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14
Introduction to Panel
Data Models

14.1 Introduction

If the same units of observation in a cross-sectional sample are surveyed two or
more times, the resulting observations are described as forming a panel or longit-
udinal data set. The National Longitudinal Survey of Youth that has provided
data for many of the examples and exercises in this text is such a data set. The
NLSY started with a baseline survey in 1979 and the same individuals have been
reinterviewed many times since, annually until 1994 and biennially since then.
However the unit of observation of a panel data set need not be individuals. It
may be households, or enterprises, or geographical areas, or indeed any set of
entities that retain their identities over time.

Because panel data have both cross-sectional and time series dimensions, the
application of regression models to fit econometric models are more complex
than those for simple cross-sectional data sets. Nevertheless, they are increasingly
being used in applied work and the aim of this chapter is to provide a brief
introduction. For comprehensive treatments see Hsiao (2003), Baltagi (2001),
and Wooldridge (2002).

There are several reasons for the increasing interest in panel data sets. An
important one is that their use may offer a solution to the problem of bias caused
by unobserved heterogeneity, a common problem in the fitting of models with
cross-sectional data sets. This will be discussed in the next section.

A second reason is that it may be possible to exploit panel data sets to reveal
dynamics that are difficult to detect with cross-sectional data. For example, if
one has cross-sectional data on a number of adults, it will be found that some
are employed, some are unemployed, and the rest are economically inactive. For
policy purposes, one would like to distinguish between frictional unemployment
and long-term unemployment. Frictional unemployment is inevitable in a chan-
ging economy, but the long-term unemployment can indicate a social problem
that needs to be addressed. To design an effective policy to counter long-term
unemployment, one needs to know the characteristics of those affected or at risk.
In principle the necessary information might be captured with a cross-sectional
survey using retrospective questions about past emloyment status, but in practice
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the scope for this is often very limited. The further back in the past one goes, the
worse are the problems of a lack of records and fallible memories, and the greater
becomes the problem of measurement error. Panel studies avoid this problem in
that the need for recall is limited to the time interval since the previous interview,
often no more than a year.

A third attraction of panel data sets is that they often have very large numbers
of observations. If there are n units of observation and if the survey is undertaken
in T time periods, there are potentially nT observations consisting of time series
of length T on n parallel units. In the case of the NLSY, there were just over
6,000 individuals in the core sample. The survey has been conducted 19 times as
of 2004, generating over 100,000 observations. Further, because it is expensive
to establish and maintain them, such panel data sets tend to be well designed
and rich in content.

A panel is described as balanced if there is an observation for every unit of
observation for every time period, and as unbalanced if some observations are
missing. The discussion that follows applies equally to both types. However, if
one is using an unbalanced panel, one needs to take note of the possibility that
the causes of missing observations are endogenous to the model. Equally, if a
balanced panel has been created artificially by eliminating all units of observation
with missing observations, the resulting data set may not be representative of its
population.

Example of the use of a panel data set to investigate dynamics

In many studies of the determinants of earnings it has been found that married
men earn significantly more than single men. One explanation is that marriage
entails financial responsibilities—in particular, the rearing of children—that may
encourage men to work harder or seek better paying jobs. Another is that certain
unobserved qualities that are valued by employers are also valued by potential
spouses and hence are conducive to getting married, and that the dummy variable
for being married is acting as a proxy for these qualities. Other explanations
have been proposed, but we will restrict attention to these two. With cross-
sectional data it is difficult to discriminate between them. However, with panel
data one can find out whether there is an uplift at the time of marriage or soon
after, as would be predicted by the increased productivity hypothesis, or whether
married men tend to earn more even before marriage, as would be predicted by
the unobserved heterogeneity hypothesis.

