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PREFACE 

This pedagogical manuscript addresses the modeling, interpreting, testing, and presentation of 
interactive propositions in regression analysis.  As an instructional text, we intend it to provide 
guidance on these issues to advanced undergraduates, graduate students, and social science 
researchers in political science and other disciplines.  The manuscript begins by explaining how 
verbal statements of interactive arguments and hypotheses translate into mathematical empirical 
models including, and statistical inferences regarding, interactive terms.  It then provides advice 
on estimating, interpreting, and presenting the results from such models.  The manuscript 
provides next an explanation of some existing general practice rules and, lastly, a discussion of 
more advanced topics including nonlinear models and stochastically interactive models.  The 
manuscript’s summary conclusion outlines our general advice for researchers as they formulate, 
estimate, test, interpret, and present interactive hypotheses in their empirical work.  
 



 

MODELING AND INTERPRETING INTERACTIVE HYPOTHESES IN REGRESSION ANALYSIS:  

A REFRESHER AND SOME PRACTICAL ADVICE 

Cindy D. Kam and Robert J. Franzese, Jr. 

I. INTRODUCTION 

The complexity of the phenomena political scientists study has led them to explore a 

wide variety of quantitative methods and tools for empirical analyses. Typically, political 

scientists are interested in identifying the impact of some variable(s), X, on some dependent 

variable, Y. One of the simplest model specifications for such empirical explorations posits some 

set of independent variables to have linear, additive relationship with a dependent variable; 

indeed, much of the quantitative analysis in print exemplifies this approach.  

One common theoretical claim of additional complexity is that the effect of some 

variable, X, on the dependent variable, Y, depends upon a third independent variable(s), Z.2 For 

example, the effect of partisanship on legislative voting behavior may depend upon whether the 

legislation has bipartisan sponsorship or partisan sponsorship. As another example, the effect of 

some core value, such as egalitarianism, on a citizen’s support for a policy outcome may depend 

on whether elites have framed the issue to evoke that core value. As yet another example, the 

effect of the structure and relative power of interest groups in society on government policy may 

depend upon the nature of the electoral system that produces from that structure of interests the 

representatives who make policy in that polity.  

At their core, interactive hypotheses such as these propose that the effect of some 

                                                 

2 More generally: the effect or effects of some variable or variables, X, depend on some other variable or set of 
variables, Z. For ease of exposition, the discussion primarily focuses on a single variable, x, and a single variable, z, 
as they relate to a single dependent variable, y.  The general claims can be extended to vectors X and Z. 
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variable, x, on the dependent variable, y, is conditioned by a third variable, z. Political scientists 

often evaluate such hypotheses using the linear interactive, or multiplicative, term.3 

Interaction terms are hardly new to political science; indeed, their use is now almost 

common. Given the growing attention to the roles of institutions in politics, and the growing 

attention to how context (e.g., neighborhood composition, social networks) conditions the 

influence of individual-level characteristics on political behavior, interactive hypotheses should 

perhaps become more common still. However, despite occasional constructive pedagogical 

treatises on interaction usage in the past, a commonly known, accepted, and followed 

methodology for using and interpreting interaction terms continues to elude much of the field. 

Partly as a consequence, misinterpretation and substantive and statistical confusion remains rife. 

Sadly, Friedrich’s (1982)  summary of the state of affairs could still serve today: 

…while multiplicative terms are widely identified as a way to 
assess interaction in data, the extant literature is short on advice 
about how to interpret their results and long on caveats and 
disclaimers regarding their use (798). 

This manuscript seeks to redress this and related persistent needs. Our discussion 

assumes working knowledge of the linear additive regression model.4 Section II begins our 

discussion of modeling and interpreting interactive hypotheses by emphasizing the ways in 

which interactive terms are essential for testing common and important classes of theories in 

political science. 

                                                 

3 Scholars also refer to the interactive term as the multiplicative or product term, or the moderator variable, 
depending on the discipline. We use interactive term and multiplicative term interchangeably. In the field of 
psychology, distinctions have been made between mediator and moderator variables (Baron and Kenny 1986). The 
distinction is similar to that made in other disciplines, including sometimes in political science, between intervening 
and interactive variables, but this terminology is not consistently applied across, or sometimes even within, 
discipline. Our discussion applies to moderator and interactive variables, which Baron and Kenny (1986) define as 
“a qualitative… or quantitative… variable that affects the direction and/or strength of the relation between an 
independent or predictor variable and a dependent or criterion variable” (1174).  

4 For a refresher on the linear additive regression model, the interested reader might consult Achen (1982).  
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In Section III, we offer a generic consideration of the process of writing empirical models 

to embody interactive hypotheses. We then show which standard statistical tests speak to each 

hypothesis typically nested within interactive propositions and how they do so. That is, we note 

the correspondence between certain common t- and F-tests and specific aspects of the typical 

complex of hypotheses nested in interactive arguments. We include a suggested generic 

approach to interpreting the estimation results of interactive models. We also address the 

presentation of interaction effects. We urge researchers (and editors and publishers) to go beyond 

merely reporting standard errors for individual coefficients. Instead, we strongly suggest 

graphical or tabular presentation of results, including effect-line graphs or conditional-coefficient 

tables, complete with standard errors, confidence intervals, or significance levels of those effects 

or conditional coefficients. We suspect that the failure of authors to generate (or editors to retain 

or publishers to print) such tables and graphs underlies much of the lingering misunderstanding 

regarding interaction terms in our profession. We show how to construct such graphs and tables 

using statistical software commonly used in political science, in addition to specific 

mathematical formulae for their elements. Our approach underscores the inescapable importance 

of understanding the elementary mathematics underlying models that use interactive terms, 

rather than simply providing a set of commands for the user to enter by rote. 

In Section IV, we consider certain general-practice rules for modeling interactions that 

some previous methodological treatments advise and political scientists often follow. We suggest 

that some scholars may be misinterpreting these and argue that such general rules should never 

substitute for a solid understanding of the simple mathematical structure of interaction terms. For 

example, “centering” the variables to be interacted, as several methods texts advise, alters 

nothing important statistically and nothing at all substantively. Furthermore, the common 
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admonition that one must include both x and z if the model contains an xz term is an often-

advisable philosophy-of-science guideline—as an application of Occam’s Razor and as a 

practical matter, it is usually a much safer adage than its absence—but it is neither logically nor 

statistically necessary and not always advisable, much less required, in all cases for any question.  

Section V discusses some more-technical concerns often expressed regarding interactive 

models. We briefly review three-way (and multiple) interaction models. We discuss the question 

of pooled versus separate-sample estimation. We assess whether to estimate interactive effects in 

separate or pooled samples, showing that the approaches are essentially equivalent but that 

pooled-sample estimation usually facilitates statistical comparisons even if one might prefer 

separate-sample estimation in preliminary analyses. Although much of our discussion addresses 

multiplicative terms exclusively in the context of linear regression models, we realize that a 

growing proportion of statistical research in political science employs qualitative or limited 

dependent-variable models or other models beyond linear ones. While most of the discussion 

regarding linear regression models also holds for nonlinear models, we will discuss in more 

detail the special case of interactive terms in such models in this section. Finally, we address 

random-coefficient and hierarchical models. As, e.g., Western (1998)  notes, using multiplicative 

terms alone to capture the dependence on z of x’s effect on y (and vice versa) implicitly assumes 

that the dependence is deterministic. Yet this dependence is surely as stochastic as any other 

empirical relationship we might posit in social science, so we should perhaps model it as such, 

which concern many take as dictating the use of random-coefficient models. Others go further to 

claim that cross-level interaction terms—i.e. those involving variables at a more micro-level 

(e.g., individual characteristics in a survey) and at a more macro-level (e.g., characteristics of 

that individual’s state of residence)—may induce a bias, which they take as demanding the use of 
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hierarchical linear models or separate-sample estimation. These issues are actually related, and, 

as we show (perhaps surprisingly), the simple multiplicative term usually sacrifices little relative 

to these more complicated or tedious approaches. Moreover, steps of intermediate complexity 

can allay those concerns (not quite fully, but likely sufficiently), and, in fact, most political-

science practice has actually been taking one such step all along, if for other reasons. Thus, some 

of these concerns are, strictly speaking, well founded, but they rarely amount to serious practical 

problems for social scientists. 

Section VI provides a summary of our advice for researchers seeking to formulate, 

estimate, and test interactive hypotheses in empirical research. 

II. INTERACTIONS IN POLITICAL SCIENCE 

The interaction term received intense scrutiny, much of it critical, upon its introduction to 

social science. Althauser (1971)  wrote, “It would appear, in short, that including multiplicative 

terms in regression models is not an appropriate way of assessing the presence of interaction 

among our independent variables” (466). Zedeck (1971)  concurred, “The utility of the 

moderator variable research is limited by statistical problems, by the limited understanding of the 

statistical operation of moderators, and by lack of a rapid systematic approach to the 

identification of moderators” (307).  

As Friedrich noted, this early criticism of interactions raised three concerns: difficulty 

interpreting coefficients, colinearity among independent variables induced by the multiplication 

of terms, and the nature of measurement of independent variables (whether they be interval, 

ratio, or nominal scales). These concerns inspired some scholars (Althauser 1971; Zedeck 1971; 

among others) to object to any interactive-term usage. Others suggested alternative methods to 

incorporate interactions in models, by rescaling variables to reduce colinearity (Allison 1979; 
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Cronbach 1987; Dunlap and Kemery 1987; Smith and Sazaki 1979; Tate 1984). 

Over twenty years after Friedrich’s (1982) seminal article defending interactions, full and 

accurate understanding of the modeling, interpretation, and presentation of interactive 

hypotheses still eludes the field, even though including multiplicative terms in linear regressions 

is now a common method of incorporating conditional relationships into empirical analysis.  

For example, in a count of journal articles that appeared from 1996-2001 in three top 

political science journals, we have found that 54% of articles use some statistical methods 

(defined as articles reporting any standard errors or hypothesis tests, using linear regression 

models or nonlinear models). Of these statistical articles, 24% employ interactive terms. This 

amounts to about 1/8 of all articles published during this time.5 Despite the appreciable and 

increasing use of interaction terms in empirical analysis, careful consideration of important 

classes of theoretical arguments in political science strongly suggest that they nonetheless remain 

considerably under-utilized. Further, when interactions are deployed in empirical work, several 

misunderstandings regarding their interpretation still permeate the field.  

The widespread and perhaps expanding usage of interactions notwithstanding, we 

contend that still more empirical work should contain interactions than currently does, given the 

substance of many political-science arguments. Such interactive arguments arise commonly in 

every empirical subfield in political science, including the study of political institutions, political 

behavior, and perhaps especially researchers who study the impact of institutions on political 

behavior (not to mention political economy, political culture, and all the other substantive areas 

                                                 

5 Incidentally, these shares likely dramatically understate the mathematical technical nature of the field since our 
denominator includes pure-theory articles, formal and philosophical, and our nominator excludes formal theory. The 
share of statistical and formal-theoretical articles in these journals likely approaches 75% of all non-political-
philosophy articles. 
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of study within political science). 

Consider, for example, the gist of most institutional arguments, reflecting perhaps the 

dominant approach to modern, positive6 political science. In one influential statement of the 

approach, Hall (1986) states: 

…the institutional analysis of politics… emphasizes institutional 
relationships, both formal and conventional, that bind the 
components of the state together and structure its relations with 
society… [I]nstitutions…refers to the formal rules, compliance 
procedures, and standard operating practices that structure the 
relationship between individuals in various units of the polity and 
economy… Institutional factors play two fundamental roles… 
[They] affect the degree of power that any one set of actors has 
over policy outcomes […and they…] influence an actor’s 
definition of his own interests, by establishing his… 
responsibilities and relationship to other actors… With an 
institutionalist model we can see policy as more than the sum of 
countervailing pressure from social groups. That pressure is 
mediated by an organizational [i.e., institutional] dynamic… (19, 
emphases added). 

Thus, in this approach, and we believe inherently in all institutional approaches, 

institutions are interactive variables that funnel, moderate, or otherwise shape the political 

processes that translate the societal structure of interests into effective political pressures, and/or 

those pressures into public-policymaking responses, and/or those policies into outcomes. Across 

all the methodological and substantive domains of institutional analysis, further examples 

abound: 

…[political struggles] are mediated by the institutional setting in 
which they take place (Ikenberry 1988: 222-3, emphases added). 

…[1] institutions constrain and refract politics but…are never the 
sole “cause” of outcomes. Institutional analyses do not deny the 
broad political forces that animate […class or pluralist conflict, but 
stress how…] institutions structure these battles and, in so doing, 
influence their outcomes. [2. They] focus on how [the effects of] 

                                                 

6 We intend the term positive as opposed to normative here and do not intend it to connote formal necessarily. 
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macrostructures such as class are magnified or mitigated by 
intermediate-level institutions…[they] help us integrate an 
understanding of general patterns of political history with an 
explanation of the contingent nature of political and economic 
development… [3] Institutions may be resistant to change, but 
their impact on political outcomes can change over time in subtle 
ways in response to shifts in the broader socioeconomic or political 
context (Steinmo and Thelen 1992: 3, 11-2, 18, emphases added). 

…the idea of structure-induced equilibrium is clearly a move 
[toward] incorporating institutional features into rational-choice 
approaches. Structure and procedure combine with preferences to 
produce outcomes (Shepsle 1989: 137, emphases added). 

Other recent examples include research that connects the societal structure of interests to 

effective political pressure through electoral institutions: most broadly, plurality-majority versus 

proportional representation (e.g., Cox 1997; Lijphart 1994); that studies how governmental 

institutions, especially those that affect the number and polarization of key policymakers (veto 

actors), shape policymaking responses to such pressures (e.g., Tsebelis 2002); that stresses how 

the institutional configuration of the economy, such as the coordination of wage-price 

bargaining, shapes the effect of certain policies, such as monetary policy (Franzese 2003b  

reviews). Examples could easily proliferate yet further. 

In every case, and at each step of the analysis from interest structure to outcomes (and 

back), the role of institutions is to mediate, shape, structure, or condition7 the impact of some 

other variable(s)8 on the dependent variable of interest. That is, most (we believe: all) 

institutional arguments are inherently interactive. Yet, with relatively rare exceptions—regarding 

the above examples: see, e.g., Ordeshook and Shvetsova 1994; Franzese 2002b ch. 4; and 

                                                 

7 Extending the list of synonyms might prove a useful means of identifying interactive arguments. When one says x 
alters, changes, modifies, magnifies, augments, increases, intensifies, inflates, moderates, dampens, diminishes, 
reduces, deflates, etc. some effect (of z) on y, one has offered an interactive argument. 

8 Institutions seem most often to condition the impact of structural variables: e.g., interest, demographic, economic, 
party-system structure, etc. We suspect that reflects some as-yet unstated general principle of institutional analysis. 
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Franzese 2001,  respectively—empirical evaluations of institutional arguments have ignored this 

interactivity. 

A more generic example further illustrates the common failure of empirical models to 

reflect the interactions that the theoretical models generating them imply. Scholars consider 

principal-agent (i.e., delegation) situations interesting, problematic, and worthy of study because, 

if each had full control, agents would determine policy, y1, by responding to some (set of) 

factor(s), X, according to some function, y1=f(X), whereas principals would respond to some 

perhaps-different (set of) factor(s), Z, perhaps-differently, following y2=g(Z). (For example, the 

principal might be a current government, which responds to various political-economic 

conditions in setting inflation policy, and the agent an unresponsive central bank, as in Franzese 

1999.) Scholars then offer some arguments about how institutional and other environmental 

conditions determine the monitoring, enforcement, and other costs, C, principals must incur to 

force agents to enact g(Z) instead of f(X). In such situations, realized policy, y, will follow some 

y=k(C)·f(X)+[1-k(C)]·g(Z) with 0≤k(C)≤1 and k(C) weakly increasing (see, e.g., Lohmann 1992 

on the banks, governments, and inflation example). Thus, the effect on y of each c C generally 

depends on X and Z, and those of each x X and z Z generally depend on C. That is, everything 

that contributes to monitoring and enforcement costs modifies the effect on y of all factors to 

which the principals and agents would respond differently, and, vice versa, the effect of 

everything that determines monitoring and enforcement costs depends on all such factors.9 Most 

empirical models of principal-agent situations do not reflect this their inherent interactivity. 

For those who study political behavior, opportunities to specify interactive hypotheses 

                                                 

9 Franzese (1999, 2002) shows how to use nonlinear regression to mitigate the estimation demands of such highly 
interactive propositions. 



10 

also abound. Scholars who argue that the effects of some set of individual characteristics (e.g., 

partisanship, core values, or ideology) depend on another variable (e.g., race, ethnicity, or 

gender) are proposing hypotheses that can and should be explored with interactive terms. 

