 .310260416 Root MSE = .38812

-----------------------------------------------------------------------
LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
LGEXP | .2673552 .0370782 7.211 0.000 .1945813 .340129
LGSIZE | .4868228 .0256383 18.988 0.000 .4365021 .5371434
LGHOUS | .0229611 .0348408 0.659 0.510 -.0454214 .0913436
_cons | 4.708772 .2217592 21.234 0.000 4.273522 5.144022

lesser extent, with LGSIZE (correlation coefficient 0.33). Its inclusion does not
cause the coefficients of those variables to be biased but it does increase their
standard errors, particularly that of LGEXP, as you would expect, given the
loss of efficiency.

Exercises

7.5∗ A social scientist thinks that the level of activity in the shadow economy, Y,
depends either positively on the level of the tax burden, X, or negatively
on the level of government expenditure to discourage shadow economy
activity, Z. Y might also depend on both X and Z. International cross-
section data on Y, X, and Z, all measured in US$ million, are obtained for
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a sample of thirty industrialized countries and a second sample of thirty
developing countries. The social scientist regresses (1) log Y on both log X
and log Z, (2) log Y on log X alone, and (3) log Y on log Z alone, for
each sample, with the results as shown in the table (standard errors in
parentheses).

Industrialized countries Developing countries

(1) (2) (3) (1) (2) (3)

log X 0.699 0.201 — 0.806 0.727 —

(0.154) (0.112) (0.137) (0.090)

log Z −0.646 — −0.053 −0.091 — 0.427

(0.162) (0.124) (0.117) (0.116)

constant −1.137 −1.065 1.230 −1.122 −1.024 2.824

(0.863) (1.069) (0.896) (0.873) (0.858) (0.835)

R2 0.44 0.10 0.01 0.71 0.70 0.33

X was positively correlated with Z in both samples. Having carried out
the appropriate statistical tests, write a short report advising the social
scientist how to interpret these results.

7.6 Regress LGEARN on S, ASVABC, MALE, ETHHISP, and ETHBLACK
using your EAEF data set. Repeat the regression, adding SIBLINGS.
Calculate the correlations between SIBLINGS and the other explanatory
variables. Compare the results of the two regressions.

7.4 Proxy variables

It frequently happens that you are unable to obtain data on a variable that
you would like to include in a regression equation. Some variables, such as
socioeconomic status and quality of education, are so vaguely defined that it may
be impossible even in principle to measure them. Others might be measurable,
but require so much time and energy that in practice they have to be abandoned.
Sometimes you are frustrated because you are using survey data collected by
someone else, and an important variable (from your point of view) has been
omitted.

Whatever the reason, it is usually a good idea to use a proxy for the missing
variable, rather than leave it out entirely. For socioeconomic status, you might
use income as a substitute if data on it are available. For quality of education,
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you might use the staff–student ratio or expenditure per student. For a variable
omitted in a survey, you will have to look at the data actually collected to see if
there is a suitable substitute.

There are two good reasons for trying to find a proxy. First, if you simply leave
the variable out, your regression is likely to suffer from omitted variable bias
of the type described in Section 7.2, and the statistical tests will be invalidated.
Second, the results from your proxy regression may indirectly shed light on the
influence of the missing variable.

Suppose that the true model is

Y = β1 + β2X2 + β3X3 + · · · + βkXk + u. (7.16)

Suppose that we have no data for X2, but another variable Z is an ideal proxy
for it in the sense that there exists an exact linear relationship between X2 and Z:

X2 = λ + µZ. (7.17)

λ and µ being fixed, but unknown, constants. (Note that if λ and µ were known,
we could calculate X2 from Z, and so there would be no need to use Z as a proxy.
Note further that we cannot estimate λ and µ by regression analysis, because to
do that we need data on X2.)

Substituting for X2 from (7.17) into (7.16), the model may be rewritten

Y = β1 + β2(λ + µZ) + β3X3 + · · · + βkXk + u

= β1 + β2λ + β2µZ + β3X3 + · · · + βkXk + u. (7.18)

The model is now formally correctly specified in terms of observable variables,
and if we fit it, the following results will obtain:

1. The coefficients of X3, . . . , Xk, their standard errors, and their t statistics
will be the same as if X2 had been used instead of Z.