In 1988 there were 1,538 NLSY males working 30 or more hours a week,
not also in school, with no missing data. The respondents were divided into
three categories: the 904 who were already married in 1988 (dummy variable
MARRIED = 1); a further 212 who were single in 1988 but who married within
the next four years (dummy variable SOONMARR = 1); and the remaining 422
who were single in 1988 and still single four years later (the omitted category).
Divorced respondents were excluded from the sample. The following earnings
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function was fitted (standard errors in parentheses):

LGÊARN = 0.163 MARRIED + 0.096 SOONMARR + constant + controls

(0.028) (0.037) R2 = 0.27.

(14.1)

The controls included years of schooling, ASVABC score, years of tenure with
the current employer and its square, years of work experience and its square,
age and its square, and dummy variables for ethnicity, region of residence, and
living in an urban area.

The regression indicates that those who were married in 1988 earned 16.3
percent more than the reference category (strictly speaking, 17.7 percent, if the
proportional increase is calculated properly as e0.163 − 1) and that the effect
is highly significant. However, it is the coefficient of SOONMARR that is of
greater interest here. Under the null hypothesis that the marital effect is dynamic
and marriage encourages men to earn more, the coefficient of SOONMARR
should be zero. The men in this category were still single as of 1988. The t
statistic of the coefficient is 2.60 and so the coefficient is significantly different
from zero at the 0.1 percent level, leading us to reject the null hypothesis at that
level.

However, if the alternative hypothesis is true, the coefficient of SOONMARR
should be equal to that of MARRIED, but it is lower. To test whether it is
significantly lower, the easiest method is to change the reference category to those
who were married by 1988 and to introduce a new dummy variable SINGLE
that is equal to 1 if the respondent was single in 1988 and still single four years
later. The omitted category is now those who were already married by 1988.
The fitted regression is (standard errors in parentheses)

LGÊARN = −0.163 SINGLE − 0.066 SOONMARR + constant + controls

(0.028) (0.034) R2 = 0.27.

(14.2)

The coefficient of SOONMARR now estimates the difference between the coef-
ficients of those married by 1988 and those married within the next four years,
and if the second hypothesis is true, it should be equal to zero. The t statistic is
−1.93, so we (just) do not reject the second hypothesis at the 5 percent level.
The evidence seems to provide greater support for the first hypothesis, but it is
possible that neither hypothesis is correct on its own and the truth might reside
in some compromise.

In the foregoing example, we used data only from the 1988 and 1992 rounds
of the NLSY. In most applications using panel data it is normal to exploit the
data from all the rounds, if only to maximize the number of observations in the
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sample. A standard specification is

Yit = β1 +
k∑

j=2

βjXjit +
s∑

p=1

γpZpi + δt + εit (14.3)

where Y is the dependent variable, the Xj are observed explanatory variables,
and the Zp are unobserved explanatory variables. The index i refers to the unit
of observation, t refers to the time period, and j and p are used to differentiate
between different observed and unobserved explanatory variables. εit is a dis-
turbance term assumed to satisfy the usual regression model conditions. A trend
term t has been introduced to allow for a shift of the intercept over time. If the
implicit assumption of a constant rate of change seems too strong, the trend can
be replaced by a set of dummy variables, one for each time period except the
reference period.

The Xj variables are usually the variables of interest, while the Zp variables
are responsible for unobserved heterogeneity and as such constitute a nuisance
component of the model. The following discussion will be confined to the (quite
common) special case where it is reasonable to assume that the unobserved
heterogeneity is unchanging and accordingly the Zp variables do not need a
time subscript. Because the Zp variables are unobserved, there is no means of
obtaining information about the

∑s
p=1 γpZpi component of the model and it is

convenient to rewrite (14.3) as

Yit = β1 +
k∑

j=2

βjXjit + αi + δt + εit (14.4)

where

αi =
s∑

p=1

γpZpi. (14.5)

αi, known as the unobserved effect, represents the joint impact of the Zpi on
Yi. Henceforward it will be convenient to refer to the unit of observation as an
individual, and to the αi as the individual-specific unobserved effect, but it should
be borne in mind that the individual in question may actually be a household or
an enterprise, etc. If αi is correlated with any of the Xj variables, the regression
estimates from a regression of Y on the Xj variables will be subject to unobserved
heterogeneity bias. Even if the unobserved effect is not correlated with any of the
explanatory variables, its presence will in general cause OLS to yield inefficient
estimates and invalid standard errors. We will now consider ways of overcoming
these problems.