Research questions that ask how the impact of some experimental treatment or campaign 

communication depends on the level of some individual characteristic (e.g., political awareness) 

likewise imply interactive hypotheses. Questions that explore how context (e.g., minority 

neighborhood composition or news media coverage of an issue) conditions the effect of some 

other predictor (e.g., racism) also reflect interactive hypotheses.10 

Interaction terms are widely used in statistical research in political science, and, in many 

more cases, theories suggest that interactions should be used although they are not. Despite their 

proliferation, some confusion persists regarding how to interpret these terms, which is all the 

more worrisome since that proliferation should continue and expand; accordingly, we turn now 

to addressing (and hopefully helping to redress) some of this confusion. 

III. THEORY TO PRACTICE. 

In this section, we provide some guidance for constructing statistical models to map onto 

substantive theory, implementing statistical analyses to test the theory, and presenting empirical 

results resulting from the analyses. 

A. SPECIFYING EMPIRICAL MODELS TO REFLECT INTERACTIVE HYPOTHESES 

Optimally, theory should guide empirical specification and analysis. Thus, e.g., empirical 

models of principal-agent and other shared-policy-control situations should reflect the convex-

combinatorial form, with its multiple implied interactions, described above (Franzese 1999; 

                                                 

10 These last also imply spatial interdependence (correlation), on the methodological issues involved in estimating 
which see, e.g., Franzese and Hays (2005), Beck & Gleditsch (2005), and contributions to Political Analysis 10(3). 
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2002b give examples and discussion).  

To focus our discussion here and throughout this manuscript, we will use an empirical 

example from Cox’s (1997) Making Votes Count. Cox’s justifiably acclaimed book makes 

several institutional arguments in which some political outcome, y, say the effective number of 

parties elected to a legislature or the effective number of presidential candidates, is a function of 

some structural condition, x, say the number of societal groups created by the pattern of social 

cleavages (e.g., effective number of ethnic groups), and some institutional condition, z, say the 

proportionality or district magnitude of the electoral system or the presence or absence of a 

presidential runoff system. Theory in this case very clearly implies that the relationship between 

y and x should be conditional upon z and, conversely, that the relationship between y and z 

should be conditional upon x. As Cox (1997) theorizes, for example, “A polity will have many 

parties only if it both has many cleavages and has a permissive enough electoral system to allow 

political entrepreneurs to base separate parties on these cleavages. Or, to turn the formulation 

around, a policy can have few parties either because it has no need for many (few cleavages) or 

poor opportunities to create many (a constraining electoral system)” (206). (See, e.g., Ordeshook 

and Shvetsova 1994; Neto and Cox 1997; and Cox 1997 for empirical implementation.) 

One could perhaps conceive several ways in which some variable z (or x) may condition 

the relationship between y and x (or z) (see Wright 1976), but, most generally, the standard 

linear-interactive model would reflect a proposition that x and z affect y and that, in particular, 

the effects of x and of z on y each depend on the other variable. One simple way to write this 

(compound) proposition into a linear regression model would be to begin with a standard linear-

additive model expressing a relation from x and z to y, along with an intercept, and then to allow 
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the intercept and the coefficients on x and z each to depend on the level of x and z:11   

εβββ +++= zxy 210  [1] 

zx 2100 γγγβ ++=  

z211 δδβ +=  

x432 δδβ +=   

which implies that one may express the model of y for estimation by linear regression in the 

standard (linear) multiplicative-interactive manner: 

εβββγ ++++= xzzxy xzzx0  [2] 

As originally expressed in [1], the coefficients in this linear-interactive model happen to 

be as follows: 11 δγβ +=x , 32 δγβ +=z , 42 δδβ +=xz . More importantly, in this model, the 

effects of x and z on y depend on z and x, respectively, as an interactive theory would suggest.  

Theory, however, might dictate a different route to this same general model. For 

example, suppose one were to specify a system of relationships in which the effect of x and the 

intercept depend on z: 

εββ ++= xy 10  [3] 

z100 γγβ +=  

z211 δδβ +=  

which implies the following model for y: 

εβββγ ++++= xzzxy xzzx0  [4] 

Where 1δβ =x , 1γβ =z , 2δβ =xz . 

                                                 

11 We begin with the simplest case, where the effects of x and of z are deterministically dependent on, respectively, z 
and x. Later, we relax this assumption to discuss probabilistic dependence (i.e., with error). 
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Note that the models actually estimated in [2] and [4] are identical, even though the 

theoretical stories told to derive the models from [1] and [3] seem to differ. Furthermore, if one 

were to propose a model in which y is a linear-additive function of z and the effect of z and the 

intercept depends on x, or, for that matter, simply to propose that the effect of x depends on z or 

the effect of z depends on x (and each effect may be nonzero when the other variable equals 

zero), this same empirical model would emerge again. Each of these seemingly different 

theoretical stories yields the same mathematical model: the linear-interactive model [2].12  

This result demonstrates that, although the substance may determine which of these 

arguments is most intuitive to express, the distinction cannot be drawn mathematically. One must 

understand, however, that this mathematical ambiguity arises because the propositions being 

modeled are logically symmetric; i.e., these statements all logically imply each other and, in that 

sense, they are identical; they mean precisely the same thing; they cannot be distinguished 

because they are not distinct. As Fisher (1988) writes, “prior theoretical specification is needed 

to interpret [in this sense] regression equations with product terms” (106). We concur but stress 

that the interpretive issues here are presentational and semantic because the alternatives are 

logical equivalents. These alternative theoretical stories may sound different in some substantive 

contexts, and some versions may seem more intuitive to grasp in certain contexts and others in 

other contexts. However, they are not actually alternatives; they are all the same tale.  

Alternatively, one could propose the substantive argument that the effect of x on y 

depends on z, but that z matters for y only insofar as it alters the impact of x and, in particular, z 

has no effect when x is equal to zero (not present). This is a change in the theoretical account of 

                                                 

12 Note: the linear-interactive model is not the only model form that would imply that the effects of x depend on z 
and vice versa, but, absent further theoretical elaboration that might suggest a more specific form of interaction, 
additive linear-interactive models like [2] are the logical, simple default in the literature. 
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the relationship between the variables, a logically distinct argument, and it produces a truly 

different equation to be estimated: 

εββ ++= xy 10  [5] 

z211 δδβ +=  

εβββ +++= xzxy xzx0  [6] 

Where 1δβ =x , 2δβ =xz . 

In this system of equations, we again see that z conditions the effect that x has on y. In 

fact, z’s sole effect is to determine the effect of x on y, and, in particular, movements in z have no 

effect on y when x is zero. Scholars will typically think of z in this scenario as the intervening 

variable: intervening in x’s relationship to y. However, notice that just as a value of x, namely 

x=0, exists where the effect of z is zero, a value of z exists, namely z= xzx ββ− , where the effect 

of x is zero. The substance of the context at hand may suggest whether to conceive x=0 or 

z= xzx ββ− , or, for that matter, some other value of x or z, as the base from which to decide 

whether x or z is the one intervening in the other’s relationship with y. Mathematically that 

determination is once again arbitrary because, logically, all interactions are symmetric.13 Given 

this logical symmetry, x and z must necessarily both intervene in the other’s relationship to y. In 

this sense, the language of one variable being the intervening, moderating, or mediating variable 

and the other being the one mediated may be best avoided; if an interaction exists, then all 

variables involved intervene, moderate, and mediate (etc.) in the others’ relations to y.  

                                                 

13 Mathematically, the proof of this logically necessary symmetry in all interactions is simply: 
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The equations above assume deterministic relations of z to the effect of x on y (and of x to 

the effect of z on y). That is, all of the models assume that the effect of x on y depends on z and 

the effect of z on y depends on x deterministically, i.e. without error. This should seem odd: in 

our theoretical model we expect that x and z predict y only with error (hence the inclusion of the 

term ε ); but then we expect that the effect of x on y and of z on y each depend on the other 

variable without error. We can easily amend the linear-interactive model to allow a more 

sensible and logically consistent probabilistic or stochastic conditioning of the effects of 

variables by the others’ levels as follows: 

εβββ +++= zxy 210  [7] 

02100 εγγγβ +++= zx  

1211 εδδβ ++= z  

2432 εδδβ ++= x   

which implies that one may model Y for regression analysis in the now-familiar manner: 

*0 εβββγ ++++= xzzxy xzzx  [8] 

where: zx 210* εεεεε +++= , 11 δγβ +=x , 32 δγβ +=z , 42 δδβ +=xz . 

Notice, however, that, although the composite residual in [8] retains zero expected-value 

and non-covariance with the regressors x, z, and xz if its components, ε , 0ε , 1ε , and 2ε , do so. 

These key assumptions of the classical linear regression model (CLRM) ensure unbiasedness and 

consistency of OLS (Ordinary Least Squares); however, this compound residual does not retain 

constant variance, the CLRM assumption that assures OLS efficiency and accurate standard 

errors. In other words, if the conditionality of the x and z relationships with y themselves contain 

error, then the standard linear-interactive model has heteroskedastic error even if the individual 
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stochastic terms comprising its compound residual are homoskedastic. Thus, OLS coefficient 

estimates are unbiased and consistent but not efficient. Furthermore, the non-constant variances 

are heteroskedastic as a function of the regressors x and z, which is more pernicious for OLS 

standard-error estimation than heteroskedasticity unrelated to the regressors would be, causing 

bias and inconsistency as well as inefficiency in these standard-error estimates. We return to this 

technical concern, which underlies calls both for random-coefficient and for linear-hierarchical 

models, below. To proceed for now, however, recall that heteroskedasticity alone, even if it is a 

function of the regressors, leaves OLS estimates of the coefficients unbiased and consistent, 

although inefficient. Heteroskedasticity as a function of the regressors renders OLS estimates of 

the variance-covariance of the estimated coefficients (i.e., standard-errors and estimated 

covariances) biased, inconsistent, and inefficient, but, as we show below, these problems are not 

necessarily as grave as they sound, are easy to redress by simple and familiar techniques, and, 

indeed, that the “robust” variance-covariance estimators political scientists typically employ 

already redresses these problems in many cases. Thus, we can proceed for now assuming the 

researcher estimates a model like [8] by OLS. 

Let us return to our example of types of electoral systems, social cleavages, and number 

of parties or candidates to illustrate the above discussion. The analysis we will follow examines 

the effects of a presidential runoff system (Runoff) and the effective number of ethnic groups in a 

society (Groups) in determining the effective number of presidential candidates (Candidates) to 

emerge in the presidential democracy. The theory suggests that (1) the impact of social cleavages 

on the effective number of candidates depends on whether a runoff system is used, and (2) the 

impact of the runoff system on the effective number of candidates depends on the number of 

social cleavages in the society. (Recall that these are logically two sides of the same proposition.) 
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The confluence of a high number of social cleavages and the presence of a runoff system are 

hypothesized to produce a high effective number of presidential candidates, since the runoff 

system attenuates the incentives for pre-election coalition-building between groups. Given this 

theoretical structure, we can estimate the following: 

εββββ ++++= RunoffGroupsRunoffGroupsCandidates GRRG *0  [9] 

The dataset we will use includes information from 16 presidential democracies in 1985.14 

The dependent variable, Candidates, refers to the number (specifically, the vote-share weighted, 

or so-called effective number) of presidential candidates in democracies; this variable ranges 

between 1.958 and 5.689, with a mean of 3.156 and a standard deviation of 1.202. The variable, 

Groups, refers to the effective (size-weighted) number of ethnic groups within a society.15 This 

variable ranges between 1 and 2.756, with a mean of 1.578 and a standard deviation of 0.630. 

The variable, Runoff, refers to the presence or absence of a runoff system for the presidential 

election; this dummy variable takes the value of 0 if the system does not employ runoffs and 1 if 

the system does use runoffs. Within the sample of 16 presidential democracies, exactly half have 

a runoff system. The OLS regression results appear in Table 1. 

[TABLE 1 ABOUT HERE] 

Now that we have the results, how do we interpret them? What do these estimated coefficients 

mean? The next section provides guidance on these questions.  

B. INTERPRETING COEFFICIENTS FROM INTERACTIVE MODELS. 

                                                 

14 The data are freely available at http://dodgson.ucsd.edu/lij/pubs/. We have selected this dataset because it is freely 
available and researchers can easily replicate the results herein. The small N makes firm tests of statistical 
significance more than a little precarious—we discuss this issue as it arises below—but need not affect our 
pedagogical purposes. 

15 To avoid some tiresome repetition, we henceforth drop the adjectives effective, although they remain applicable. 
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In the simple linear-additive regression (indeed, only in that case), the coefficient on a 

variable and the effect on the dependent variable of a unit increase in that independent variable 

(ceteris paribus and controlling for other regressors) are identical. In interactive models, this 

equivalence between coefficient and effect no longer holds. To cope with this change, current 

practice in interpreting interactive effects often attempts to substitute some vague and potentially 

misleading terms, such as “main effect” and “interactive effect,” “direct effect” and “indirect 

effect”, and “independent effect” and “total effect” for the coefficients on x and z in the first case 

and on xz in the second.16 Such terminology is usually unhelpful at best, misleading or wrong at 

worst, and, in any event can never sufficiently substitute for comprehension of the simple math 

of interactions. We encourage researchers instead to recall that each variable involved in the 

interaction terms of interactive models has multiple effects, neither any single, constant effect 

nor a “main” effect and an “interactive” effect, but multiple, different effects depending on the 

levels of the other variable(s) with which it interacts. This is, of course, exactly as implied 

substantively by interactive hypotheses in the first place.  

An interactive hypothesis is implied when a researcher suggests that the effect of some 

variable x on y depends on z. This logically implies that the researcher believes that x has 

different effects on y, depending on the specific values of z. In the interactive case, the effects of 

x on y are therefore not a single constant, like the coefficient xβ on x is in the simple linear 

additive model. Instead, the effects of x on y vary depending on the coefficients on x and xz, as 

well as the value of z. 

Neither are the terms “main” and “interactive” or “direct” and “indirect” effects for these 
                                                 

16 Note that some of this terminology also refers to path-analytic models, which specify that some variable x affects 
the level (rather than, or in addition to, the effect) of some variable z which then determines y. This overlap in 
terminology provides even more confusion for the researcher.  
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coefficients on x and on xz , respectively, helpful; indeed, we warn researchers against use of 

these terms. As we elaborate below, first, simply terming one coefficient the “main” effect and 

another the “interactive” effect perilously confuses coefficients for effects, and, second, there 

may in fact be nothing whatsoever “main” or “direct” about the particular effect to which the 

coefficient on x actually does refer. In fact, those varying effects of x at particular values of z 

involve the coefficients on both x and xz and those specific values of z. This demonstrates that 

researchers cannot appropriately refer to the coefficient on x as “the main effect of x” or “the 

effect of x…independent of z” or “…considered independently of z” or, certainly not, 

“…controlling for z”. 

The coefficient on x is just one effect x may have, namely the effect of x at z=0. That is, 

the coefficient on x gives the estimated effect of a unit change in x, holding z fixed at zero. Far 

from necessarily being a “main effect”: (1) This zero value of z may have nothing at all “main” 

about it and may even be out-of-sample or even logically impossible! (2) This effect at z=0 is 

obviously not “independent of z”! (3) This effect of x on y given that z=0 is a very different thing 

from the effect of x on y “controlling for z,” which latter is what the simple linear-additive 

multiple-regression model would estimate, not what the linear-interactive model estimates! This 

confusion of coefficients, on x and/or z and/or xz for the effects of x and z probably also explains 

most failures to report standard errors (or other uncertainty estimates) for those effects rather 

than only the standard errors on the individual coefficients involved in those effects, which are 

far less useful by themselves. In an interactive model, the effects of x depend on, i.e. they vary 

with, the value of z, and so too do the standard errors of those effects! 

Our empirical example clarifies these points. The estimated coefficient on Runoff 

( 491.2ˆ −=Rβ ) refers to the estimate of the effect of runoff elections on the effective number of 



20 

presidential candidates for the specific case where Groups takes a value of 0. But in our 

description of the dataset, we noted that the number of ethnic groups never takes the value of 0 in 

the sample; in fact, the number of ethnic groups in a society cannot logically ever equal 0. Thus, 

an interpretation of Rβ̂ , the estimated coefficient on Runoff, as the “main” effect of a runoff 

system is nonsensical; far from a “main” effect, this is actually the effect at a value of ethnic 

heterogeneity that does not, and, indeed, could not, exist.  

If, however, Groups were rescaled to include a value of zero, e.g., by subtracting some 

constant value, such as the mean, and calling the resulting variable Groups*, then the estimated 

coefficient *
ˆ

Rβ  would be the estimated effect of Runoff when the rescaled variable Groups* 

takes the value of zero.  This would be logically possible and in-sample now, but the notion that 

the effect at this particular substantive value of ethnic heterogeneity is somehow “main” would 

remain strained and potentially misleading. That the effect of some variable when its moderating 

variable(s) happen to be at its (their) mean (centroid) should be called a “main effect” while all 

the other effects at all the other logically permissible or empirically existent values are something 

other than, or somehow less than, “main” seems an unnecessary strain on meaning, especially 

since the theoretical and substantive point of the interaction model in the first place is that the 

effects of the interacting variables vary depending on each other’s values. We return to this topic 

of mean-rescaling interactive variables below, in Section V.  