2. R2 will be the same as if X2 had been used instead of Z.

3. The coefficient of Z will be an estimate of β2µ and so it will not be possible
to obtain an estimate of β2, unless you are able to guess the value of µ.

4. However, the t statistic for Z will be the same as that which would have been
obtained for X2, and so you are able to assess the significance of X2, even
though you are not able to estimate its coefficient.

5. It will not be possible to obtain an estimate of β1, since the intercept is now
(β1 + β2λ), but usually the intercept is of secondary interest, anyway.

With regard to the third point, suppose that you are investigating migration
from country A to country B and you are using the (very naı̈ve) model

M = β1 + β2W + u, (7.19)

where M is the rate of migration of a certain type of worker from A to B, and
W is the ratio of the wage rate in B to the wage rate in A. The higher the relative
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wage rate, you think the higher is migration. But suppose that you only have
data on GDP per capita, not wages. You might define a proxy variable G that is
the ratio of GDP in B to GDP in A.

In this case it might be reasonable to assume, as a first approximation, that
relative wages are proportional to relative GDP. If that were true, one could
write (7.17) with λ equal to 0 and µ equal to 1. In this case the coefficient of
relative GDP would yield a direct estimate of the coefficient of relative wages.
Since variables in regression analysis are frequently defined in relative terms, this
special case actually has quite a wide application.

In this discussion we have assumed that Z is an ideal proxy for X2, and the
validity of all the foregoing results depends on this condition. In practice it is
unusual to find a proxy that is exactly linearly related to the missing variable, but
if the relationship is close the results will hold approximately. A major problem
is posed by the fact that there is never any means of testing whether the condition
is or is not approximated satisfactorily. One has to justify the use of the proxy
subjectively.

Example

The main determinants of educational attainment appear to be the cognitive
ability of an individual and the support and motivation provided by the family
background. The NLSY data set is exceptional in that cognitive ability mea-
sures are available for virtually all the respondents, the data being obtained
when the Department of Defense, needing to re-norm the Armed Services
Vocational Aptitude Battery scores, sponsored the administration of the tests.
However, there are no data that bear directly on support and motivation pro-
vided by the family background. This factor is difficult to define and probably
has several dimensions. Accordingly, it is unlikely that a single proxy could
do justice to it. The NLSY data set includes data on parental educational
attainment and the number of siblings of the respondent, both of which could
be used as proxies, the rationale for the latter being that parents who are
ambitious for their children tend to limit the family size in order to concen-
trate resources. The data set also contains three dummy variables specifically
intended to capture family background effects: whether anyone in the family
possessed a library card, whether anyone in the family bought magazines, and
whether anyone in the family bought newspapers, when the respondent was
aged 14. However the explanatory power of these variables appears to be very
limited.

The regression output (Table 7.7) shows the results of regressing S on ASV-
ABC only and on ASVABC, parental education, number of siblings, and the
library card dummy variable. ASVABC is positively correlated with SM, SF, and
LIBRARY (correlation coefficients 0.38, 0.42, and 0.22, respectively), and nega-
tively correlated with SIBLINGS (correlation coefficient –0.19). Its coefficient is
therefore unambiguously biased upwards in the first regression. However, there
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Table 7.7

. reg S ASVABC

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 1, 568) = 284.89

Model | 1153.80864 1 1153.80864 Prob > F = 0.0000
Residual | 2300.43873 568 4.05006818 R-squared = 0.3340
---------+------------------------------ Adj R-squared = 0.3329

Total | 3454.24737 569 6.07073351 Root MSE = 2.0125

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1545378 .0091559 16.879 0.000 .1365543 .1725213
_cons | 5.770845 .4668473 12.361 0.000 4.853888 6.687803

-----------------------------------------------------------------------

. reg S ASVABC SM SF LIBRARY SIBLINGS

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 5, 564) = 66.87

Model | 1285.58208 5 257.116416 Prob > F = 0.0000
Residual | 2168.66529 564 3.84515122 R-squared = 0.3722
---------+------------------------------ Adj R-squared = 0.3666