First, however, note that if the Xj controls are so comprehensive that they
capture all the relevant characteristics of the individual, there will be no relevant
unobserved characteristics. In that case the αi term may be dropped and a pooled
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OLS regression may be used to fit the model, treating all the observations for all
of the time periods as a single sample.

14.2 Fixed effects regressions

The two main approaches to the fitting of models using panel data are known
as fixed effects regressions, discussed in this section, and random effects regres-
sions, discussed in the next. Three versions of the fixed effects approach will
be described. In the first two, the model is manipulated in such a way that the
unobserved effect is eliminated.

Within-groups fixed effects

In the first version, the mean values of the variables in the observations on a
given individual are calculated and subtracted from the data for that individual.
In view of (14.4), one may write

Yi = β1 +
k∑

j=2

βjXij + δt + αi + εit. (14.6)

Subtracting this from (14.4), one obtains

Yit − Yi =
k∑

j=2

βj

(
Xijt − Xij

)
+ δ(t − t) + εit − εi (14.7)

and the unobserved effect disappears. This is known as the within-groups
regression model because it is explaining the variations about the mean of the
dependent variable in terms of the variations about the means of the explanatory
variables for the group of observations relating to a given individual. The possib-
ility of tackling unobserved heterogeneity bias in this way is a major attraction
of panel data for researchers.

However, there are some prices to pay. First, the intercept β1 and any X
variable that remains constant for each individual will drop out of the model.
The elimination of the intercept may not matter, but the loss of the unchanging
explanatory variables may be frustrating. Suppose, for example, that one is fitting
an earnings function to data for a sample of individuals who have completed their
schooling, and that the schooling variable for individual i in period t is Sit. If the
education of the individual is complete by the time of the first time period, Sit

will be the same for all t for that individual and Sit = Si for all t. Hence (Sit −Si)

is zero for all time periods. If all individuals have completed their schooling by
the first time period, Sit will be zero for all i and t. One cannot include a variable
whose values are all zero in a regression model. Thus if the object of the exercise
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were to obtain an estimate of the returns to schooling untainted by unobserved
heterogeneity bias, one ends up with no estimate at all.

A second problem is the potential impact of the disturbance term. We saw in
Chapter 3 that the precision of OLS estimates depends on the mean square devi-
ations of the explanatory variables being large in comparison with the variance
of the disturbance term. The analysis was in the context of the simple regression
model, but it generalizes to multiple regression. The variation in (Xj − Xj) may
well be much smaller than the variation in Xj. If this is the case, the impact of
the disturbance term may be relatively large, giving rise to imprecise estimates.
The situation is aggravated in the case of measurement error, since this will lead
to bias, and the bias is the greater, the smaller the variation in the explanatory
variable in comparison with the variance of the measurement error.

A third problem is that we lose a substantial number of degrees of freedom
in the model when we manipulate the model to eliminate the unobserved effect:
we lose one degree of freedom for every individual in the sample. If the panel is
balanced, with nT observations in all, it may seem that there would be nT − k
degrees of freedom. However, in manipulating the model, the number of degrees
of freedom is reduced by n, for reasons that will be explained later in this section.
Hence the true number of degrees of freedom will be n(T−1)−k. If T is small, the
impact can be large. (Regression applications with a fixed regression facility will
automatically make the adjustment to the degrees of freedom when implementing
the within-groups method.)