Symmetrically, the estimated coefficient Gβ̂ , the coefficient on Groups, refers to our 

estimate of the effect of the number of ethnic groups when Runoff equals zero. This value does 

logically and empirically exist, so the estimated value of Gβ̂ = -0.979 does tells us something 

substantively relevant. It reports an estimate that, in a system without runoffs, the number of 

ethnic groups has a negative impact on number of presidential candidates; specifically, an 
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increase of 1 in the number of ethnic groups is empirically associated with a 0.979 reduction in 

the number of presidential candidates, in systems without runoff elections. (We find this result 

substantively puzzling, but that is the estimate.) Note, however, that the coefficient Gβ̂  only tells 

part of the story – it only reveals the estimated effect of Ethnic Groups in one condition: when 

Runoff equals zero. Our main point here is that the researcher who equates a coefficient in an 

interactive model to an effect is treading on hazardous ground. At best, the researcher will be 

telling a story about an effect that applies to only one of several possible conditions (e.g., when z 

= 0). At worst, the researcher will be telling a story about an effect that applies in no logically 

possible condition—an effect that is logically meaningless. In short and put simply: outside the 

simplest linear-additive case, coefficients and effects are different things. 

Given these considerations, we suggest two possible methods of interpreting results from 

interactive models, such that the researcher can make meaningful statements about the effect of 

some variable x on y, and the effect of some variable z on y. The two techniques we suggest are 

differentiation (which requires working knowledge of entry-level calculus) and differences in 

predicted values (which does not require even basic calculus). We discuss each of these 

techniques, below. 

1. Interpreting Effects through Differentiation.  

Consider the following standard linear-interactive regression-model: 

εβββγ ++++= xzzxy xzzx0  [10] 

Deriving conditional effects through first derivatives of the dependent variable with 

respect to the independent variables of interest (as, e.g., Friedrich 1982 or Stolzenberg 1979 

suggest) is a direct and simple means of identifying the effects of x on y or the effects of z on y 

because first derivatives or differences, e.g., dy/dx and dy/dz, are effects. One may, in fact, read 
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dy/dx as “the change in y, dy, induced by a marginal (derivative) or unit (difference) change in x, 

dx, all else held constant.” Differentiation is a reliable, methodical way of discussing interactive 

effects. For it to fulfill its promise of simplicity and to reduce the tendency to induce mistakes, 

political scientists who feel the need should refer to a table of differentiation rules, available in 

any introductory calculus text and in the appendix. Taking the standard linear regression model 

in [10], the first derivatives of y with respect to x and z are as follows: 

zdxdy xzx ββ +=/  [11] 

xdzdy xzz ββ +=/   [12] 

As [11] and [12] exemplify, the first derivative of [10] with respect to x and z yields the 

conditional effect of those variables directly. Derivatives are effects, whether in basic linear-

additive regression models, when they give just the coefficient on the variable of interest, in 

linear-interactive models like [10], when they give expressions like [11] and [12] involving two 

coefficients and the other interacting variable, or in any other model regardless of its functional 

form, when they can give expressions involving all manner of combinations of parameters 

(usually coefficients) and variables. 

The effect of x on y in an interactive model like [10] is zxzx ββ + , which reflects the 

conditional argument underlying that model. xβ  is merely the effect of x on y when z happens to 

equal zero, which, as noted above, is certainly not necessarily “main” in any sense, may not even 

occur in sample, or may even be logically impossible. Nor does βxz embody the “interactive” 

effect of x or of z exactly, as often suggested, although this statement is perhaps less problematic. 

The coefficient xzβ  does indicate by how much the effect of x changes per unit increase z, and 

the logically and mathematically identical amount by which a unit increase in x changes the 

effect of z, but this is not precisely an effect. It is a statement of how an effect changes; an effect 
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on an effect. In an interactive model, indeed in all models, the effect of a variable, x, on y is 

dy/dx: full stop. Here that effect is zxzx ββ + : again, full stop. The sign and magnitude of xzβ  

tells us how that effect varies according to values of z, and so its significance tests whether z 

(linearly) conditions the effect of x on y (and vice versa), as noted next, but in no sense can one 

distinguish some part of this one conditional effect as main and another part as interactive. 

Returning to our empirical example of the interaction between institutional structure and 

social cleavages in determining the number of presidential candidates, we are now prepared to 

interpret the results using differentiation.  Recall that the theoretical model in equation [10] 

produces estimates that can be expressed as: 

xzzxy xzzx βββγ ˆˆˆˆˆ 0 +++=  [13] 

Where ŷ  refers to the predicted values of y, and 0γ̂ , xβ̂ , zβ̂ , and xzβ̂  are the OLS 

estimates of 0γ , xβ , zβ , and xzβ  respectively. 

Recall the results from our OLS regression:17  

Predicted Candidates = RunoffGroupsRunoffGroups *005.2491.2979.0303.4 +−− [14] 

Applying [11] and [12], we see that  

Runoffdgyd 005.2979.0/ˆ +−=   [15] 

Groupsdryd 005.2491.2/ˆ +−=  [16] 

Given our results, we can thus see that the effect of Ethnic Groups on the number of 

presidential candidates varies with the presence or absence of a runoff, and the effect of a runoff 

on the number of presidential candidates varies with the number of ethnic groups in a society. 

                                                 

17 Although, technically, one cannot strictly differentiate with respect to non-continuous variables, such as dummy 
variables, one can proceed ignoring this technicality without being misled, and we advise researchers to do so. (Do 
remember, however, that marginal increases cannot actually occur, only unit increases from 0 to 1 can.) 
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These conditional effects can be easily calculated by inserting substantively relevant values for 

the variables of interest into equations [15] and [16]. 

Recall that Runoff takes two values in the dataset: 0 in the absence and 1 in the presence 

of a runoff. Hence, we can calculate the effect of Ethnic Groups on the effective number of 

presidential candidates by calculating the conditional effect for the substantively (and logically) 

relevant values of Runoff. When Runoff = 0, 979.00*005.2979.0/ˆ −=+−=dgyd .  When 

Runoff = 1, 026.11*005.2979.0/ˆ =+−=dgyd . In this example, we can see that in the absence 

of a runoff, the conditional effect of ethnic groups is negative; in the presence of a runoff, the 

conditional effect of ethnic groups is positive. (The standard errors of these estimated effects and 

whether these effects are statistically significant are matters we discuss below.)  

We can calculate the effect of runoff systems on the number of presidential candidates by 

again calculating the conditional effect for logically relevant values of Groups. Recall that 

Groups ranges between 1 and 2.756 in our dataset. Accordingly, we might want to present the 

estimated effect of Runoff from the sample minimum to the sample maximum values of Groups; 

or at evenly spaced intervals starting from the sample minimum to some logically relevant value; 

or at the minimum, mean, and maximum; or at the mean, the mean plus and the mean minus a 

standard deviation or two; or at any other substantively revealing set of values for Groups.  

To take one of these options, we calculate conditional effects when Groups ranges from 1 

to 3, at evenly spaced intervals of 0.5, which yields the following estimated conditional effects:18  

When Groups = 1:  486.01*005.2491.2/ˆ −=+−=dryd  

When Groups = 1.5:  517.05.1*005.2491.2/ˆ =+−=dryd  

                                                 

18 Although the sample maximum is 2.756, Ethnic Groups does extend beyond this value when we examine non-
presidential systems (which Cox (1997) analyzes as well).  
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When Groups = 2:  520.12*005.2491.2/ˆ =+−=dryd  

When Groups = 2.5:  522.25.2*005.2491.2/ˆ =+−=dryd  

When Groups = 3:  525.33*005.2491.2/ˆ =+−=dryd  

In this example, we can see that at the sample minimum (when there is only one ethnic 

group in the society), the runoff has a negative effect on the number of presidential candidates 

(which, again, seems substantively odd), but as the number of ethnic groups rises, the runoff 

begins to affect the number of presidential candidates positively (which is more sensible).  

Further, the size of the effect grows as ethnic groups become more numerous (also sensible). 

Again, the standard errors of these estimated effects and whether the effects are statistically 

significant are matters we will discuss below.  

2. Interpreting Effects through Differences in Predicted Values. 

A second strategy for examining the effects of x and z on y consists of examining 

differences in predicted values of y for logically relevant and substantively meaningful values of 

x and z. This strategy does not require the researcher to have working knowledge of even basic 

calculus; it is a bit more tedious but quite serviceable in its own right. Predicted values of y can 

be calculated by substituting the estimated values for the coefficients along with logically 

relevant and substantively revealing values of the covariates of interest. Taking our theoretical 

model (equation [10]) and substituting in estimated coefficient values:  

xzzxy xzzx βββγ ˆˆˆˆˆ 0 +++=  [17] 

The researcher can calculate predicted values of y using varying values of x (between, 

say, xa and xb) while holding z constant at some meaningful value (e.g., the mean value, or some 

other interesting value, if, for example, z is a dummy and setting it at a mean value would be less 

meaningful). By doing so, the researcher can see how changes in x (from xa to xb) cause changes 
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in ŷ  (from aŷ  to bŷ ). Recall that as x changes from xa to xb, while z is held at some meaningful 

value, say z0, this also implies that xz changes from xaz0 to xbz0. Similarly, the researcher can 

identify how ŷ  moves with changes in z (and xz) when x is held at some meaningful value.  

Using our empirical example, we can examine how the predicted number of presidential 

candidates changes as we increase the number of ethnic groups, both in the presence and in the 

absence of runoff elections: 

Predicted Candidates = RunoffGroupsRunoffGroups *005.2491.2979.0303.4 +−−  

For example, when the number of ethnic groups = 1 and runoff = 0, we calculate the predicted 

effective number of candidates, ŷ  as: 

324.30*1*005.20*491.21*979.0303.4)0,1|ˆ( =+−−=== RunoffGroupsy  

Table 2 presents the predicted effective number of presidential candidates, as Groups 

ranges from 1 to 3, when Runoff takes values of 0 and 1. 

[TABLE 2 ABOUT HERE] 

By examining changes in ŷ , the researcher can discern how the independent variables, 

Groups and Runoff, influence the predicted number of presidential candidates. By looking across 

single rows, we see the impacts of the presence of a runoff system at different numbers of 

Groups. When the value of Groups is at its minimum (a value of one), a runoff system has a 

small and negative effect, decreasing the number of parties by -0.486 (that same substantively 

odd result again). When the value of Groups is at a higher value, say 2.5, the impact of a runoff 

system is larger in magnitude and positive: in the presence of 2.5 Groups, the runoff system is 

estimated to increase the number of presidential candidates by 2.522 (the sensible one).  

By looking down single columns, we see the impacts of changes in the number of ethnic 

groups, in the absence of a runoff system or in the presence of a runoff system. Here, we see that 
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in the absence of a runoff system, a rise in the number of ethnic groups (from, say, 1 to 3) 

coincides with a decline in the number of presidential candidates (from 3.324 to 1.366: oddly). In 

the presence of a runoff system, however, a rise in the number of ethnic groups (from 1 to 3) 

coincides with an increase in the number of presidential candidates (from 2.838 to 4.891: 

sensibly). Once again, standard errors for these estimated changes and whether they are 

statistically distinguishable from zero will be addressed below. 

These exercises in interpretation of coefficients should underscore the point that the 

variables in interactive specifications have varying effects. The size and sign of the effect of x 

can depend critically upon the value at which the other variable, z, is held; conversely, the size 

and sign of the effect of z can depend critically upon the value at which the other variable, x, is 

held. Calling one of the coefficients involved in these effects the “main effect” and another the 

“interactive effect” can be quite misleading and is no substitute for understanding the model’s 

actual estimated effects. Differentiation and/or differences of predicted values offer the 

researcher simple alternative tools for examining the effect of variables x and z on y in general, 

and in interactive models in particular. But once we have calculated the estimated effects, how 

can we express the statistical certainty of those estimates? I.e., how can we calculate their 

standard errors? Are these estimated effects statistically significant? I.e., are these estimated 

effects distinguishable from zero? We now turn to these questions. 

C. LINKING STATISTICAL TESTS WITH INTERACTIVE HYPOTHESES 

In examining existing political-science articles published in the top journals of the field, 

we have found that statistical exploration of interactive propositions relied primarily on t-tests of 

significance of individual coefficients in the model. I.e., researchers commonly compare each of 

the three key coefficient estimates in a typical interactive model, e.g. xβ̂ , zβ̂ , and xzβ̂  in [17], to 
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its respective standard error. Assuming the model exhibits the necessary statistical properties 

otherwise (i.e., the Gauss-Markov conditions), the ratios in this comparison are t-distributed (or 

asymptotically normal), so these tests are statistically valid (asymptotically), yet scholars often 

mistake their meaning—i.e., they often mistake what these are tests of—reflecting the persistent 

confusion of coefficients for effects and use of the misleading main- and interactive-effect 

terminology. Just as the effects of variables involved in interactive terms vary according to two 

(or more) coefficients and the values of (an)other variable(s), so too do their standard errors and 

so the relevant t-statistics, confidence intervals, and hypothesis-test results (significance levels).  

Thus, single t-tests on individual coefficients on variables involved in interactive terms 

require care to interpret because they refer to significance at only one empirical value of the 

other variables. For example, xβ  and zβ  in our standard model [17] indicate, respectively, x’s 

effect on y when z equals zero and z’s effect on y when x equals zero, so the standard t-tests on 

our estimates xβ̂  and zβ̂  indicate the significance of that variable’s effect when the other 

variable equals zero, which substantive values as noted above, may be substantively, empirically, 

or even logically irrelevant.  

In our empirical example predicting effective number of presidential candidates with 

social cleavages, electoral systems, and the product of the two variables, we noted that the 

number of ethnic groups in the sample never takes the value of 0 and logically could not do so. 

Given the discussion in the preceding paragraph, we immediately see that any inferences drawn 

about the statistical significance of our estimate of Rβ  (the coefficient on Runoff) are largely 

meaningless because they refer to a condition that does not and could not exist. Just as the 

interpretation of the coefficient is meaningless because it refers to a value that is logically 

impossible, any judgment of statistical significant based on said coefficient would also be 
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logically irrelevant. Inferences drawn about the statistical significance from our estimate of 

coefficient Gβ  refer to the impact of Ethnic Groups in the specific case where Runoff equals 

zero. When there is no runoff system, the number of ethnic groups decreases the effective 

number of presidential candidates, with a p-value of 0.228. In this case, the interpretation of the 

statistical significance of the coefficient applies to a logically possible case that does in fact exist 

in our data and has important substantive meaning, but we remind the researcher that the 

judgment of statistical significance is still a limited one: it applies only to the effect of Ethnic 

Groups when Runoff equals zero and says nothing about that effect for other values of Runoff 

(here, the only other possible, meaningful value is Runoff=1). 

To provide a framework for hypothesis testing of effects rather than coefficients in 

interactive models, consider the following types of theoretical questions that researchers often 

ask: 

(1) Does y depend on x, or, equivalently, is y a function of x? Does y depend on z, or, 

equivalently, is y a function of z?  

(2) Is y’s dependence on x contingent upon or moderated by z, or, equivalently, does the effect of 

x on y depend on z? Is y’s dependence on z contingent upon or moderated by x, or, equivalently, 

does the effect of z on y depend on x? This is the classic interactive hypothesis; the symmetric 

pairs of questions are logically identical. 

(3) Does y depend on x, z, and/or their interaction, xz, at all, or, equivalently, is y a function of x, 

x, and/or xz?  

Tables 3-5 link each of these sets of theoretical and substantive questions about interactive 

relationships to the mathematical expression of those relationships to the statistical tests in those 

empirical models corresponding to those questions, starting with the simpler propositions in 
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Table 3. 

[TABLE 3 ABOUT HERE] 

 
Notice that in Table 3, the statistical test that corresponds to each hypothesis holds the 

opposite of the mathematical expression for that hypothesis as the null; i.e., as always: the null 

hypothesis is what one would like, theoretically, to reject statistically. 

The first hypothesis examines whether x has any effect on y. The mathematical 

expression for the estimated effect of x on y includes xβ̂  and xzβ̂ z as stressed above. The 

standard F-test on the pair of coefficients, xβ̂  and xzβ̂ , identifies whether x matters (i.e., whether 

y depends on x). Only these coefficients both being zero would imply y does not depend on x in 

some fashion in this model.  