Total | 3454.24737 569 6.07073351 Root MSE = 1.9609

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1277852 .010054 12.710 0.000 .1080373 .147533

SM | .0619975 .0427558 1.450 0.148 -.0219826 .1459775
SF | .1045035 .0314928 3.318 0.001 .042646 .166361

LIBRARY | .1151269 .1969844 0.584 0.559 -.2717856 .5020394
SIBLINGS | -.0509486 .039956 -1.275 0.203 -.1294293 .027532

_cons | 5.236995 .5665539 9.244 0.000 4.124181 6.349808

may still be an element of bias in the second, given the weakness of the proxy
variables.

Unintentional Proxies

It sometimes happens that you use a proxy without realizing it. You think that
Y depends upon Z, but in reality it depends upon X.

If the correlation between Z and X is low, the results will be poor, so you
may realize that something is wrong, but, if the correlation is good, the results
may appear to be satisfactory (R2 up to the anticipated level, etc) and you may
remain blissfully unaware that the relationship is false.



212 Introducion to econometrics

Does this matter? Well, it depends on why you are running the regression in
the first place. If the purpose of fitting the regression line is to predict future
values of Y, the use of a proxy will not matter much, provided of course that
the correlation remains high and was not a statistical fluke in the sample period.
However, if your intention is to use the explanatory variable as a policy instru-
ment for influencing the dependent variable, the consequences could be serious.
Unless there happens to be a functional connection between the proxy and the
true explanatory variable, manipulating the proxy will have no effect at all on
the dependent variable. If the motive for your regression is scientific curiosity,
the outcome is equally unsatisfactory.

Unintentional proxies are especially common in time-series analysis, particu-
larly in macroeconomic models. If the true explanatory variable is subject to a
time trend, you will probably get a good fit if you substitute (intentionally or oth-
erwise) any other variable with a time trend. Even if you relate changes in your
dependent variable to changes in your explanatory variable, you are likely to get
similar results whether you are using the correct explanatory variable or a proxy,
since macroeconomic variables tend to change in concert over the trade cycle.

Exercises

7.7 Length of work experience is generally found to be an important determi-
nant of earnings. The data set does not contain this variable, but TENURE,
tenure with the current employer, could be taken as a proxy. An alternative
is to calculate years of potential work experience, PWE, as a proxy. This
is defined to be current age, AGE, less age of completion of full-time edu-
cation. The latter can be estimated as years of schooling plus 5, assuming
that schooling begins at the age of 6. Hence

PWE = AGE − S − 5.

Using your EAEF data set, regress LGEARN on S, ASVABC, MALE,
ETHBLACK, ETHHISP, and PWE. Compare the results with the corre-
sponding regression without PWE. You are likely to find that the coefficient
of S is greater than before. Can you explain why?

The data set includes TENURE, tenure with current employer. This
allows one to divide PWE into two components: potential work experience
with previous employers, PWEBEF, and TENURE. Define PWEBEF as

PWEBEF = PWE − TENURE

and regress LGEARN on the variables as before, replacing PWE by
PWEBEF and TENURE. Compare the result with that of the previous
regression.

Variation: PWE is not likely to be a satisfactory proxy for work expe-
rience for females because it does not take into account time spent out of
the labor force rearing children. Investigate this by running the regressions
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with PWE for the male and female subsamples separately. You must drop
the MALE dummy from the specification (explain why). Do the same for
the regressions with PWEBEF and TENURE.

7.8∗ A researcher has data on output per worker, Y, and capital per worker,
K, both measured in thousands of dollars, for fifty firms in the textiles
industry in 2001. She hypothesizes that output per worker depends on
capital per worker and perhaps also the technological sophistication of the
firm, TECH:

Y = β1 + β2K + β3TECH + u,

where u is a disturbance term. She is unable to measure TECH and decides
to use expenditure per worker on research and development in 2001, R&D,
as a proxy for it. She fits the following regressions (standard errors in
parentheses):

Ŷ = 1.02 + 0.32K. R2 = 0.79

(0.45) (0.04)

Ŷ = 0.34 + 0.29K + 0.05R&D. R2 = 0.750

(0.61) (0.22) (0.15)

The correlation coefficient for K and R& D was 0.92. Discuss these regres-
sion results (1) assuming that Y does depend on both K and TECH,
(2) assuming that Y depends only on K.