First differences fixed effects

In a second version of the fixed effects approach, the first differences regression
model, the unobserved effect is eliminated by subtracting the observation for the
previous time period from the observation for the current time period, for all
time periods. For individual i in time period t the model may be written

Yit = β1 +
k∑

j=2

βjXijt + δt + αi + εit. (14.8)

For the previous time period, the relationship is

Yit−1 = β1 +
k∑

j=2

βjXijt−1 + δ(t − 1) + αi + εit−1. (14.9)

Subtracting (14.9) from (14.8), one obtains

�Yit =
k∑

j=2

βj�Xijt + δ + εit − εit−1 (14.10)

and again the unobserved heterogeneity has disappeared. However, the other
problems remain. In particular, the intercept and any X variable that remains
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fixed for each individual will disappear from the model and n degrees of free-
dom are lost because the first observation for each individual is not defined. In
addition, this type of differencing gives rise to autocorrelation if εit satisfies the
regression model conditions. The error term for �Yit is (εit −εit−1). That for the
previous observation is (εit−1−εit−2). Thus the two error terms both have a com-
ponent εit−1 with opposite signs and negative moving average autocorrelation
has been induced. However, if εit is subject to autocorrelation:

εit = ρεit−1 + vit (14.11)

where vit is a well behaved innovation, the moving average disturbance term is
equal to vit − (1 − ρ)εit−1. If the autocorrelation is severe, the (1 − ρ)εit−1 com-
ponent could be small and so the first differences estimator could be preferable
to the within-groups estimator.

Least squares dummy variable fixed effects

In the third version of the fixed effects approach, known as the least squares
dummy variable (LSDV) regression model, the unobserved effect is brought
explicitly into the model. If we define a set of dummy variables Ai, where Ai is
equal to 1 in the case of an observation relating to individual i and 0 otherwise,
the model can be rewritten

Yit =
k∑

j=2

βjXijt + δt +
n∑

i=1

αiAi + εit. (14.12)

Formally, the unobserved effect is now being treated as the coefficient of the
individual-specific dummy variable, the αiAi term representing a fixed effect on
the dependent variable Yi for individual i (this accounts for the name given to
the fixed effects approach). Having re-specified the model in this way, it can be
fitted using OLS.

Note that if we include a dummy variable for every individual in the sample as
well as an intercept, we will fall into the dummy variable trap described in Section
5.2. To avoid this, we could define one individual to be the reference category,
so that β1 is its intercept, and then treat the αi as the shifts in the intercept
for the other individuals. However, the choice of reference category is often
arbitrary and accordingly the interpretation of the αi in such a specification not
particularly illuminating. Alternatively, we can drop the β1 intercept and define
dummy variables for all of the individuals, as has been done in (14.12). The αi

now become the intercepts for each of the individuals. Note that, in common with
the first two versions of the fixed effects approach, the LSDV method requires
panel data. With cross-sectional data, one would be defining a dummy variable
for every observation, exhausting the degrees of freedom. The dummy variables
on their own would give a perfect but meaningless fit.

If there are a large number of individuals, using the LSDV method directly
is not a practical proposition, given the need for a large number of dummy
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Table 14.1 Individual-specific dummy variables and an
unchanging X variable

Individual Time period A1 A2 A3 A4 Xj

1 1 1 0 0 0 c1
1 2 1 0 0 0 c1
1 3 1 0 0 0 c1
2 1 0 1 0 0 c2
2 2 0 1 0 0 c2
2 3 0 1 0 0 c2
3 1 0 0 1 0 c3
3 2 0 0 1 0 c3
3 3 0 0 1 0 c3
4 1 0 0 0 1 c4
4 2 0 0 0 1 c4
4 3 0 0 0 1 c4

variables. However, it can be shown mathematically that the method is identical
to the within-groups method. The only apparent difference is in the number of
degrees of freedom. It is easy to see from (14.12) that there are nT −k−n degrees
of freedom if the panel is balanced. In the within-groups approach, it seemed at
first that there were nT −k. However, n degrees of freedom are consumed in the
manipulation that eliminates the αi.