The “simple” hypothesis that the effect of x on y is positive or negative, is actually ill-

defined in linear-interactive models because, first, the effects of x vary depending on values of z, 

and, second, they do so linearly, implying that the effects will be positive for some and negative 

for other z values (although not all values of z need necessarily be possible logically, occur 

empirically in sample, or be substantively meaningful, as noted above). Thus, no common 

practice exists for testing hypotheses that x or z generally increases or decreases y in linear-

interactive models; we can now see this is because such hypotheses are mathematically (i.e., 

logically) ambiguous in such models. Mathematically, the effect of x on y in a linear-interactive 

model can be negative for some values of z and positive for others, depending on the range of 

values taken on by the independent variables. Therefore, whereas the effect of x on y may 

statistically differ from zero at some values of z, it can be statistically indistinguishable from zero 

at some other values of z (e.g., that value of z where the estimated effect of x on y is zero). To 

take one proposition often seen in many substantive contexts as a very illustrative example, 



31 

suppose we hypothesized that x had increasingly positive effect on y as z increased, starting from 

no effect at z=0, and suppose even that z<0 is logically impossible. In this case, even if that 

proposition were completely true and the evidence were very strongly to support it, and even if 

we ignored the fact that the estimated effect of x would be negative at the (logically impossible) 

values z<0, the estimated effect of x on y would be zero at z=0 and therefore necessarily 

insignificant (i.e., insignificantly different from zero) at that point. Moreover, the estimated 

effect also must be insignificantly different from zero for some range near z=0, given that all 

estimates have some error. The range where this insignificance holds would obviously be larger 

the less precisely the effect of x given z is estimated, i.e., the less strongly the evidence supported 

the proposition, but even if the evidence extremely strongly supported the hypothesis that the 

effect of x was (weakly) positive and increasing in z, there would be some, likely appreciable, 

range of permissible values of z where we could not reject that the effect was zero. In a nutshell, 

hypotheses that the effects of x (or z) are generally positive or negative are poorly specified for a 

linear-interactive model. 

For empirical testing of such propositions in a linear-interactive model, therefore, 

scholars must state their hypotheses more precisely to refer to some values or range of values of 

z.19 Researchers can then calculate measures of uncertainty to determine whether the effect of x 

at some value of z is statistically distinguishable from zero. This approach is highlighted in the 

second and third hypotheses in Table 3. To make a general claim that the effect of x on y is 

                                                 

19 Alternatively, the researcher could simply estimate a linear-additive model that omits the interaction in question 
and simply test whether the coefficient on x or z significantly differs from zero in the usual manner. If the interaction 
truly exists, the linear-additive model would tend to produce for coefficients on x and z their average effect across 
the sample values of the other variable, but with some attenuation bias and inefficiency due to the mis-specification 
of the truly linear-interactive model as linear-additive. If the interaction does truly exist, however, the researcher 
must note that this linear-additive model is mis-specified with the coefficient estimates on x and z very like subject 
to attenuation bias and inefficiency. Accordingly, these tests would tend to be biased toward failing to reject. 
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positive or negative, the researcher could test that the effect of x on y is positive over the entire 

logically possible, or substantively sensible, or sample range of z. To do so, the researcher should 

conduct several t-tests suggested in Table 3, calculated at several z values, over that entire range. 

Alternatively, but equivalently, one could plot dy/dx over the appropriate range of z along with 

confidence intervals, which latter would indicate rejection at that confidence-level if they 

contained zero at any point across that range of z. However, as noted above, in some cases, we 

would expect failure to reject (confidence intervals that span zero) at some levels of z even if the 

hypothesis were completely true and very strongly supported by the data.20 

To execute this set of t-tests or generate these confidence intervals, the researcher will 

first need to differentiate y with respect to x or calculate predicted values of y at different values 

of x, holding z at some logically relevant value. Using the differentiation method, the estimated 

effect of x on y in [17] is zdxyd xzx ββ ˆˆ/ˆ += . Given that OLS specifies that z is fixed in repeated 

sampling (or, roughly equivalently, that we interpret our estimates given z) and that our estimates 

of β  carry some level of uncertainty, our estimate of the effect of x on y will have some level of 

uncertainty that depends on z. That is, just as the effects of x on y vary with the values of z, the 

standard errors of the effects of x on y also vary with values of z. We can express the uncertainty 

as a standard error or variance, or as a confidence interval around the marginal effect. Just as no 

single effect attributable to x exists when x interacts with another variable, no single variance 

exists either for the marginal effect of x when x interacts with another variable. Each unique 

                                                 

20 Recognizing this fact, we suggest that researchers plot the estimated effects of x across the sample, logical, or 
substantively meaningful range of z, along with confidence intervals as described below, and then consider the share 
of these confidence intervals’ covered area that lies above (or below) zero as indication of how strongly the evidence 
supports the proposition of a “generally” positive (or negative) effect. Since “generally” is imprecise and involves 
judgment, this test is imprecise and involves judgment too, but visualizing graphically the proportion of a 
confidence area that lies above or below zero should help in rendering this judgment. 
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value in the set of estimated marginal effects (one at each value of z) will have its own variance 

and corresponding standard error. Therefore, obviously, the statistical significance of these 

effects (t-statistics and confidence intervals) is also conditional on the substantive value of z, 

implying that the effect of x on y may be significant for z values in some range and insignificant 

in other ranges, as we have already explained. Our interpretation and presentation of results must 

clearly reflect this, and, again, no substitute exists for some basic math in doing so.  

The variance of dxyd /ˆ is as follows:21 

)ˆ,ˆ(2)ˆ()ˆ()/ˆ( 2
xzxxzx zCovVarzVardxydVar ββββ ++=   [18]22 

Our level of uncertainty about the effect of x on y is some function of the variability in 

our parameter estimates of xβ , the variability in our parameter estimates of xzβ , the level of 

covariance between our estimates of xβ  and xzβ , and the values of z at which the effects are 

evaluated. Var( xβ̂ ) is simply the square of the standard error that is typically reported in 

regression output. Var( xzβ̂ ) is, similarly, the square of the standard error that is reported for the 

                                                 

21 If following the predicted-value method, one should distinguish between the error in E(y|x,z=z0)-E(y|x,z=z1) and 
the prediction or forecast error in E(y|x,z).  The former refers predicted differences in y given x and z as the value of 
z changes. The former refers to a single prediction of y given x and z. Predictions, the latter case, will include two 
sources of  error and variance, one due to estimation error in the β̂  and one due to residual error, i.e. the stochastic 
residual/error term in the regression model. In predicted differences, the former case and the one more useful in 
illustrating estimated interactive effects as we have suggested, the differencing removes the second source of error 
because the same error is on both sides of the minus sign. The error in the estimated conditional effects of x in the 
linear-interactive model, as in estimated effects in the linear-additive model or, indeed, any model with additively 
separable stochastic component, contains only the first source of error, the estimation error. By the derivative 
method, this separability is more obvious because ( ) ( ) ( )
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22 Given some constant c and some random variable r, )()( 2 rVarccrVar = . Given some constant c and two random 
variables r1 and r2, the variance of the expression ),(2)()()( 212

2
121 rrcCovrVarcrVarcrrVar ++=+ . In our context, 

the x and z are fixed in repeated sampling, per the standard OLS assumptions, and the coefficients are the random 
variables.  More generally, for random vector, β̂ , and constant vector, X, the variance of the linear-additive function 

β̂X  is XVarXXVar )ˆ(')ˆ( ββ = . The reader familiar with matrix algebra can verify that [18] is just one specific 
example of this more general formula.   
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coefficient estimate, xzβ̂ . The covariance between xβ̂  and xzβ̂ , Cov( xβ̂ , xzβ̂ ), however, is not 

typically shown as part of the standard regression output and must be extracted from the 

estimated variance-covariance matrix of the coefficient estimates. 

Recall that the measures of uncertainty that accompany OLS regression coefficient 

estimates are selected from the diagonal elements in the estimated variance-covariance matrix, 

which is computed using 12 )'( −XXs , where s2 is our estimate of 2σ , the variance of ε . The 

variance-covariance matrix 12 )'( −XXs  is a symmetric matrix that contains the estimated 

variance of each estimated coefficient along the diagonal elements and the estimated covariance 

of each estimated coefficient with the other estimated coefficients in the off-diagonal elements: 

⎥
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Returning to Equation [18], we see that our estimate of Cov( xβ̂ , xzβ̂ ) will appear in the 

off-diagonal representing xβ̂  and xzβ̂ . When some software estimates an OLS regression, it 

stores the estimated variance-covariance matrix of the parameter estimates in memory, and the 

researcher can usually easily recall that estimated variance-covariance matrix through a single 

post-estimation additional command.  

We reiterate that the standard errors of the effects of variables involved in interaction 

terms will vary depending on the values of other variables in the interaction, on the standard 

errors of the coefficients involved in that effect, and on the covariances of those coefficients.  

To execute the tests or construct the confidence intervals suggested in the second and 

third rows of Table 3, the researcher would calculate the effect at some given value of z 
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( zdxyd xzx ββ ˆˆ/ˆ += ) and calculate the estimated variance around that effect at the given value of 

z, )/ˆ(ˆ dxydV . The researcher could then calculate the t-statistic for testing whether this estimated 

effect is statistically distinguishable from zero, by following the standard procedures: dividing 

the estimated effect dxyd /ˆ  by the standard error of dxyd /ˆ  and evaluating the resulting t-statistic 

against the t-distribution (with n-k degrees of freedom, where n refers to the number of 

observations and k refers to the number of regressors in the model, including the constant). The 

researcher would then repeat the process for another value of z to determine whether a general 

claim can be made about the direction of the effect (e.g., if x increases y over some set of z, or if 

x decreases y over some set of z). 

To explore whether the effect of x on y is “generally,” “typically,” or “on-average” 

positive or negative, a common component of the typical complex of interactive hypotheses, 

requires more precise definition of the terms in quotations. If “on-average” refers to the effect at 

the sample-average value of z, then the single t-test of the effect of x at that value of z suffices. 

This value of z also gives the appropriate estimated effect and its statistical confidence for an 

“on-average” effect taken to mean the average in the sample of the effect of x. Incidentally, as 

we show in a later section, this hypothesis corresponds with the standard t-statistic reported for 

the coefficient on x* in an interactive model where x and z have been mean-centered (had their 

sample means subtracted). If, however, one wishes to gauge the statistical certainty with which 

the hypothesis that x’s effect on y is “generally” or “typically” positive, we suggest plotting dy/dx 

over the sample range of z and vice versa, with confidence intervals along the entire range. The 

hypotheses that dy/dx is “generally” or “typically” positive or negative corresponds to most 

(unfortunately, no firm cut-off share exists) of this confidence interval lying appropriately above 

or below zero. One could obtain greater precision by quantifying the share of the area covered by 
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the confidence interval that lies above or below zero to give more precision to this exploration, 

but, fundamentally, terms like “generally” and “typically” inherently entail exactly the 

imprecision that one cannot avoid here. An alternative strategy would be to estimate a different 

model, one without the interaction term(s), and simply evaluate the usual t-test on the appropriate 

coefficient, on x or on z. This alternative would reveal directly whether, “on average” or 

“generally,” x or z had a non-zero effect on y. However, if the true relationship really is 

interactive, then this alternative model is mis-specified, so these t-tests would be, at minimum, 

inefficient. (See also note 20.) 

 Aside from the most basic hypotheses that x affects y or that x increases/decreases y (over 

some range of z), researchers exploring interactive propositions are interested in whether and 

how the effects of x and of z on y depend on the other variable. Table 4 presents these sorts of 

hypotheses.  

[TABLE 4 ABOUT HERE] 

Notice two important facts from Table 4. First, because the coefficient on xz directly 

reflects the presence, sign, and substantive magnitude of a conditioning relationship, i.e., the 

degree to which the effects of x and z on y depend on the other variable’s value, the standard t-

test of the coefficient on the multiplicative term directly tests for the presence or sign of such a 

conditioning relationship. Second, the mathematical expression and the statistical test for the 

hypothesis that x conditions the effect of z on y are identical to those for the converse that z 

conditions the effect of x on y. This reflects the logical symmetry of interactive propositions. If z 

conditions the effect of x on y, then x logically must condition the effect of z on y and in the same 

amount. In fact, the second three rows of Table 4 simply state the logical converses of the first 
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three rows, so the corresponding mathematical expressions and statistical tests are identical.23 

As we established above, the effect of x on y is zdxdy xzx ββ +=/ , so a simple t-test of 

the null hypothesis that 0=xzβ  evaluates whether the effect of x changes as z changes. Given 

that xβ  refers to the effect of x on y in the specific case when z is zero, xzβ  displays the 

difference from that in the effect of x on y when z is nonzero. In essence, xzβ  indicates whether 

the effect of x is the same when z is zero, as when z takes any other value. To restate: xzβ  

identifies whether the effect of x changes as z takes various values. A rejection of the null 

hypothesis that 0=xzβ  is consistent with the most central interactive hypothesis: the effect of x 

on y differs depending on the level of z.  

Researchers are often, however, interested in hypotheses that contain a directional 

element: that the effect of x on y increases as z increases, or the effect of x on y decreases as z 

increases. Recalling that the effect of x on y is: zdxdy xzx ββ +=/ , a hypothesis that the effect of 

x on y increases as z increases could be tested with a one-tailed null hypothesis that 0≤xzβ . 

Symmetrically, the hypothesis that the effect of x on y decreases as z increases could be tested 

with a one-tailed null hypothesis that 0≥xzβ . These directional hypotheses are displayed in the 

second and third lines of Table 4.24 

Finally, Table 5 reveals that the statistical test corresponding to the broadest sort of 

hypothesis one might have regarding an interactive model: that y depends in some manner, 

                                                 

23 The order of differentiation in a cross-derivative never matters, so this symmetry does not rely on the linear-
multiplicative form specifically. In any logical proposition/mathematical model, the effect of x depends on z implies 
that the effect of z depends, in identical fashion, on x: d(dy/dx)/dz≡ d(dy/dz)/dx for any function y(x,z). 

24 Since assuming directionality in this way lowers the empirical hurdle for statistical rejection, many scholars opt 
more conservatively for always employing non-directional hypotheses and two-tailed tests. 
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linearly-additively and/or linear-interactively, on x and/or on z. In common language, some one 

or combination of x and z matters for y. This corresponds statistically, quite simply, to the F-test 

that all three coefficients involved in the interaction, xzzx βββ ,, , are zero. That all three of these 

are zero is the only condition that would render x and z wholly irrelevant to y. 

Returning to our empirical example, let us walk it through the various tests outlined in 

Tables 3, 4, and 5. 

First, does x affect y? Does the number of presidential candidates depend in some linear 

or linear-interactive way on the number of ethnic groups? To examine this general question, we 

conduct an F-test. The F-test will test the null hypothesis that 0=Gβ  and 0=GRβ . The F-test 

produces the following results: F(2, 12) = 2.62; Prob > F = 0.1140.  Whether to reject the null 

hypothesis depends on the researcher’s desired level of certainty.  At conventional levels 

(p<0.10, p<0.05, p<0.01), this null hypothesis would not (quite) be rejected.25  

Does z affect y? Does the number of presidential candidates depend in some linear or 

linear-interactive way on the presence of a runoff system? The F-test on the null hypothesis that 

0=Rβ  and 0=GRβ  yields the following results: F(2, 12) = 2.96; Prob > F = 0.0903, which 

would (barely) satisfy a p<0.10 criterion, but fail the stricter p<0.05, p<0.01 criteria.  

Next, we might be interested in whether x (generally) increases y. To answer this 

question, the researcher should conduct t-tests of or construct confidence intervals for the effect 

of x, across some range of values of z (corresponding to “generally”). To conduct these t-tests, 

one must first calculate the standard errors associated with the given marginal effect following 

                                                 

25 A less-strictly classical approach to hypothesis testing would simply report the p-level and leave the reader to 
decide whether this is “significant enough” or, more generally, how much weight to assign a result with this level of 
statistical significance. 
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equation [18]. To do so, we first need to access the estimated variance-covariance matrix of the 

estimated coefficients. Recall that this symmetric matrix contains the estimated variance of each 

of the estimated coefficients along with the estimated covariance between each pair of estimated 

coefficients.  Table 6 displays the estimated variance-covariance matrix from our example.26 

[TABLE 6 ABOUT HERE] 

The element in the first row and first column, 0.593, is the estimated variance of the 

coefficient estimate for Gβ , which is the square of the standard error of Gβ̂ , 0.770. The 

information we need from the variance-covariance matrix in this case that we do not see in the 

typical regression output is Cov( Gβ̂ , GRβ̂ ), which is -0.593 in our empirical example. To 

calculate the variance of the estimated marginal effects, we simply substitute these values from 

the estimated variance-covariance matrix into equation [18]. 

)ˆ,ˆ(**2)ˆ()ˆ()/ˆ( 2
GRGGRG CovRunoffVarRunoffVardgydVar ββββ ++=   

593.0593.0*0*2885.0*0593.0]0|)/ˆ[( 2 =−++==RunoffdgydVar  

292.0593.0*1*2885.0*1593.0]1|)/ˆ[( 2 =−++==RunoffdgydVar  

Testing the proposition that ethnic groups increase the number of presidential candidates 

requires positing the following null hypothesis: H0: 0≤+ RunoffGRG ββ . This null hypothesis 

can be evaluated at the two values of z: 0 (the absence of a runoff system) and 1 (the presence of 

a runoff system).  These results appear in Table 7. 

[TABLE 7 ABOUT HERE] 

With a one-tailed p-value of 0.884, we cannot reject the null hypothesis that 

                                                 

26 Appendix B provides step-by-step STATA commands. 
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0≤+ RunoffGRG ββ  when Runoff = 0. In the absence of a runoff system, one cannot reject the 

possibility that there is a negative or null relationship between Groups and Candidates. 