7.5 Testing a linear restriction

In Section 4.4 it was demonstrated that you can reduce the number of explana-
tory variables in a regression equation by one if you believe that there exists a
linear relationship between the parameters in it. By exploiting the information
about the relationship, you will make the regression estimates more efficient. If
there was previously a problem of multicollinearity, it may be alleviated. Even
if the original model was not subject to this problem, the gain in efficiency may
yield a welcome improvement in the precision of the estimates, as reflected by
their standard errors.

The example discussed in Section 4.4 was an educational attainment model
with S related to ASVABC, SM, and SF (Table 7.7).

Somewhat surprisingly, the coefficient of SM is not significant, even at the
5 percent level, using a one-tailed test. However assortive mating leads to a high
correlation between SM and SF and the regression appeared to be suffering from
multicollinearity (Table 7.8).

We then hypothesized that mother’s and father’s education are equally impor-
tant for educational attainment, allowing us to impose the restriction β3 = β4
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Table 7.7

. reg S ASVABC SM SF

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 3, 566) = 110.83

Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
---------+------------------------------ Adj R-squared = 0.3667

Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527

SM | .069403 .0422974 1.641 0.101 -.013676 .152482
SF | .1102684 .0311948 3.535 0.000 .0489967 .1715401

_cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214

Table 7.8

. g SP=SM+SF

. reg S ASVABC SP

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 2, 567) = 166.22

Model | 1276.73764 2 638.368819 Prob > F = 0.0000
Residual | 2177.50973 567 3.84040517 R-squared = 0.3696
---------+------------------------------ Adj R-squared = 0.3674

Total | 3454.24737 569 6.07073351 Root MSE = 1.9597

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1295653 .0099485 13.024 0.000 .1100249 .1491057

SP | .093741 .0165688 5.658 0.000 .0611973 .1262847
_cons | 4.823123 .4844829 9.955 0.000 3.871523 5.774724

and rewrite the equation as

S = β1 + β2ASVSABC + β3(SM + SF) + u

= β1 + β2ASVSABC + β3SP + u, (7.20)

where SP is the sum of SM and SF.
The standard error of SP is much smaller than those of SM and SF, indicating

that the use of the restriction has led to a gain in efficiency, and as a consequence
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the t statistic is very high. Thus the problem of multicollinearity has been elimi-
nated. However, we are obliged to test the validity of the restriction, and there
are two equivalent procedures.

F test of a restriction

Run the regression in both the restricted and the unrestricted forms and denote
the sum of the squares of the residuals RSSR in the restricted case and RSSU in the
unrestricted case. Since the imposition of the restriction makes it more difficult
to fit the regression equation to the data, RSSR cannot be less than RSSU and
will in general be greater. We would like to test whether the improvement in the
fit on going from the restricted to the unrestricted version is significant. If it is,
the restriction should be rejected.

For this purpose we can use an F test whose structure is the same as that
described in Section 4.5:

F = Improvement in fit/Extra degrees of freedom used up
Residual sum of squares remaining/Degrees of freedom remaining

.

(7.21)
In this case the improvement on going from the restricted to the unrestricted ver-
sion is (RSSR −RSSU), one extra degree of freedom is used up in the unrestricted
version (because there is one more parameter to estimate), and the residual sum
of squares remaining after the shift from the restricted to the unrestricted version
is RSSU . Hence the F statistic is in this case

F(1, n − k) = RSSR − RSSU

RSSU/(n − k)
, (7.22)

where k is the number of parameters in the unrestricted version. It is distributed
with 1 and n−k degrees of freedom under the null hypothesis that the restriction
is valid.