Given that it is equivalent to the within-groups approach, the LSDV method is
subject to the same problems. In particular, we are unable to estimate coefficients
for the X variables that are fixed for each individual. Suppose that Xij is equal
to ci for all the observations for individual i. Then

Xj =
n∑

i=1

ciAi. (14.13)

To see this, suppose that there are four individuals and three time periods, as
in Table 14.1, and consider the observations for the first individual. Xj is equal
to c1 for each observation. A1 is equal to 1. All the other A dummies are equal
to 0. Hence both sides of the equation are equal to c1. Similarly, both sides of
the equation are equal to c2 for the observations for individual 2, and similarly
for individuals 3 and 4.

Thus there is an exact linear relationship linking Xj with the dummy variables
and the model is subject to exact multicollinearity. Accordingly Xj cannot be
included in the regression specification.

Example

To illustrate the use of a fixed effects model, we return to the example in Section
14.1 and use all the available data from 1980 to 1996, 20,343 observations in all.
Table 14.2 shows the extra hourly earnings of married men and of men who are
single but married within the next four years. The controls (not shown) are the
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Table 14.2 Earnings premium for married and soon-to-be married men, NLSY
1980–96

OLS Fixed effects Random effects

Married 0.184 0.106 – 0.134 –
(0.007) (0.012) (0.010)

Single, married 0.096 0.045 −0.061 0.060 −0.075
within 4 years (0.009) (0.010) (0.008) (0.009) (0.007)
Single, not married – – –0.106 – −0.134
within 4 years (0.012) (0.010)
R2 0.358 0.268 0.268 0.346 0.346
DWH test – – – 205.8 205.8
n 20,343 20,343 20,343 20,343 20,343

same as in Section 14.1. The first column gives the estimates obtained by simply
pooling the observations and using OLS with robust standard errors. The second
column gives the fixed effects estimates, using the within-groups method, with
single men as the reference category. The third gives the fixed effects estimates
with married men as the reference category. The fourth and fifth give the random
effects estimates, discussed in the next section.

The OLS estimates are very similar to those in the wage equation for 1988
discussed in Section 14.1. The fixed effects estimates are considerably lower,
suggesting that the OLS estimates were inflated by unobserved heterogeneity.
Nevertheless, the pattern is the same. Soon-to-be-married men earn significantly
more than single men who stay single. However, if we fit the specification corre-
sponding to equation (14.2), shown in the third column, we find that soon-to-be
married men earn significantly less than married men. Hence both hypotheses
relating to the marriage premium appear to be partly true.

14.3 Random effects regressions

As we saw in the previous section, when the variables of interest are constant
for each individual, a fixed effects regression is not an effective tool because
such variables cannot be included. In this section we will consider an alternat-
ive approach, known as a random effects regression that may, subject to two
conditions, provide a solution to this problem.

The first condition is that it is possible to treat each of the unobserved Zp

variables as being drawn randomly from a given distribution. This may well
be the case if the individual observations constitute a random sample from a
given population as, for example, with the NLSY where the respondents were
randomly drawn from the US population aged 14 to 21 in 1979. If this is the
case, the αi may be treated as random variables (hence the name of this approach)
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drawn from a given distribution and we may rewrite the model as

Yit = β1 +
k∑

j=2

βjXjit + αi + δt + εit

= β1 +
k∑

j=2

βjXjit + δt + uit (14.14)

where

uit = αi + εit. (14.15)

We have thus dealt with the unobserved effect by subsuming it into the
disturbance term.

The second condition is that the Zp variables are distributed independently
of all of the Xj variables. If this is not the case, α, and hence u, will not be
uncorrelated with the Xj variables and the random effects estimation will be
biased and inconsistent. We would have to use fixed effects estimation instead,
even if the first condition seems to be satisfied.

If the two conditions are satisfied, we may use (14.14) as our regression
specification, but there is a complication. uit will be subject to a special form
of autocorrelation and we will have to use an estimation technique that takes
account of it.