However, with a one-tailed p-value of 0.041, we can reject the null hypothesis that Groups 

decrease or have no effect on Candidates when Runoff = 1, in favor of the alternative that some 

positive relationship between Groups and Candidates exists when Runoff = 1. To test the reverse 

directional hypothesis: that the number of ethnic groups decreases the number of presidential 

candidates, we would pose the following null hypothesis: 0≥+ RunoffGRG ββ  and re-evaluate 

the t-statistics against this null. In the absence of a runoff system, the one-tailed p-value is 0.116, 

which actually (substantively oddly, as we’ve noted) approaches significance. In the presence of 

a runoff system, the one-tailed p-value of 0.959 suggests that we are quite unable to reject the 

null hypothesis of a positive or null relationship between Groups and Candidates. 

 Next, the researcher might be interested in testing directional hypotheses with respect to 

the effect of a runoff system on the number of presidential candidates. To consider whether a 

runoff system increases the number of presidential candidates, the researcher could conduct a 

number of t-tests over a logically relevant range of Groups.  These are displayed in Table 8.   

[TABLE 8 ABOUT HERE] 

Here, we see that evaluation of the null hypothesis of 0≤+ GroupsGRR ββ  changes for 

various values of Groups. As the number of ethnic groups increases, our ability to reject the null 

hypothesis also increases. One can see in this table that, only when Groups takes values over 3 

does the hypothesis test begin to approach conventional significance levels. However, Groups=3 

actually exceeds the realized sample maximum.  The estimated effect, as such, is a prediction 

into what we might see if the number of ethnic groups reached that level (as it does in some non-

presidential systems).  
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If we wanted to investigate the proposition that the effective number of ethnic groups 

decreases the number of presidential candidates, we would re-evaluate the t-statistics against the 

following null hypothesis: 0≥+ GroupsGRR ββ . The one-tailed p-values above show that we 

cannot remotely reject the null hypothesis in any case, thus lending no support at all to the 

proposition that the number ethnic groups decreases the number of presidential candidates. 

To continue to the tests outlined in Table 4, the researcher might be most interested in the 

question of whether the effect of Groups on Candidates depends in some way on the presence or 

absence of a runoff system. The answer to this substantive question emerges directly from the 

coefficient on the interactive term, GRβ , and its standard error. A two-tailed test of the null 

hypothesis H0: 0=GRβ  is in order. The p-value associated with this two-tailed test is 0.054. The 

determination of “statistical significance” in this case depends on the researcher’s desired level 

of uncertainty: rejection at the p<0.10 threshold, near rejection at a p<0.05 threshold,  and failure 

to reject at the tighter p<0.01 level. As discussed above, the mathematical symmetry in 

interaction terms also implies that if the researcher wanted to ascertain whether the effect of a 

presidential runoff system depends in some way on the number of ethnic groups, then the (same) 

answer also lies in the significance of that same interaction term, GRβ .  

A directional hypothesis can also be posited. If the researcher were interested in whether 

the effect of Groups increases in the presence of a runoff system, then a one-tailed test is 

appropriate, using the following null hypothesis of H0: 0≤GRβ . The one-tailed test of the null 

hypothesis leads produces a p-value of 0.027, which suggests that the researcher can reject the 

null hypothesis of a negative or nonzero coefficient in favor of the alternative hypothesis of some 

positive coefficient. Thus, the results are consistent with an interpretation that the effect of 

Groups increases in the presence of a runoff system. The logical symmetry of the interaction 
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term also implies that the results are consistent with an interpretation that the effect of Runoff 

increases as the number of ethnic groups increases. 

Finally, let us examine the test outlined in Table 5: whether x and z have any effect on y 

in some linear or linear-interactive fashion. Here, the researcher is interested in whether Groups, 

Runoff, and/or their product have any effect on Candidates. An F-test on all three coefficients 

( Gβ , Rβ , and GRβ ) will speak to the null hypothesis that 0=== GRRG βββ . The F-test yields 

the following results: F(3, 12) = 2.27, with an associated p-value of 0.132. 

D. PRESENTATION OF INTERACTIVE EFFECTS 

The major point we convey in this section is that the mere presentation of regression 

coefficients and the accompanying standard errors is wholly inadequate. Hayduk and 

Wonnaccott (1980) noted that, “While the technicalities of these [interactive] procedures have 

received some attention…the proper methods for the interpretation and visual presentation of 

regressions containing interactions are not widely understood” (400). Unfortunately, their 

observation still holds too widely today, and in this section we aim to provide clear guidance on 

effective means of presenting the results from models that include interaction terms. 

We have described two methods for interpreting effects: derivatives and differences in 

predicted values. Common presentations of effects that involve interactive terms now often do 

involve tables or graphs that depict the effect of x on y, when z equals particular values. What is 

too often missing still from these presentations is indication of the estimated uncertainty of the 

estimated effect and its magnitude, across a sufficiently wide and meaningful range of values of 

z. These conditional effect estimates can be effectively conveyed in tabular and graphical 

forms—we believe the latter are especially useful, but also especially underutilized, in the 

literature—but both should always also include some measure(s) of certainty. 
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Existing statistical packages can provide marginal effects and predicted values (or 

conditional expectations) as well as standard errors of the marginal effects and predicted values, 

typically as part of some post-estimation suite of commands. Further, other programs exist which 

will generate estimates of uncertainty around predicted values using simulation techniques 

(King, Tomz, and Wittenberg 2000). While we have no particular qualms against such pre-

programmed commands and procedures,27 the procedures we recommend below maximize the 

user’s control over the values at which marginal effects and predicted values are calculated, and, 

we believe, will strengthen the user’s understanding and intuition in interpreting models that 

contain interactive terms. We strongly recommend that the user be fully conversant with the 

elementary mathematical foundations underlying these procedures before taking pre-

programmed commands “off the shelf.”  

1. Presentation of Marginal Effects. 

We might be interested in conveying to the reader how the effect of x changes at various 

or along some range of z values. Recall that the estimated marginal effect of x consists of the first 

derivative based on the estimation results: zdxyd xzx ββ ˆˆ/ˆ += . The marginal effect is, once again, 

a function of the estimated coefficient on x, the estimated coefficient on xz, and specific values of 

z at which we evaluate this effect. We will want to discuss the marginal effect of x over some 

substantively revealing range of values of z. One such revealing range and sequence of values, 

which may serve as a good default, might be to consider z taking evenly spaced values ranging 

from a, its minimum value in the sample, to c, its maximum value in the sample. More generally, 

the researcher could calculate the marginal effect of x on y for any set of values of interest for z. 
                                                 

27 We would emphasize, however, that the researcher should verify that the uncertainty estimates produced by these 
procedures do not, as some unfortunately do, erroneously add stochastic error to estimation error in calculating the 
uncertainty of estimated effects in models with additively separable stochastic components (like linear regression). 
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Sample means, percentiles, means plus or minus one or two standard errors, etc. are all 

frequently useful default values for these considerations, but the substance and the researchers’ 

presentational goals, not some relatively arbitrary default, should be determinate here. Using z 

values of particular observations—say, of some well-known, important, or illustrative case or 

cases in the sample—is also often a good idea. The researcher would then calculate the standard 

errors associated with each of these marginal effects. As a next step, the researcher could create a 

confidence interval around each estimated effect. Confidence intervals are usually more effective 

in graphical presentation and standard errors, t-statistics, or significance levels in tabular 

presentations, but visual clutter or researcher interest may reverse that (subjective) judgment. 

Confidence intervals can be generated with the following formula: 

)/ˆ(/ˆ , dxydVartdxyd pdf±  

Where pdft ,  is the critical value in a t-distribution with df degrees of freedom (where df = n-k, 

where n refers to the number of observations and k refers to the number of regressors, including 

the intercept) that produces a p-value at which hypothesis tests are to be made and that produces 

½ of the probability outside of the desired confidence interval. For example, to obtain lower and 

upper bounds of a 95% confidence interval, pdft ,  should correspond to critical values for a two-

sided test of 0.05 level, i.e. one with 0.025 on each side; with large degrees of freedom, this will 

be approximately 1.96. 

For our empirical example, we calculated two sets of marginal effects.  The marginal 

effect of Groups, ( dgyd /ˆ ), was calculated when Runoff equals 0 and when it equals 1.  The 

marginal effect of Runoff, ( dryd /ˆ ), was calculated at various values of Groups (from 1 to 3, at 

evenly spaced intervals). To calculate a confidence interval, we need to calculate the variance of 

the marginal effect and to identify a desired level of confidence. For our empirical example, 
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given the extremely small number of observations, we chose to accept lower certainty and so 

selected a 90% confidence interval. This interval implies a critical value of t12,α=.10 = 1.782. We 

would thus calculate the upper bound and lower bound for the confidence intervals as follows: 

Upper bound: )/ˆ(*782.1/ˆ dxydVardxyd +  

Lower bound: )/ˆ(*782.1/ˆ dxydVardxyd −   

Tables 9 and 10 present the marginal effects, variance of the marginal effects, and 90% 

confidence intervals around these marginal effects. 

[TABLE 9 ABOUT HERE] 

[TABLE 10 ABOUT HERE] 

If we are evaluating the marginal effect of x at several values of z, then a graphical 

display of marginal effects with confidence intervals would be effective. Figure 1 displays the 

marginal effect of Runoff for various values of Groups with confidence intervals around these 

estimated marginal effects.  The straight line indicates the marginal effect of Runoff at given 

values of Groups, and the confidence intervals indicate the amount of uncertainty surrounding 

each marginal effect.  The graph and accompanying confidence intervals thus convey to the 

reader both the marginal effects of x across values of z that are of interest and the degree of 

uncertainty that accompanies those estimated effects. This graph shows that over the range of 

sample-relevant values (varying Ethnic Groups from 1 to 3), the marginal effect of runoff 

increases, although the 90% confidence interval overlaps zero throughout the sample range.  

[FIGURE 1 ABOUT HERE] 

Recall that OLS estimates a linear relationship between the regressors and y, and these 

estimated relationships do not by themselves presume any bounding on the range of these 

regressors (here: x and z). As an exercise, to illustrate the mathematical properties of these effect 
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lines and their associated standard errors, imagine if we were to extend the effect line out in both 

directions, by projecting into a much smaller number of ethnic groups and a much larger number 

of ethnic groups. Projecting into negative space with our independent variable is substantively 

nonsensical in this case, but it would not be for some variables, so let us imagine it were possible 

here, for illustrative purposes only. Calculating the marginal effect of Runoff, as the number of 

ethnic groups ranges from -4 to +6 produces Figure 2, illustrating several interesting properties.   

The resulting graph shows a straight line (representing the marginal effect of Runoff) 

surrounded by two curves forming a confidence interval in the shape of an hourglass. First, note 

that the straight line (the marginal effect of Runoff) is a linear function of Groups; this is (part of) 

what it means to say these are linear-interactive models.28 Second, as we noted above, the 

coefficient on Runoff indicates the impact of Runoff when Groups = 0. Thus, Rβ̂ =-2.49 is also 

our estimate of the intercept point for the marginal effect line (that is, the value on the y-axis 

when Groups takes on the value of zero), as the graph indicates. Third, notice that GRβ̂  gives our 

estimate of the slope of the marginal effect line (2.01 according to our OLS estimates). Our 

coefficient estimate GRβ̂  is positive and indicates that the effect of Runoff is estimated to increase 

at about 2 units Candidates for each one-unit change in Groups.  

Next, note that the confidence intervals take an hourglass shape; this is characteristic of 

such conditional-effect lines. The smallest part of the hourglass is the point (i.e., the value of z) 

at which there is the highest degree of certainty concerning the size of the marginal effect (of x 

on y). This point, intuitively, will correspond to the mean in the sample of the counterpart term(s) 

                                                 

28 If the effect of Runoff depended curvilinearly on groups, the linear-regression estimates of such linear-interactive 
models would give us a best (least-squares) linear approximation to the true curvilinear effect line. This is part of the 
reason that the common advice of “if including xz, then include x and z” is, indeed, a usually advisable practice, or at 
least something worth checking. See Section IV.A. 
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in the interactions (z); as always in regression analysis, we are most certain of our estimates for 

values around the mean (centroid for more-than-one variable) of our data. The wider parts of the 

hourglass are points at which there are lower degrees of certainty regarding the marginal effect, 

which, intuitively, are points farther from the mean (centroid) of the data. The characteristic 

hourglass shape of confidence region results from the appearance of z2 in the expression for the 

variance of the effect and also from the covariance of the coefficient estimates in that expression, 

which is typically negative because the corresponding variables x and xz tend to correlate 

positively. Thus, the relative concavity of these hourglasses tends to sharpen with the magnitude 

of this correlation. In summary, the confidence intervals (regions) around conditional-effect lines 

will be (3D) hourglass in shape, with the “waist” located at the mean (centroid) of the 

conditioning variable(s) and generally becoming more accentuated as x and xz correlate more 

strongly, although this accentuation depends also on the relative (estimated) variances of Rβ̂  and 

GRβ̂  and, in appearance anyway, graph and z scaling. 

Note also from the graph above that the marginal effect of Runoff is statistically 

distinguishable from zero at negative values of Groups but is indistinguishable from zero at 

positive values of Groups until Groups exceeds about 5.5. These results illustrate clearly the 

following points made above. First, we see that the marginal effect of Runoff indeed varies with 

values of Groups. Second, we see that the effect lines, being linear, will extend above and below 

zero for some (not necessarily meaningful) values of the variables involved. Third, we see that 

our confidence regarding (i.e., standard errors and significance levels for) the marginal effect of 

Runoff also varies with values of Groups. Although we have plotted these effects and confidence 

intervals over ranges including substantively or even logically meaningless ranges, we wish to 

emphasize that, in actual research, the researcher bears responsibility to ensure that interpretation 
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and presentation of the results corresponds with logically relevant and substantively meaningful 

values of the independent variables of interest. This implies that researchers must give (readers 

must demand, and editors must publish) such information about sample, substantive, and logical 

ranges necessary for the reader to recognize substantively and logically meaningful and sample-

covering ranges. We have projected Groups into negative and positive values for pedagogical 

purposes only, to display properties of the marginal effects and confidence intervals, but we 

reiterate that these would not be logically relevant values in this case. Indeed, presenting a graph 

like Figure 2, which extends well beyond the sample and indeed the logically permissible range, 

would foster misleading conclusions regarding the substantive meaning of our estimates. 

[FIGURE 2 ABOUT HERE] 

2. Presentation of Predicted Values. 

As discussed above, another effective method of interpreting coefficients and translating 

them into effects is by examining differences in predicted values across some values of a specific 

variable of interest. Tables and graphs of predicted values along with their associated confidence 

intervals can be generated according to the steps delineated below. Suppose we are interested in 

the prediction of y as x varies across a range of values, say from value a, its sample minimum, to 

c, its maximum, while holding z constant at some (meaningful and revealing) value. Changes in 

these predictions as x varies would reveal the effects of such changes in x on y at that level of z. 

We can easily create such tables or graphs of predicted values as x varies, holding z fixed. (N.b., 

xz will also vary with x, even though its other component, z, is held constant.) 

Changes in predictions, however, are only part of the story. Including measures of 

uncertainty around predictions is also imperative. As before, each predicted value has its own 

level of uncertainty attached to it. Thus, tables and graphs of predicted values should also include 
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standard errors or confidence intervals (or variances, standard errors, or significance levels) 

around each of those predicted values.  

The variance around each predicted value can be calculated as follows: 

)ˆˆˆˆ()ˆ( 0 xzzxVaryVar xzzx ββββ +++=  [19] 

Expanding this expression:29 

)ˆ()()ˆ()ˆ()ˆ()ˆ( 222
0 xzzx VarxzVarzVarxVaryVar ββββ +++=   

)ˆ,ˆ(2)ˆ,ˆ(2)ˆ,ˆ(2 000 xzzx xzCovzCovxCov ββββββ +++  

)ˆ,ˆ()(2)ˆ,ˆ()(2)ˆ,ˆ(2 xzzxzxzx CovxzzCovxzxxzCov ββββββ +++  [20] 

In words, the variance of a sum equals the sum of the variances plus two times all the 

covariances; more specifically to this case, the variance of a sum of random variables (here, the 

coefficient estimates) multiplied by constants (here, independent variables) is equal to the sum of 

the variances times the associated constants squared plus two times all the covariances times the 

product of their corresponding constants.30  

When an OLS regression is estimated, the estimated variance-covariance matrix of the 

parameter estimates of the β ’s is usually stored in memory, and the researcher can usually easily 

call the variance-covariance matrix through a post-estimation additional command.31  

Let us take our empirical example and calculate the variance of the predicted values 

corresponding with various values of Ethnic Groups and Runoff. Recall that the variance-

                                                 

29 Note 21 gives the more general, linear-algebraic formula for variances of linear combinations of random variables 
and constants. 

30 These are variances and confidence intervals for E(y|x,z=z0) and not forecast or prediction errors, which would 
include also some uncertainty due to the variance of the regression’s error term. See note 21. 