In the case of the educational attainment function, the null hypothesis was
H0 : β3 = β4, where β3 is the coefficient of SM and β4 is the coefficient of SF.
The residual sum of squares was 2177.51 in the restricted version and 2176.01
in the unrestricted version. Hence the F statistic is

F(1, n − k) = 2177.51 − 2176.01
2176.01/566

= 0.39. (7.23)

Since the F statistic is less than 1, it is not significant at any significance level and
we do not reject the null hypothesis that the coefficients of SM and SF are equal.

t test of a restriction

Linear restrictions can also be tested using a t test. This involves writing down
the model for the restricted version and adding the term that would convert it
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back to the unrestricted version. The test evaluates whether this additional term
is needed. To find the conversion term, we write the restricted version of the
model under the unrestricted version and subtract:

S = β1 + β2ASVABC + β3SM + β4SF + u. (7.24)

S = β1 + β2ASVABC + β3SP + u. (7.25)

0 = β3SM + β4SF − β3SP

= β3SM + β4SF − β3(SM + SF)

= (β4 − β3)SF. (7.26)

We add this term to the restricted model and investigate whether it is needed.

S = β1 + β2ASVABC + β3SP + (β4 − β3)SF + u. (7.27)

The null hypothesis, H0 : β4 −β3 = 0, is that the coefficient of the conversion
term is 0, and the alternative hypothesis is that it is different from 0. Of course
the null hypothesis is that the restriction is valid. If it is valid, the conversion
term is not needed, and the restricted version is an adequate representation of
the data.

Here is the corresponding regression for the educational attainment exam-
ple (Table 7.9). We see that the coefficient of SF is not significantly different
from 0, indicating that the term is not needed and that the restricted version is
an adequate representation of the data.

Why is the t test approach equivalent to that of the F test? Well the F test tests
the improvement in fit when you go from the restricted version to the unrestricted
version. This is accomplished by adding the conversion term, but, as we know,
an F test on the improvement in fit when you add an extra term is equivalent to
the t test on the coefficient of that term (see Section 4.5).

Exercises

7.9 You will have found in Exercise 7.7 that the estimates of the coefficients
of PWEBEF and TENURE are different. This raises the issue of whether
the difference is due to random factors or whether the coefficients are
significantly different. Set up the null hypothesis H0 : δ1 = δ2, where
δ1 is the coefficient of PWEBEF and δ2 is the coefficient of TENURE.
Explain why the regression with PWE is the correct specification if H0 is
true, while the regression with PWEBEF and TENURE should be used
if H0 is false. Perform an F test of the restriction using RSS for the two
regressions. Do this for the combined sample and also for males and
females separately.

7.10∗ The first regression shows the result of regressing LGFDHO, the log-
arithm of annual household expenditure on food eaten at home, on
LGEXP, the logarithm of total annual household expenditure, and
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Table 7.9

. reg S ASVABC SP SF

Source | SS df MS Number of obs = 570
---------+------------------------------ F( 3, 566) = 110.83

Model | 1278.24153 3 426.080508 Prob > F = 0.0000
Residual | 2176.00584 566 3.84453329 R-squared = 0.3700
---------+------------------------------ Adj R-squared = 0.3667

Total | 3454.24737 569 6.07073351 Root MSE = 1.9607

-----------------------------------------------------------------------
S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
ASVABC | .1295006 .0099544 13.009 0.000 .1099486 .1490527

SP | .069403 .0422974 1.641 0.101 -.013676 .152482
SF | .0408654 .0653386 0.625 0.532 -.0874704 .1692012

_cons | 4.914654 .5063527 9.706 0.000 3.920094 5.909214
-----------------------------------------------------------------------

. reg LGFDHO LGEXP LGSIZE

Source | SS df MS Number of obs = 868
---------+------------------------------ F( 2, 865) = 460.92

Model | 138.776549 2 69.3882747 Prob > F = 0.0000
Residual | 130.219231 865 .150542464 R-squared = 0.5159
---------+------------------------------ Adj R-squared = 0.5148

Total | 268.995781 867 .310260416 Root MSE = .388

-----------------------------------------------------------------------
LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+-------------------------------------------------------------
LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003
LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

-----------------------------------------------------------------------

. reg LGFDHOPC LGEXPPC

Source | SS df MS Number of obs = 868
---------+------------------------------ F( 1, 866) = 313.04