First, we will check the other regression model conditions relating to the dis-
turbance term. Given our assumption that εit satisfies the usual regression model
conditions, we can see that uit satisfies the condition that its expectation be zero,
since

E(uit) = E(αi + εit) = E(αi) + E(εit) = 0 for all i and t (14.16)

Here we are assuming without loss of generality that E(αi) = 0, any nonzero
component being absorbed by the intercept, β1. uit will also satisfy the condition
that it should have constant variance, since

σ 2
uit

= σ 2
αi+εit

= σ 2
α + σ 2

ε + 2σαε = σ 2
α + σ 2

ε for all i and t. (14.17)

The σαε term is zero on the assumption that αi is distributed independently
of εit. uit will also satisfy the regression model condition that it be distributed
independently of the values of Xj, since both αi and εit are assumed to satisfy
this condition.

However, there is a problem with the regression model condition that the
value of uit in any observation be generated independently of its value in all
other observations. For all the observations relating to a given individual, αi will
have the same value, reflecting the unchanging unobserved characteristics of the
individual. This is illustrated in Table 14.3 for the case where there are four
individuals and three time periods.
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Table 14.3 Example of disturbance term
values in a random effects model

Individual Time period u

1 1 α1 + ε11
1 2 α1 + ε12
1 3 α1 + ε13
2 1 α2 + ε21
2 2 α2 + ε22
2 3 α2 + ε23
3 1 α3 + ε31
3 2 α3 + ε32
3 3 α3 + ε33
4 1 α4 + ε41
4 2 α4 + ε42
4 3 α4 + ε43

Since the disturbance terms for individual i have a common component αi,
they are correlated. For individual i in period t, the disturbance term is (αi +εit).
For the same individual in any other period t′ it is (αi + εit′). The population
covariance between them is

σuit ,uit′ = σ(αi+εit),(αi+εit′ ) = σαi ,αi + σαi ,εit′ + σεit ,αi + σεit ,εit′ = σ 2
α . (14.18)

For observations relating to different individuals the problem does not arise
because then the α components will be different and generated independently.

We have encountered a problem of the violation of this regression model
condition once before, in the case of autocorrelated disturbance terms in a time
series model. As in that case, OLS remains unbiased and consistent, but it is
inefficient and the OLS standard errors are computed wrongly.

The solution then was to transform the model so that the transformed disturb-
ance term satisfied the regression model condition, and a similar procedure is
adopted in the present case. However, while the transformation in the case of
autocorrelation was very straightforward, in the present case it is more complex.
Known as feasible generalized least squares, its description requires the use of
linear algebra and is therefore beyond the scope of this text. It yields consistent
estimates of the coefficients and therefore depends on n being sufficiently large.
For small n its properties are unknown.

Assessing the appropriateness of fixed effects and random
effects estimation

When should you use fixed effects estimation rather than random effects estima-
tion, or vice versa? In principle, random effects is more attractive because
observed characteristics that remain constant for each individual are retained
in the regression model. In fixed effects estimation, they have to be dropped.
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Also, with random effects estimation we do not lose n degrees of freedom, as is
the case with fixed effects.

However, if either of the preconditions for using random effects is violated,
we should use fixed effects instead. One precondition is that the observations
can be described as being drawn randomly from a given population. This is a
reasonable assumption in the case of the NLSY because it was designed to be a
random sample. By contrast, it would not be a reasonable assumption if the units
of observation in the panel data set were countries and the sample consisted of
those countries that are members of the Organization for Economic Cooperation
and Development (OECD). These countries certainly cannot be considered to
represent a random sample of the 200-odd sovereign states in the world.

The other precondition is that the unobserved effect be distributed indepen-
dently of the Xj variables. How can we tell if this is the case? The standard
procedure is yet another implementation of the Durbin–Wu–Hausman test used
to help us choose between OLS and IV estimation in models where there is sus-
pected measurement error (Section 8.5) or simultaneous equations endogeneity
(Section 9.3). The null hypothesis is that the αi are distributed independently of
the Xj. If this is correct, both random effects and fixed effects are consistent,
but fixed effects will be inefficient because, looking at it in its LSDV form, it
involves estimating an unnecessary set of dummy variable coefficients. If the null
hypothesis is false, the random effects estimates will be subject to unobserved
heterogeneity bias and will therefore differ systematically from the fixed effects
estimates.