31 Appendix B provides step-by-step STATA commands. 
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covariance matrix of the coefficient estimates appears in Table 6.  When Ethnic Groups = 1 and 

Runoff = 0, we calculate ŷ  as: 

324.30*1*005.20*491.21*979.0303.4)0,1|ˆ( =+−−=== RunoffGroupsy  

Using Equation [20], substituting the values at which our independent variables are held (Groups 

=1 and Runoff =0) yields the following expression: 

)ˆ()1)(0()ˆ(0)ˆ(1)ˆ()0,1|ˆ( 222
0 GRRG VarVarVarVarRunoffGroupsyVar ββββ +++===

 
)ˆ,ˆ(*0*1*2)ˆ,ˆ(*0*2)ˆ,ˆ(*1*2 000 GRRG CovCovCov ββββββ +++  

)ˆ,ˆ()0*1(*0*2)ˆ,ˆ()0*1(*1*2)ˆ,ˆ(*0*1*2 GRRGRGRG CovCovCov ββββββ +++  

Substituting the estimated values of the variances and covariances of the coefficients: 

302.0900.0*2593.0509.1)0,1|ˆ( =−++=== RunoffGroupsyVar  

Table 11 presents the variance of the predicted values, when Runoff takes the values of 0 and 1, 

and when Ethnic Groups ranges from 1 to 3.   

[TABLE 11 ABOUT HERE] 

One can easily see that these calculations could become quite cumbersome, quite quickly, 

in the presence of additional covariates. In fact, calculation of the variance of predicted values 

would require attention to the variance of each estimated coefficient and the covariances between 

each of the estimated coefficients (plus the levels of all the interacting variables). In our simple 

model, which includes just three variables plus an intercept, this implies attention to ten terms. 

Including just one additional regressor (which did not interact with any others) would require us 

to include five more terms into Equation [19]! 

One way to simplify the expression is to use matrix algebra to depict ŷ  and to calculate 

Var( ŷ ) (see note 21). Note that a predicted value, ŷ , is generated by summing the products 
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between set values of the right-hand-side variables and their corresponding coefficients. Let Mh 

consist of a j by k matrix of values at which x, z, and any other variables of interest in the 

equation are set, where j refers to the number of evenly spaced values at which the predicted 

value is calculated and k refers to the number of regressors, including the constant. Suppose we 

were to hold z (and any the other variables) at some logically relevant value(s), say z0, and 

examine the changes in the predicted values of ŷ  at various values of x as x takes on j evenly-

spaced values between xa and xc, and correspondingly, as xz takes on j evenly-spaced values 

between xaz0 and xcz0.  

In our standard equation, we have estimated coefficients for x, z, and xz, in addition to an 

intercept. Mh would thus look like: 

Mh = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

1
1
1
1

00

0101

00

zxzx

zxzx
zxzx

cc

aa

aa

M
 

In Mh we can see that the value of x is varying between some value xa and some other 

value xc. The variable z is held to z0. The interaction term xz varies, because x is varying. The 

column of one’s represents the intercept that is estimated. 

We can then express the vector of predicted values ŷ  that are produced by this particular 

set of values as: 

=ŷ =Mh β̂  

Where β̂  = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
ˆ
ˆ
ˆ
ˆ

β
β
β
β

xz

z

x
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As a consequence, Var( ŷ )=Var(Mh β̂ ).  

Since Mh represents the matrix of values at which our variables are set, and since OLS 

specifies that our independent variables are fixed in repeated sampling (and fixed for prediction 

purposes), the matrix Mh can be extracted from the expression and treated as a constant:  

Var( ŷ )=MhVar( β̂ )Mh
’ 

Where Var( β̂ ) refers to the variance-covariance matrix of the estimated coefficients.  

The diagonal elements in the resulting matrix will correspond with the variance of the 

predicted values of ŷ , along various values included in Mh. In our empirical analysis, software 

programs will produce an estimate of Var( β̂ ), which we will denote as )ˆ(ˆ βV .  

Using our empirical example, we can thus calculate the variance of the predicted values 

of y as follows: 

Mh (varying values of Groups when Runoff = 0) = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1003
1005.2
1002
1005.1
1001

 

Var( ŷ |Runoff=0)=Mh )ˆ(ˆ βV Mh
’ 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1003
1005.2
1002
1005.1
1001

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

509.1900.0509.1900.0
900.0885.0377.1593.0
509.1377.1435.2900.0
900.0593.0900.0593.0

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11111
00000
00000
35.225.11

  

Which produces the following symmetric matrix: 
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= 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

446.1007.1567.0128.0312.0
715.0424.0133.0159.0

281.0138.0005.0
143.0149.0

302.0

 

The diagonal elements represent Var( ŷ ) for respective values of Groups when Runoff =0. 

Statistical computing software or even a basic spreadsheet program can make these 

matrix calculations very easy and quick to generate.  

Predicted values are more effectively displayed when graphed with confidence intervals. 

As with the marginal effects discussed above, confidence intervals around predicted values ŷ  

can be constructed as follows:  

)ˆ(ˆ , yVarty pdf±  

Where, as before, pdft ,  is the critical value in a t-distribution with df degrees of freedom that 

produces a p-value corresponding to ½ of the probability outside of the desired confidence 

interval. For example, lower and upper bounds of a 95% confidence interval will again come 

from pdft ,  of approximately 1.96 in large samples. 

In our empirical example, we calculated two sets of predicted values: ŷ  along evenly-

spaced values of Groups as to ranges from from 1 to 3, when Runoff equals 0 and then when it 

equals 1. To calculate a confidence interval, we must first calculate the variance of the predicted 

value and identify a desired level of confidence. Again, given our tiny sample, we will accept 

appreciable uncertainty and so select a 90% confidence interval, implying a critical value of 

t12,α=.10 = 1.782. We would thus calculate the upper bound and lower bound for the confidence 

intervals as follows: 

Upper bound: )ˆ(*782.1ˆ yVary +  
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Lower bound: )ˆ(*782.1ˆ yVary −  

For example, 302.0900.0*2593.0509.1)0,1|ˆ( =−++=== RunoffGroupsyVar . 

The corresponding upper bound would be calculated as:  

Upper bound: 304.4302.0*782.1324.3 =+  

Lower bound: 345.2302.0*782.1324.3 =−  

[TABLE 12 HERE] 

Table 12 displays the confidence intervals calculated for the predicted values of number 

of presidential candidates, when Runoff takes on values of 0 and 1, and when Groups ranges 

from 1 to 3.  These confidence intervals and predicted values could also be graphed.  Examples 

appear in Figures 3 - 6.   

[FIGURES 3 and 4 ABOUT HERE] 

Figures 3 and 4 show the predicted values of number of presidential candidates, when 

Groups appears on the x-axis, the predicted values appear on the y-axis, and the value of Runoff 

is fixed (at 0 in Figure 3 and at 1 in Figure 4).  To showcase the effect of Runoff, the researcher 

might overlay these graphs; the overlay of the marginal effects appears in Figure 5.  Confidence 

intervals are added to this graph in Figure 6.   

[FIGURES 5 and 6 ABOUT HERE] 

As with the graphs of marginal effects, we extend the range of Groups purely for 

illustrative purposes in Figure 7.  As with the graph of marginal effects, the graph of predicted 

values contains a straight line, indicating how the predicted value changes as Groups varies. The 

hourglass curves indicate the degree of certainty associated with each predicted value, ŷ . We 

can see that we have the greatest certainty around the mean of Groups, and less certainty at 

more-extreme and, especially, out-of-sample values of Groups, as explained above.  
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[FIGURE 7 ABOUT HERE] 

To examine the effect of a Runoff using the difference method, we could present a table 

of the predicted value of ŷ , in the presence and absence of a Runoff, for meaningful values of 

Ethnic Groups. One could generate a graph, but there would only be two points on the X-Axis 

(Absence and Presence of a Runoff). Hence, a table may be just as informative (although one 

might still prefer a box-and-whiskers plot of the two estimates and their associated confidence 

intervals or even a pair of normal curves with means at the estimated effects and standard 

deviations given by the standard errors).  Table 12 provides these values.  

The table reveals substantial overlap in the predicted number of presidential candidates in 

the presence and absence of a runoff system when only one ethnic group exists. However, at 

higher numbers of Groups, much less overlap occurs in the 90% confidence intervals around the 

predicted number of presidential candidates. This pattern suggests that as Groups increases, the 

impact of Runoff on the predicted value of y becomes more discernible statistically.  

3. Distinguishing the Two Methods. 

What is the difference between graphs of marginal effects and graphs of predicted values 

of y? Both answer the question of what effect x has on y, but in slightly different ways. The 

graph of marginal effects shows how the effect of x changes as z changes, allowing direct 

comparison of the conditional effects in a single plot. The graph of predicted values shows how 

the level of ŷ , the prediction for y, changes as x changes, at particular levels of z. By plotting 

and comparing several of these prediction lines, one can grasp the effects of x or of z and how 

they change as the other variable changes. Selection of one type of plot over the other is 

therefore largely dependent on the researcher’s presentational goals. Either method can 

effectively convey the substantive results from models involving interactive terms; we stress, 
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though, that either sort of graph should incorporate measures of uncertainty into its presentation. 

IV. THE MEANING, USE, AND ABUSE OF SOME COMMON GENERAL-

PRACTICE RULES  

Having discussed the formulation of interactive hypotheses, and the interpretation and 

presentation of effects, we turn now to some general-practice rules or advice given elsewhere 

and often followed in the discipline whose meaning and import seems sometimes less than fully 

understood. 

A. COLINEARITY AND MEAN-CENTERING THE COMPONENTS OF INTERACTIONS TERMS 

Having constructed the model and discussed its interpretation above, we turn here more 

directly to estimation of its parameters. One common concern regarding the estimation of 

interactive models is the (multi)colinearity, or high correlation, among independent variables 

usually induced by multiplying two (or more) of them together to obtain another (or others). 

Colinearity, as political scientists well-know, induces large standard-error estimates, reflecting 

our low degree of confidence in the partial coefficients estimated on these highly correlated 

factors. What is sometimes forgotten is that these large standard-errors are correctly large; the 

effect of some x controlling for other terms (i.e., holding them constant) is very hard to 

determine with much certainty if x and those others correlate highly. These large standard errors 

accurately reflect our large uncertainty in these conditions. These perhaps unfortunate, but very 

real, facts regarding colinearity led Althauser (1971), e.g., to argue against the use of interactive 

terms at all. However, to omit interactions simply because including them invites a greater 

degree of uncertainty in parameter estimates is to mis-specify intentionally our theoretical 

propositions, which assures at least inefficiency and probably bias (depending on standard 

omitted-variable-bias considerations: namely, if the omitted factor, xz, (partially) correlates with 
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the included, say x, and (partially) correlates with the dependent variable, y, then a bias of sign 

and magnitude given by the product of these two partial coefficients is incurred).  

Scholars, therefore, struggled valiantly for some technical artifice to reduce interaction-

induced colinearity. However, the only “cures” for colinearity—which is just fancy jargon for 

too-little information—remains either to ask the data only questions easier to answer (e.g., only 

first-order questions, like Table 3 or 5), which is often substantively unsatisfying, or to obtain 

more information, whether drawn from new data (preferably less-correlated, but more data will 

help regardless) or from heavier reliance upon the theoretical arguments/assumptions to specify 

models that ask more precise questions of the data than do generic linear-interactive models 

(e.g., Franzese 1999, 2003a) . 

Scholars devoted inordinate attention to illusory colinearity cures, the most commonly 

prescribed and taken of which in the interaction-term context, then and, unfortunately, now, was 

to “center” the variables x and z (i.e., subtract their sample means or “mean-deviate” them) that 

comprise the interactive term. Smith and Sasaki (1979) offered centering as a technique that 

would improve substantive interpretation of the individual coefficients, which it might in some 

substantive contexts. Tate argued that, although centering should not change the substantive 

effects (actually, it will not, see below), it “may improve conditioning through reduction of 

colinearity” (253), which ‘conditioning’ may have some relevance computationally given that 

computers use binary rather than base-ten yielding some rounding error (but see below). Morris, 

Sherman and Mansfield (1986), Dunlap and Kemery (1987), and others recommend centering 

less circumspectly. Cronbach’s (1987) centering technique, apparently, has attained considerable 

acceptance in political science, perhaps due to its advocation in Jaccard, Turrisi and Wan’s 
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(1990) Interaction Effects in Multiple Regression. Unfortunately, Cronbach’s clarification on the 

extremely limited value of the technique seems less widely known.  

Cronbach’s (1987) centering procedure is still used in the discipline. It is harmless, but 

also is no help, if understood correctly; our concern is that it seems widely misunderstood and 

misinterpreted. Some existing scholarly research using the centering technique claim, wrongly, 

that centering helps evade colinearity in some manner that actually produces more-certain effect-

estimates. Centering adds no new information of any sort to the empirical estimation, so it cannot 

possibly have produced more-precise estimates. It does not; it merely changes the substantive 

question to which the commonly reported coefficients and t-tests refer. Translating that answer 

back to the question answered by the commonly reported coefficients and t-tests in the non-

centered equation gives the same answer. We explain these points now. 

Recall our “standard” linear-interactive model: 

εββββ ++++= xzzxy xzzx0  [21] 

Cronbach (1987) suggested subtracting the sample means from each of the independent 

variables involved in the interaction and multiplying the resulting demeaned variables together. 

The mean-centered model, then (using γ  to represent coefficient values resulting from use of the 

centered data), is as follows: 

**)*)((** *****0 εγγγγ ++++= zxzxy zxzx  [22] 

Where xxx −=*  and zzz −=*  

Cronbach (1987) argued that rescaling variables could insure against computational 

errors—i.e., literally computational: deriving from inescapable rounding errors in translating 
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between computer binary and human base-10—that severe colinearity might induce.32 Cronbach 

(1987) also noted that centered and non-centered models “are logically interchangeable, and 

under most circumstances it makes no difference which is used” (415). Given the many 

thousands of times computing precision has increased since Cronbach’s writing, the 

computational concern has no current practical relevance in social science. 

Notwithstanding the considerable care in discussing centering that most advocating it 

adopted, many political scientists seem to have adopted the practice credulously. Because 

centering does not affect the substance of any empirical estimation in any way, because it will 

not affect the computational algorithms of any modern statistical software, and because it is so 

widely misunderstood in the field, we join Friedrich (1982), Southwood (1978) and others in 

strongly advising the field to abandon the practice or, at least, to take great care in interpreting 

and presenting the results following it implementation. (In some contexts, as clarified below, 

mean-centering could actually enhance interpretation, as Smith and Sasaki (1979) suggested, 

provided the reader is fully reminded of its implications in that context, we would add.) 

To clarify what centering does to the numeric and substantive estimates of an interactive 

analysis, which is something and nothing, respectively, consider again our basic linear-

                                                 

32 The computational issue here involves matrix inversion, namely the 1)'( −XX  in OLS formulae for coefficient and 
standard-error estimates, some of whose columns (i.e., independent variables) may correlate nearly perfectly. If 
columns of X correlate perfectly, the determinant of )'( XX , which appears in the denominator of the formula for 

1)'( −XX , is zero. Division by zero is, of course, impossible; therefore, obtaining distinct coefficient estimates (and 
so standard errors) when (some) columns of X correlate perfectly is impossible. All modern regression software 
warns of perfect colinearity when it obtains a zero determinant before allowing the computer to crash trying to 
divide by zero. Most warn of near-perfect colinearity well short of obtaining identically zero for that critical 
determinant, i.e., well short of perfect colinearity, because, the translation from your base-10 data-matrix to the 
binary of computers involves rounding error. When something near zero appears in a denominator and contains 
slight rounding error, the final answer could exhibit massive error. This is the concern Cronbach raises. The 
multiplicative terms in interactive regressions, he feared, could be near enough to perfect collinearity to cause severe 
binary-to-base-ten rounding-error problems. However, since his writing, computers have become many thousands of 
times more exact in their binary calculations’ approximation to base-10, meaning even this computational concern is 
no longer present in any practical social-science context. 
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interaction model and our centered model, which appear in equations [21] and [22], respectively. 

Starting from equation [22], and substituting terms, we see that: 

*))(()()( *****0 εγγγγ +−−+−+−+= zzxxzzxxy zxzx  [23] 

**************0 εγγγγγγγγγ ++−−+−+−+= zxzxzxxzzzxxy zxzxzxzxzzxx  

*)()()( *************0 εγγγγγγγγγ ++−+−++−−= xzzxxzzxzxy zxzxzzxxzxzx   [24] 

Comparing the centered equation in [24] with the original model in [21] highlights the 

exact correspondence of results between centered and uncentered regressions.   

zxzx zxzx *****00 γγγγβ +−−=  

zzxxx *** γγβ −=  

xzxzz *** γγβ −=  

**zxxz γβ =  

Collecting terms, we see that the first set of terms in equation [24] serves as the intercept 

term.  We see that the second set of terms in equation [24] serves as a coefficient for x.  The third 

set of terms in equation [24] serves as a coefficient for z.  The fourth term is the same in both 

versions of the model. Furthermore, trivially, since the right-hand-side models are 

mathematically interchangeable, the residuals and so the residual-variance from the centered and 

uncentered models are also identical.  