Model | 51.4364364 1 51.4364364 Prob > F = 0.0000
Residual | 142.293973 866 .164311747 R-squared = 0.2655
---------+------------------------------ Adj R-squared = 0.2647

Total | 193.73041 867 .223449146 Root MSE = .40535

-----------------------------------------------------------------------
LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+-------------------------------------------------------------
LGEXPPC | .376283 .0212674 17.693 0.000 .3345414 .4180246
_cons | 3.700667 .1978925 18.700 0.000 3.312262 4.089072

-----------------------------------------------------------------------
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Table 7.9 Continued

. reg LGFDHOPC LGEXPPC LGSIZE

Source | SS df MS Number of obs = 868
---------+------------------------------ F( 2, 865) = 210.94

Model | 63.5111811 2 31.7555905 Prob > F = 0.0000
Residual | 130.219229 865 .150542461 R-squared = 0.3278
---------+------------------------------ Adj R-squared = 0.3263

Total | 193.73041 867 .223449146 Root MSE = .388

-----------------------------------------------------------------------
LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+-------------------------------------------------------------
LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004
LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

LGSIZE, the logarithm of the number of persons in the household,
using a sample of 868 households in the 1995 Consumer Expenditure
Survey. In the second regression, LGFDHOPC, the logarithm of food
expenditure per capita (FDHO/SIZE), is regressed on LGEXPPC, the log-
arithm of total expenditure per capita (EXP/SIZE). In the third regression
LGFDHOPC is regressed on LGEXPPC and LGSIZE.

• Explain why the second model is a restricted version of the first,
stating the restriction.

• Perform an F test of the restriction.

• Perform a t test of the restriction.

• Summarize your conclusions from the analysis of the regression
results.

7.11 In his classic article, Nerlove (1963) derives the following cost function
for electricity generation:

C = β1Yβ2Pγ1
1 Pγ1

2 Pγ3
3 v,

where C is total production cost, Y is output (measured in kilowatt hours),
P1 is the price of labor input, P2 is the price of capital input, P3 is the
price of fuel (all measured in appropriate units), and v is a disturbance
term. Theoretically, the sum of the price elasticities should be 1:

γ1 + γ2 + γ3 = 1,

and hence the cost function may be rewritten

C
P3

= β1Yβ2

(
P1

P3

)γ1
(

P2

P3

)γ2

v.
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The two versions of the cost function are fitted to the twenty-nine medium-
sized firms in Nerlove’s sample, with the following results (standard errors
in parentheses):

loĝ C = −4.93 + 0.94 log Y + 0.31 log P1 − 0.26 log P2 + 0.44 log P3.

(1.62) (0.11) (0.23) (0.29) (0.07)

RSS = 0.336

log
Ĉ
P3

= −6.55 + 0.91 log Y + 0.51 log
P1

P3
+ 0.09 log

P2

P3
.

(0.16) (0.11) (0.23) (0.19)

RSS = 0.364

Compare the regression results for the two equations and perform a test
of the validity of the restriction.

7.6 Getting the most out of your residuals

There are two ways of looking at the residuals obtained after fitting a regression
equation to a set of data. If you are pessimistic and passive, you will simply see
them as evidence of failure. The bigger the residuals, the worse is your fit, and
the smaller is R2. The whole object of the exercise is to fit the regression equation
in such a way as to minimize the sum of the squares of the residuals. However,
if you are enterprising, you will also see the residuals as a potentially fertile
source of new ideas, perhaps even new hypotheses. They offer both a challenge
and constructive criticism. The challenge is that providing the stimulus for most
scientific research: evidence of the need to find a better explanation of the facts.
The constructive criticism comes in because the residuals, taken individually,
indicate when and where and by how much the existing model is failing to fit
the facts.

Taking advantage of this constructive criticism requires patience on the part of
the researcher. If the sample is small enough, you should look carefully at every
observation with a large positive or negative residual, and try to hypothesize
explanations for them. Some of these explanations may involve special factors
specific to the observations in question. These are not of much use to the theo-
rist. Other factors, however, may appear to be associated with the residuals in
several observations. As soon as you detect a regularity of this kind, you have
the makings of progress. The next step is to find a sensible way of quantifying
the factor and of including it in the model.