As in its other applications, the DWH test determines whether the estimates of
the coefficients, taken as a group, are significantly different in the two regressions.
If any variables are dropped in the fixed effects regression, they are excluded from
the test. Under the null hypothesis the test statistic has a chi-squared distribution.
In principle this should have degrees of freedom equal to the number of slope
coefficients being compared, but for technical reasons that require matrix algebra
for an explanation, the actual number may be lower. A regression application
that implements the test, such as Stata, should determine the actual number of
degrees of freedom.

Example

The fixed effects estimates, using the within-groups approach, of the coeffi-
cients of married men and soon-to-be married men in Table 14.2 are 0.106 and
0.045, respectively. The corresponding random effects estimates are consider-
ably higher, 0.134 and 0.060, inviting the suspicion that they may be inflated by
unobserved heterogeneity. The DWH test involves the comparison of 13 coeffi-
cients (those of MARRIED, SOONMARR, and 11 controls). Stata reports that
there are in fact only 12 degrees of freedom. The test statistic is 205.8. With
12 degrees of freedom the critical value of chi-squared at the 0.1 percent level is
32.9, so we definitely conclude that we should be using fixed effects estimation.
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Our findings are the same as in the simpler example in Section 14.1. They
confirm that married men earn more than single men. Part of the differential
appears to be attributable to the characteristics of married men, since men who
are soon-to-marry but still single also enjoy an earnings premium. However, part
of the marriage premium appears to be attributable to the effect of marriage itself,
since married men earn significantly more than those who are soon-to-marry but
still single.

Random effects or OLS?

Suppose that the DWH test indicates that we can use random effects rather
than fixed effects. We should then consider whether there are any unobserved
effects at all. It is just possible that the model has been so well specified that the
disturbance term

uit = αi + εit (14.19)

consists of only the purely random component εit and there is no individual-
specific αi term. In this situation we should use pooled OLS, with two advantages.
There is a gain in efficiency because we are not attempting to allow for non-
existent within-groups autocorrelation, and we will be able to take advantage of
the finite-sample properties of OLS, instead of having to rely on the asymptotic
properties of random effects.

Various tests have been developed to detect the presence of random effects.
The most common, implemented in some regression applications, is the Breusch–
Pagan Lagrange multiplier test, the test statistic having a chi-squared distribution
with one degree of freedom under the null hypothesis of no random effects. In
the case of the marriage effect example the statistic is very high indeed, 20,007,
but in this case it is meaningless because we are not able to use random effects
estimation.

A note on the random effects and fixed effects terminology

It is generally agreed that random effects/fixed effects terminology can be mis-
leading, but that it is too late to change it now. It is natural to think that random
effects estimation should be used when the unobserved effect can be character-
ized as being drawn randomly from a given population and that fixed effects
should be used when the unobserved effect is considered to be non-random. The
second part of that statement is correct. However, the first part is correct only
if the unobserved effect is distributed independently of the Xj variables. If it is
not, fixed effects should be used instead to avoid the problem of unobserved het-
erogeneity bias. Figure 14.1 summarizes the decision-making process for fitting
a model with panel data.
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Can the observations be described as being a 
random sample from a given population?

Use fixed effectsPerform both fixed effects and  
random effects regressions.

Does a DWH test indicate 
significant differences in the 

coefficients? 

Provisionally choose random 
effects. Does a test indicate the 

presence of random effects?