As we discussed above, researchers’ common troubles arise when they confuse 

coefficients with effects. We know, for example, that the marginal effect of x on y in equation 

[21] would be:  

zdxdy xzx ββ +=/  

The marginal effect of x* on y given equation [22] would be 



61 

**/ *** zdxdy zxx γγ +=  

With a little algebra, we can see that if zzxxx *** γγβ −= , then zzxxx *** γβγ += . 

Therefore: 

**/ **** zzdxdy zxzxx γγβ ++=  

Given that zzz −=* : 

zzzzdxdy zxxzxzxzxx *********/ γβγγγβ +=−++=  

Since **zxxz γβ = : 

zdxdy xzx ββ +=*/  

dxdydxdy /*/ =  

The marginal effect of a centered version of x is identical to the marginal effect of the 

uncentered version of x. The same identity, of course, applies to the effects of z. We reiterate: 

centering does not change the estimated effects of the variables of interest. 

And the estimated variance-covariance (i.e., standard errors, etc.) of those effects are also 

identical.  Thus, there is no change in the estimated statistical certainty of the estimated effects 

either.  For the uncentered data, we know that  

Given the results above, )ˆ,ˆ(2)ˆ()ˆ()/ˆ( 2
xzxxzx zCovVarzVardxydVar ββββ ++=  

Using the mean-centered model:  

)ˆ,ˆ(*)(2)ˆ(*)()ˆ(*)/ˆ( *****
2

* zxxzxx CovzVarzVardxydVar γγγγ ++=  

Substituting zzxxx *** ˆˆˆ γβγ +=  and **ˆˆ
zxxz γβ =  

)ˆ,ˆˆ(*)(2)ˆ(*)()ˆˆ(*)/ˆ( 2
xzxzxxzxzx zCovzVarzzVardxydVar ββββββ ++++=  

)ˆ,ˆ(2)ˆ()ˆ(*)/ˆ( 2
xzxxzx CovzVarzVardxydVar ββββ ++=  
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 )ˆ,ˆˆ(*)(2)ˆ(*)( 2
xzxzxxz zCovzVarz ββββ +++  

Re-arranging terms and substituting zzz −=* : 

)]ˆ()[(2)ˆ()()ˆ()ˆ(*)/ˆ( 22
xzxzxzx VarzzzVarzzVarzVardxydVar ββββ −+−++=  

 )ˆ,ˆ(2)]ˆˆ()[(2 xzxxzx CovzCovzz ββββ +−+  

)ˆ,ˆ(2)ˆ()ˆ(*)/ˆ( 2
xzxxzx zCovVarzVardxydVar ββββ ++=  

The variance of the estimated marginal effect of the centered x is identical to the variance 

of the estimated marginal effect of the uncentered x. 

Although the exact numeric values of the elements in the variance-covariance matrices 

for the coefficients using uncentered and centered data will naturally differ from each other, 

exact correspondence in the estimated parameter variances can be derived through algebraic 

manipulation of the values in the variance-covariance matrices. As an example, recall 

that zzxxx *** γγβ −= .  This implies that 

)ˆˆ()ˆ( *** zVarVar zxxx γγβ −= )ˆ,ˆ(2)ˆ()ˆ( *****
2

* zxxzxx CovzVarzVar γγγγ −+=  

Hence, while the estimated variance-covariance matrices will differ numerically from 

each other (i.e., )ˆ()ˆ( *xx VarVar γβ ≠ ), the precision in the effects of the variables will be 

identical, regardless of whether the data are estimated with centered or uncentered data.  Again, 

we warn the reader against confusing coefficients with effects.   

We have just shown that estimates of the substantive effects and all estimates of the 

certainty of those substantive effects are identical whether the data is mean-deviated or left 

uncentered. Why, then, one might wonder, do some coefficient estimates, their standard errors, 

and corresponding t-statistics differ? The answer is simply that the coefficients and associated 

standard errors and t-statistics do not refer to the same substantive effect across centered and 
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uncentered models. For example, in our standard model, εββββ ++++= xzzxy xzzx0 , the 

coefficient xβ  gives the effect of a unit increase in x when z equals zero; its standard error and 

the resulting t-ratio refer to the certainty of that x effect at that particular z value. In 

**)*)((** *****0 εγγγγ ++++= zxzxy zxzx , the coefficient *xγ  gives the effect of a unit increase 

in x* (or x, since a unit increase in x or x* is the same thing) when z* equals zero, which is not at 

all the same value of z as when z=0. Recall that zzz −=* , which means that z* equals zero 

when z (the uncentered variable) equals its mean, not when z is equal to zero (assuming, of 

course that 0≠z ). The standard error of this coefficient-estimate *xγ  and the resulting t-ratio 

refer to the certainty of the effect of a one-unit change in x at this different z value. Coefficients, 

standard errors, and t-statistics differ in centered from non-centered model because they refer to 

different substantive quantities, not because either model produces different, much less any 

better, estimates of effects than does the other. 

Centering can, in this manner, actually be useful for substantive interpretation in some 

contexts. If interpreted carefully and understood fully, centering sometimes can facilitate a more 

substantively grounded discussion of the empirical analysis. If z cannot logically equal zero, e.g., 

then substantive interpretation of xβ  is vacuous, but examining the effect of x when z is equal to 

its sample mean might be substantively revealing. If so, researchers might advantageously center 

z around its mean to aid substantive interpretation and discussion. That is, centering z around its 

mean allows one to interpret the coefficient on x, as the effect of x when z equals its mean rather 

than when z equals zero and the former may be a more meaningful and revealing value in some 

contexts than the latter. Further, it allows the researcher to interpret the t-statistic on *xγ  as the 

statistical significance of that effect when z equals its mean, which may likewise simplify 

discussion in some contexts. 
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Accordingly, our concern is neither that centering, properly understood, does something 

damaging because it does nothing, really, nor that centering cannot sometimes facilitate 

discussion because it can. Our concern is that researchers too often misinterpret the results of 

centering – and have come to the mistaken conclusion that centering alters the estimates of 

effects or the estimated significance of effects. We recommend that centering transformations, if 

applied at all, be applied only with the aim to improve substantive presentation, not, mistakenly, 

to improve (apparent) statistical precision, and certainly not, reprehensibly, to yield more 

asterisks of statistical significance on reported t-tests simply by algebraically transforming 

variables to have the standard coefficient tests refer to the effects at most advantageous values of 

other variables. To understand this last comment, refer back to the characteristic hourglass 

shapes of confidence intervals around interactive effects. By subtracting the appropriate value 

from the variable on the x-axis before interacting, the researcher can shift the coefficient on the 

other variable to refer to the effect of this other variable at any value of the x-axis variable 

desired. This changes nothing at all substantively, but the t-statistic and significance of the 

coefficient on the other variable can in this manner be optimized over this hourglass relative to 

the x-axis. The substantive interpretation of the effects and the certainty of those effects is 

completely unaffected by this statistical sleight-of-hand. Therefore, as we have said, reviewers 

and other readers must demand effect-line plots or tabulations along with appropriate certainty 

estimates over meaningful ranges of the interacting variables and must not be confused into 

thinking of the coefficients on the component variables in the interactions as “main” effects and 

so giving their t-statistics inappropriate meaning. 

B. INCLUDING X AND Z WHEN XZ APPEARS 

To estimate models containing multiplicative interaction terms, most texts advise and 
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political scientists have usually followed a hierarchical testing procedure: i.e., if xz enters the 

model, then x and z must also. If wxz appears, then all (six) of the lower-order combinations (x, 

w, z, xw, xz, wz) must appear also, and so on analogously for higher-order interactions. Allison 

(1979), e.g., writes, “[The] common rule… is that testing for interaction in multiple regression 

should only be done hierarchically... If a rationale for this rule is given at all, it is usually that 

additive relationships somehow have priority over multiplicative relationships” (149-150).  

While this rule is probably a highly advisable rule, if one must have a rule, and certainly 

a much safer rule than an alternative proviso that one can include or not include components to 

interactions with little concern or consideration, we believe researchers must understand the 

logical foundations of the models they estimate and the meaning and purpose of any proffered 

rule, no matter how usually useful, instead of merely following such rules unthinkingly by rote. 

We argue instead for theoretically-driven statistical specifications with better appreciation of the 

assumptions underlying alternative models. In this context, that suggests that the rule to include x 

and z if including xz, while usually a quite reasonable application of Occam’s Razor, frequently 

practically advisable, and almost always a good thing to check rather than assume, is neither 

logically nor statistically strictly necessary. 

In short, including both x and z if xz appears is probably less harmful than the sin of 

omission, but inclusion of x or z is, first of all, neither logically nor statistically necessary. As 

proof that the rule cannot be logical necessity, notice that one can decompose any variable into 

the product of two or more others; therefore, strict adherence to this rule would actually entail 

infinite regress. As a substantive example, note that real GDP (per capita) equals nominal GDP 

times a price-index deflator (times the population inverse); conversely, nominal GDP (per 

capita) is real GDP times a price index (times the population inverse). Nothing statistically or 
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logically requires researchers to include all these components in every model containing some 

subset of them. Researchers should, instead, estimate the models their theories suggest.  

What then is the reason for this so-often useful rule? We see several, related, very good 

reasons. First, given the state of social-science theory, the models implied by theory will often be 

insufficiently specified as to whether to include x and/or z in an interactive model. Due scientific 

caution would then suggest including x and z to allow the simpler linear-additive theory a 

chance. Failing to do so would tend to yield falsely significant estimates of coefficients on xz if, 

in fact, x or z or both had just linear-additive effect on y. Second, inclusion of the x and z terms in 

models involving xz allows a non-zero intercept to the conditional effect lines, such as those 

plotted above. This is important because, even if the effect of x or of z is truly zero when the 

other variable is zero, if this conditional relationship is nonlinear, allowing a non-zero intercept 

to the linear-interactive estimate of the truly nonlinear interaction (by including x and z) will tend 

to enhance the accuracy of the linear approximation. Third, and perhaps most importantly, even 

when the theory clearly excludes x and/or z, from the model, i.e., when it unequivocally 

establishes the effect of one (or both) variable(s) to be zero when the other is zero, the researcher 

can and should test that assumption and report the certainty with which the data supports the 

exclusion. If that test supports exclusion, then both theory and evidence recommend exclusion of 

these components, so their inclusion is misspecification, not, as the blind adherence to the rule 

would have it, their exclusion. For this sort of empirical exploration, only finding a coefficient 

expected to be zero in fact to be estimated as (very close to) zero and, highly preferably, with 

small standard error is clear evidence from the data that the assumption holds. That is, clear 

support for the assumption comes from failure to reject because the estimate is with some 

certainty near zero, rather than the other two reasons one might fail to reject: near zero but large 
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standard error, which is more ambiguous, and far from zero and large standard error, which is 

probably not support. In sum, then, this rule, as an application of Occam’s Razor, is a safer adage 

than its absence, but researchers should still, first, understand the basis for the rule and, second, 

should not shy from breaking it if their theory and the data strongly suggest doing so.  

We now elaborate these points more fully and formally. If the theory expressly excludes z 

from having any effect on y when x is zero—i.e., non-zero presence of x is a necessary condition 

for z to affect y, the correct model is: 

εβββ +++= xzxy xzx0  [25] 

By this model, as theory demands, the effect of z on y, (dy/dz) equals xxzβ , which is zero 

when x=0. To estimate this model is to hold the necessity clause that x must be present for z to 

affect y true by assumption, not allowing the data to adjudicate the question. If, however, z does 

affect y even when x is zero, [25] would suffer omitted-variable bias; it should have included z. 

When OLS models omit such relevant factors, coefficient estimates will wrongly attribute the 

omitted effects to whatever does enter the model that correlates with the omissions. In this case, 

that will most likely imply a biased xzβ  estimate (primarily). OLS will attribute some of the true-

but-omitted effect-of-z-when-x=0 to z’s interaction with x, so the estimate of xzβ  will be too 

large (small) when this true-but-omitted effect is positive (negative). Thus, if the omitted effect 

is, e.g., positive, not only will the estimated effect of z on y (i.e., dy/dz= xxzβ ) reflect a greater 

conditional effect than truly exists (i.e., greater slope to this effect line), and not only does this 

imply underestimation of the effect of z on y at low x and over-estimation at high x, (i.e., too-low 

effect-line intercept: zero in fact), but, conversely, the effect of x on y (i.e., dy/dx= zxzx ββ + ) 

will be estimated as more conditional upon z than it truly is, implying too great a slope to this 



68 

effect line also and, likely, therefore also too low an intercept ( xβ ) to that effect-line. Rather than 

assume such necessity clauses by omitting key interaction components, even when the 

underlying theory unequivocally demands their exclusion, we recommend researchers test them 

by first estimating the model including all multiplicative term lower-order components:  

εββββ ++++= xzzxy xzzx0   [26] 

An insignificant coefficient of zβ  here might then support the exclusion theory and 

provide some justification for proceeding with the necessity clause in place. But recall that a t-

test on zβ  only refers to the effect of z when x equals zero. However, here too, the basic caution 

of the hierarchical if-xz-then-x-and-z rule, seems well-taken. The theory concludes zβ  should 

equal zero, so, even more so than usually, we would hardly want to accept that hypothesis 

merely because we fail to reject it at some high significance level (90% or 10.0=α ). Recall that 

failure to reject can occur with small coefficient-estimates and small standard-errors, small 

coefficient-estimates and large standard-errors, or large coefficient-estimates and larger standard-

errors. Only the first of these cases should give the researcher great comfort that she may 

estimate the model that assumes the necessity clause by omitting (an) interaction component(s); 

the second gives less support for such a restriction; and that last gives very little or none at all. 

In sum, although following the cautionary, Occam’s Razor, hierarchical rule is certainly a 

more sensible starting point than ignoring it, and although empirical tests of exclusionary 

hypotheses over-riding that rule are not likely to support its abrogation frequently in social 

science, estimating models like [26] that include interaction components when true models, e.g. 

[25] perhaps, actually exclude them will cost researchers some inefficiency if not bias. That is, 

estimating [26] when the true model is [25] involves trying to estimate more coefficients than 

necessary, which implies inflated standard errors. Moreover, these included-but-unnecessary 
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coefficients, xβ  or zβ , are on variables, x or z, that are likely highly correlated with the 

necessary ones, xz, which implies greatly inflated standard errors. Thus, the inefficiency of over-

cautious interaction-component inclusion could easily and often be severe enough to lead 

researchers to miss many interactions actually present in their subject. 

Hence, we mildly disagree with rigid rules that component variables must necessarily 

appear in all models containing interaction terms. Here, as always, theory must guide model 

specification, and no effective substitute—such as rigid rule-following—exists for understanding 

the consequences of one’s methodological decisions. Specifically on the hierarchical approach, 

we recommend that the researcher (a) acknowledge and discuss the assumptions/arguments 

underlying the decision to omit or include components of their interaction terms, (b) gauge 

statistically the certainty with which the data supports those assumptions, and then (c) apply 

Occam’s Razor by following hierarchical procedures unless theory and data clearly indicate that 

doing so is unnecessary and over-cautious. 

V. EXTENSIONS. 

Having discussed how to model interactive hypotheses empirically, to evaluate them 

statistically, and to interpret them substantively, and now having discussed and hopefully 

clarified the role of some general practice rules, we turn next to some more-technical statistical 

concerns often raised regarding interaction-term usage in regression analysis. The first issue 

regards three-way interactions, which we can understand in the context of the framework already 

developed herein. The second issue, regarding separate versus pooled-sample estimation of 

interactive effects, should interest all readers. Readers less interested in more-technical matters, 

though, can skim the ensuing sections, being sure to take from them, however, the strong 

recommendation that one employ some version of White’s robust (heteroskedasticity-consistent) 
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variance-covariance (standard-error) estimator when estimating regression models that include 

multiplicative interaction-terms. The third issue concerns estimation and interpretation of 

interaction terms in nonlinear models.  And the fourth issue concerns modeling and estimating 

stochastically (rather than determinatively) interactive relationships. 