Use fixed effects Use random effects Use pooled OLS 

Yes 

Yes 

No 

Yes

No

 No

Figure 14.1 Choice of regression model for panel data
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Exercises

14.1 Download the OECD2000 data set from the website. See Appendix B for details The
data set contains 32 variables:

ID This is the country identification, with 1 = Australia, 2 = Austria,
3 = Belgium, 4 = Canada, 5 = Denmark, 6 = Finland, 7 = France,
8 = Germany, 9 = Greece, 10 = Iceland, 11 = Ireland, 12 = Italy, 13 =
Japan, 14 = Korea, 15 = Luxembourg, 16 = Mexico, 17 = Netherlands,
18 = New Zealand, 19 = Norway, 20 = Portugal, 21 = Spain,



DOUGH: “CHAP14” — 2006/8/29 — 17:05 — PAGE 422 — #15

422 14: Introduction to Panel Data Models

22 = Sweden, 23 = Switzerland, 24 = Turkey, 25 = United Kingdom,
26 = United States. Four countries that have recently joined the OECD,
the Czech Republic, Hungary, Poland, and Slovakia, are excluded because
their data do not go back far enough.

ID01–26 These are individual country dummy variables. For example, ID09 is the
dummy variable for Greece.

E Average annual percentage rate of growth of employment for country i
during time period t.

G Average annual percentage rate of growth of GDP for country i during
time period t.

TIME There are three time periods, denoted 1, 2, and 3. They refer to average
annual data for 1971–80, 1981–90, and 1991–2000.

TIME2 Dummy variable defined to be equal to 1 when TIME = 2, 0 otherwise.

TIME3 Dummy variable defined to be equal to 1 when TIME = 3, 0 otherwise.

Perform a pooled OLS regression of E on G. Regress E on G, TIME2, and TIME3.
Perform appropriate statistical tests and give an interpretation of the regression
results.

14.2 Using the OECD2000 data set, perform a (within-groups) fixed effects regression
of E on G, TIME2, and TIME3. Perform appropriate statistical tests, give an
interpretation of the regression coefficients, and comment on R2.

14.3 Perform the corresponding LSDV regression, using OLS to regress E on G, TIME2,
TIME3, and the country dummy variables (a) dropping the intercept, and (b) drop-
ping one of the dummy variables. Perform appropriate statistical tests and give an
interpretation of the coefficients in each case. Explain why either the intercept or one
of the dummy variables must be dropped.

14.4 Perform a test for fixed effects in the OECD2000 regression by evaluating the
explanatory power of the country dummy variables as a group.

14.5 Download the NLSY2000 data set from the website. See Appendix B for details. This
contains the variables found in the EAEF data sets for the years 1980–94, 1996,
1998, and 2000 (there were no surveys in 1995, 1997, or 1999). Assuming that a
random effects model is appropriate, investigate the apparent impact of unobserved
heterogeneity on estimates of the coefficient of schooling by fitting the same earnings
function, first using pooled OLS, then using random effects.

14.6 The UNION variable in the NLSY2000 data set is defined to be equal to 1 if the
respondent was a member of a union in the year in question and 0 otherwise.
Assuming that a random effects model is appropriate, add UNION to the earnings
function specification and fit it using pooled OLS and random effects.

14.7 Using the NLSY2000 data set, perform a fixed effects regression of the earnings
function specification used in Exercise 14.5 and compare the estimated coefficients
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with those obtained using OLS and random effects. Perform a Durbin–Wu–Hausman
test to discriminate between random effects and fixed effects.

14.8 Using the NLSY2000 data set, perform a fixed effects regression of the earnings
function specification used in Exercise 14.6 and compare the estimated coefficients
with those obtained using OLS and random effects. Perform a Durbin–Wu–Hausman
test to discriminate between random effects and fixed effects.

14.9 The within-groups version of the fixed effects regression model involved subtracting
the group mean relationship

Yi = β1 +
k∑

j=2

(βjXij) + δt + αi + εit

from the original specification in order to eliminate the individual-specific effect αi.
Regressions using the group mean relationship are described as between effects regres-
sions. Explain why the between effects model is in general inappropriate for estimating
the parameters of a model using panel data. (Consider the two cases where the αi are
correlated and uncorrelated with the Xj controls.)