A. THREE-WAY (AND MULTIPLE) INTERACTIONS. 

On occasion, a researcher might also seek to analyze a more complicated model that 

includes a three-way interaction. Nearly all of the discussion above applies to this case. Suppose 

a researcher wanted to estimate the following model: 

xzwxwzwxzwzxy xzwxwzwxzwzx ββββββββ +++++++= 0   [27] 

Interpretation of results follows from the above discussion. We reiterate the perils of 

confusing coefficients with effects. The coefficient xβ  refers to the effect of x when z and w are 

both zero; the coefficient zβ  refers to the effect of z when x and w are both zero; the coefficient 

wβ  refers to the effect of w when x and z are both zero. Interpretation of each coefficient in this 

fashion can thus be quite cumbersome; we thus encourage either differentiation or calculation of 

predicted values to identify effects of the variables of interest.33  

The conditional effects of x, z, and w are, respectively:  

zwwzdxdy xzwxwxzx ββββ +++=/  [28] 

xwwxdzdy xzwzwxzz ββββ +++=/  [29] 

xzzxdwdy xzwzwxww ββββ +++=/  [30] 

                                                 

33 Indeed, other non-linearity in variables extensions of linear-additive models, such as squares or other powers of 
regressors, logs of regressors, etc., are even more difficult to interpret without differentiation. For example, the 
marginal effect of x on y in the model εβββ +++= 2

210 xxy xx  is xxxdx
dy

21 2ββ += , which we believe 
would be hard to ascertain without differentiation. 
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The estimated variance of the estimated marginal effect of x on y is:  

)ˆ()()ˆ()ˆ()ˆ()/ˆ( 222
xzwxwxzx VarzwVarwVarzVardxydVar ββββ +++=  

)ˆ,ˆ(2)ˆ,ˆ(2)ˆ,ˆ(2 xzwxxwxxzx zwCovwCovzCov ββββββ +++  

)ˆˆ()(2)ˆˆ()(2)ˆˆ(2 ,,, xzwxwxzwxzxwxz CovzwwCovzwzzwCov ββββββ +++  

Or, in matrix notation: 

[ ]xzwxwxzxdxyd ββββ ˆˆˆˆ/ˆ = [ ]zwwz1 ’ [31] 

[ ]zwwzdxydVar 1)/ˆ( = [ ]xzwxwxzxVar ββββ ˆˆˆˆ [ ]zwwz1 ’  [32] 

In essence, the variance of the conditional effect is the sum of all the variances of the 

variables multiplied by their cofactor squared plus twice (or two times) all the covariances times 

the product of their cofactors.  

Predicted values can be calculated following the procedures outlined above. The 

researcher might calculate a set of predicted values for y as x varies between xa and xb, holding z 

and w at logically relevant values. The variance of the predicted values would be facilitated by 

the matrix multiplication described above, where ŷ =Mh β̂ , and Var( ŷ )= MhVar( β̂ )Mh
’
. 

B. SEPARATE- VERSUS POOLED-SAMPLE ESTIMATION OF INTERACTIVE EFFECTS 

Researchers often explore the interactive effects of nominal (binary, categorical, etc.) 

variables by splitting their sample according to these nominal categories and estimating the same 

model separately in these subsamples.34 In behavioral research, for example, scholars may 

explore interactive hypotheses arguing that race, gender, and party identification structure the 

                                                 

34 Indeed, sometimes, even ordinal or cardinal variables are separated into high(er) and low(er) categories for sample 
splitting in this manner. In addition to the considerations to be discussed below, this will entail inefficiency as the 
gradations of ordinal or cardinal information are thrown away in the conversion to nominal categorization, although 
the practice may be justifiable in some cases (we suspect rarely) on other grounds. 
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impact of other variables by estimating the same model in subsamples separated by race, gender, 

etc. For example, a researcher might estimate the effect of socioeconomic status, x, on political 

participation, y, separately in samples of male and female respondents to explore whether 

socioeconomic status affects the propensity to vote differently depending on gender. This also 

occurs in comparative or international politics, such as in studies of exchange-rate regimes in 

political economy, or country or region in other aspects of comparative and international politics. 

A researcher might, for instance, estimate a model of electoral cycles in monetary policy 

separately in subsamples of fixed- and flexible-exchange-rate country-times. Similar subsample 

estimation strategies populate all subfields of political science. Such subsample estimation (1) 

produces valid estimates of the (conditional) effects of the other variables at these different 

values of the “moderating” variable, (2) commendably recognize the conditionality of the 

underlying arguments, and (3) can (perhaps with some effort) reproduce any of the efficiency 

and other desirable statistical properties of the alternative strategy of pooling with (nominal) 

interactions.  However, these subsample procedures also (1) isolate, at least presentationally, one 

variable as the moderator in what is logically a symmetric process—if x moderates the effect of z 

on y, then z moderates the effect of x on y and vice versa—thereby obscuring the converse, at 

least presentationally, and, (2) more fundamentally, do not facilitate statistical comparison (i.e., 

standard errors) of the effects of “moderated” (or “moderating”) variables—i.e., one cannot as 

easily determine whether any differences in estimated effects across subsamples are statistically 

significant or as easily determine the (conditional) effects of the variable being treated as the 

“moderating” variable as one can in the pooling strategy. 

An alternative approach is to estimate a model that keeps the samples together and that 

includes interaction terms of all of the other covariates, including the constant, with the variable 
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being treated as the “moderator”; this is sometimes called a “fully interactive” model. The two 

approaches (separate-sample versus fully interactive pooled sample) extract almost identical sets 

of information from the data, but pooled-sample estimation more easily extracts slightly more 

information, potentially more efficiently, and more easily allows for statistical testing of the full 

set of typical interactive hypotheses. That is, any desirable statistical properties that one can 

achieve by one strategy can, perhaps with considerable effort, be achieved by the other (see, e.g., 

Jusko and Shively 2004), but we believe the pooled interactive strategy lends itself more easily 

to obtaining these desirable qualities and, in some cases, also to presenting and interpreting 

results. Hence, we suggest that separate sample estimation be relegated to exploratory and 

sensitivity-and-robustness-consideration stages of analysis and replaced by pooled-sample 

approaches for final analysis and presentation. 

As an example, a researcher, wishing to explore gender differences, g, in the effect of 

socioeconomic status and other independent variables, X, on propensity to vote, y, separates her 

sample into males and females and estimates: 

Sample g=Male: mm uXmy += β  [33] 

Sample g=Female: fff uXy += β  [34] 

Let M (F) be the number of observations in the male (female) sample. Let j index the 

columns of X (e.g., xgj represents the jth independent variable, for the gender g sample; gjβ  is the 

coefficient on the jth independent variable, for the gender g sample), and let J be the number of 

independent variables. To obtain distinct coefficient estimates by gender, the researcher has 

several options. She could estimate models [33] and [34] separately, once per sub-sample, or she 

could pool the data into one sample and either reconfigure the X matrix by manually creating 

separate Xm and Xf variables for each column of X, where Xm replaces each female respondent’s 
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X-value with zero and Xf does analogously for male respondents. This allows distinct 

coefficients on Xm and Xf and, if the constant (intercept) is also separated into Xm and Xf in this 

way, will produce exactly the same coefficient estimates as separate-sample estimation does. 

Identically to this manual procedure, the researcher could simply create an indicator variable for 

gm=male, another indicator for gf=female, and include these two indicators in place of the 

intercept and the interaction of each of these indicators with all of the other independent 

variables in place of those independent variables. Each gmX and gf·X here will equal the Xm and 

Xf from the manual procedure just described, so this too produces exactly the same coefficient-

estimates as the separate-sample estimation. Finally, the researcher could simply create one 

gender indicator, say the female gf, and include in the pooled-sample estimation all of the X 

independent variables, unmodified, plus that gf indicator times each of these X variables 

(including the constant, which product just reproduces gf). This, too, would produce the same 

substantive estimates for the model as separate-sample estimation, but the coefficients would 

now refer to different aspects of that substance. The coefficient on each variable xj (including the 

intercept) in this last option would refer to the effect on y of that variable among males, whereas 

those coefficients on each xj plus the coefficient on the corresponding interaction term, gf·xj, 

would refer to the effect on y of that xj among females. And the coefficient on gf·xj would refer to 

the difference from the effect of that xj among females to the effect of that xj among males. If all 

of these approaches produce the same substantive results from their estimates, why might 

researchers prefer one or the other of them? 

In our review, researchers rarely offer reasons for presenting separate subsample 

estimations of interactive effects. Perhaps some do not realize that pooled-sample alternatives 

employing interaction terms exist and, as we show next, are at least equivalent on all grounds 
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except, perhaps, convenience, where in some regards they might dominate and in other regards 

be dominated. Others may note more explicitly that, lacking a priori hypotheses about what 

differences in the effects of the various xj to expect across their subsamples, they wish simply to 

explore inductively what some possible candidates for interactive effects might be, and they find 

separate-sample estimation a convenient and easily interpreted means of conducting such 

exploration. The more technically savvy might even suggest that they did not wish to impose or 

estimate any distributional features of the residual term across subsamples, which would be 

necessary to validate statistical comparison of subsample coefficient-estimates in pooled 

estimation, but we found no published article that made such an argument. 

In the separate-sample approach, researchers estimate one equation for males: 
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and the exactly analogous equation for females. Typically, they estimate these equations 

separately in each subsample and “eyeball” the results for differences in estimated β , which, 

assuming no other interactions, reflect directly the effect of the associated x in that sample. That 

is the often-cited ease of interpretation. However, the second or third of the pooled-sample 

options described above (i.e., creating distinct Xf and Xm variables manually or by dummy-

variable interaction) exactly replicates these coefficients estimates, so if researchers prefer this 

sort of interpretability (another sort exists: see below), either pooled- or separate-sample 

estimation can produce it. Presentationally, too, one can just as easily display two columns of 

coefficient estimates from one pooled-sample equation as from two separate-sample estimations. 

Therefore, this direct interpretability of effects by subsample cannot adjudicate between pooled 
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and separate-sample approaches since one can present the same results in the same fashion 

regardless of whether those results derived from pooled or separate-sample estimation. The other 

sort of interpretability—estimates that yield a direct statistical test of the significance of the 

difference between subsample estimates of the effects of X—can adjudicate and decidedly favors 

pooled-sample estimation (see below). 

The claimed convenience of separate-sample estimation, for its part, arises (we believe) 

from the user-interface particularities of many statistical-software packages. In many packages, 

restricting the sample on which a command (e.g., OLS estimation) executes is easier than 

creating separate Xf and Xm variables directly or through appropriate interaction application. We 

do not dispute this convenience. Although such exploratory analysis has its own quite severe 

perils—namely, any such pre-vetting exploratory analysis strictly speaking invalidates all 

statistical tests of any estimates from the final-analysis models—almost all social scientists do 

conduct such preliminary explorations and have good reasons for doing so. Despite these known 

and severe perils, the state of most social-science theory probably mandates such exploration; 

rarely will our first approach to data even remotely approximate the true model we should have 

estimated. We do not condemn such exploration here. Therefore, given that such preliminary 

exploration remains perhaps an unavoidably necessary step in positive social-science, and that 

preliminary exploration should certainly be convenient, we suggest that separate-sample 

estimation remain common practice in preliminary analyses where convenient.  

However, in final analyses, we will certainly want to report the most interpretable and 

accurate parameter-estimates possible, along with the most accurate and interpretable estimates 

of those parameters’ uncertainty and that of any substantively important comparisons of those 

estimates. Pooled-sample estimation has, as noted above, at least identical interpretability and, as 
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elaborated next, tends to dominate regarding the ease with which it can flexibly modify model 

assumptions that could improve the efficiency of coefficient estimates and the accuracy and 

interpretability of standard errors. 

Underlying any separate-sample estimation in the first place is at least the hunch that the 

effect of some independent variable(s) differ(s) across the categories distinguished by the 

subsamples. Thus, certainly, anyone conducting such analysis will wish to compare coefficient 

estimates across such subsamples. However, separate-sample estimation encourages researchers 

merely to eyeball such comparisons. If the classical OLS assumptions apply in each subsample 

(so the OLS β̂ ’s are BLUE), then the researcher could test the statistical significance of any 

estimated differences in parameters estimated separately across subsamples by difference in 

means tests of each fβ and corresponding mβ : 

H0: mf ββ = , or 0=− mf ββ   

Ha: mf ββ ≠ , or 0≠− mf ββ  

Conducting the standard t-test on this null hypothesis: 
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We note, first, that few researchers in our review of the literature actually conducted this 

test; at best, they offered instead some vague reference to the individual standard errors of the 

two coefficient estimates in question. Although the subsample coefficient estimates will be 

independent by construction—the orthogonality of the indicator-variables assures this—which 

implies that the covariance in the second term is zero, the simple sum of the standard errors of 

the two coefficients is not the correct standard error for the estimated difference. The standard 

error of the estimated difference between the two coefficients is the square root of the sum of the 
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estimated variances of the two coefficients. To conduct this comparison across subsamples of 

estimated effects, the reader should (since the researcher heretofore typically has not) square the 

reported standard-error estimates; sum those variances; and square-root that sum.  

Pooled-sample estimation allows a more directly interpretable formulation if the goal is 

to test whether effects differ across subsamples. Namely, with the right-hand side of the model 

specified as X and the nominal indicator(s) times X, the coefficient(s) on the interaction terms 

directly reveal the difference in effects across subsamples and the standard t-test on that 

interaction-term coefficient directly reveals the statistical significance of that difference. 

(Likewise, the standard F-test on the set of interaction terms tests whether the set of effects of X 

jointly differ across subsamples.) Thus, regarding interpretability, pooled-sample estimation 

offers two ways of presenting the same substantive results, one that replicates the same 

interpretability of coefficients as effects in subsamples afforded by separate-sample estimation, 

and another that affords direct interpretation of coefficients as the estimated difference between 

effects across subsamples and of the standard t-tests or F-tests on those coefficients as revealing 

the statistical significance of that estimated difference.35  

Formally, either manually or by dummy-variable interactions, one arranges their X matrix 

in block diagonal: 

                                                 

35 Moreover, pooling not only produces identical effect estimates as those obtained from separate samples, but it also 
(under CLRM assumptions) constrains the variance of residuals, 2s , to be equal for the two samples and not to 
covary across subsamples. Separate-sample estimation makes no such assumptions; thus, pooled-sample estimation 
borrows strength from the other subsample(s) to obtain more precise coefficient estimates (smaller standard errors), 
although only correctly so if these assumptions are correct (see below). 



79 

)1(2

1

0

1

0

))1(2()(
1

111

1

111

1)(

1

1

10...0

0
100

0...01

0...01

+++

+
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

k
fk

f

f

mk

m

m

kxFM
fkFFf

fkf

mkMMm

mkm

xFM
mF

f

mM

m

XX

XX
XX

XX

y

y
y

y

β

β
β
β

β
β

M

M

MMOM

M

LL

OMM

M

L

M

M

 [36] 

Recall that 12 )'(ˆ −=Σ XXs . Since the X-matrix here is block-diagonal, the inverse will 

also be block diagonal, and the elements for males of (X’X)-1 and X’y, which comprise the 

coefficient estimate for males mβ̂ =(Xm’Xm)-1Xm’ym are identical to what they would have been 

with the samples separated. The statistical test for the equality of the male and female coefficient 

estimates is then just the standard F-test on the equality of sets of two parameters ( mf ββ = ). 

Note, though, that the single 2s  estimated here naturally differs from the two, 2
ms  and 2

fs , 

estimated separately in the subsample estimates. I.e., pooled OLS assumes that 2s  is the same 

across the two samples. That one 2s  estimate, which is the average squared-residual, sums 

squared-residuals across the entire sample and divides by N-k with the N reflecting the entire 

sample (M+F) and k reflecting the 2(kg+1) coefficients in the pooled estimation. Separate-

sample estimation allows 2s  to vary, producing one estimate for each subsample, and each sums 

only the squared residuals from its subsample and divides only by its subsample N. The latter is 

inefficient. In other words, we obtain better estimates of 2s  and, with it, of estimated coefficient-

estimate variance-covariances in pooled- than in separate-sample estimation—if, indeed, the 

residual-variances are equal across subsamples—by imposing this restriction as in pooled OLS 

rather than estimating two separate 2s  terms. In this case, the inefficiency manifests as one of the 
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2
ms  and 2

fs  being larger than it need be and the other smaller than it should be. More generally, 

some of the 2
is  will be larger than need be and others smaller than should be. To explore whether 

such a common error-variance assumption is warranted, we can test whether heteroskedasticity 

instead prevails rather simply, and statistical techniques to address that if so are also simple, 

efficient, and well-known (see below). 

Other model restrictions, such as constraining some coefficients to be equal across 

subsamples while allowing others to vary, are also easier to implement in pooled-sample 

estimation and will also, if true, enhance coefficients and standard-error estimates’ efficiency. 

For example, we may posit, or theory may establish, or even some accounting or mathematical 

identity may require, that some x affect males’ and females’ voting propensities equally (or 

equally and oppositely, or otherwise relatedly in some deterministic manner). Rather, then, than 

estimate both of these effects separately, as separate-sample estimation all-but requires36, one 

could in pooled-sample estimation simply refrain from including that or those dummy-variable 

interactions (and reverse the sign of those variables in the male or female sample, or analogously 

impose the constraints directly for other restraints). As with a common-variance assumption, 

such cross-subsample restrictions can be tested, rather than assumed and imposed without 

testing, and again perhaps more conveniently in pooled than in separate-subsample estimation. 

In multi-category cases of the approach of including X and its interactions with the 

category indicators, one can include X, all the categories except one, and all the interactions of 

the former with the latter, in which case the excluded category becomes the suppressed reference 

                                                 

36 To our knowledge, only some relatively complicated iterative procedure, like MCMC (Markov-Chain-Monte-
Carlo), could succeed in imposing that some fm ββ ˆˆ = , for example, and correctly gauge the statistical uncertainty 
of that, single, coefficient estimate. 
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group that serves as the baseline for comparison.  Standard t-tests would in this case refer to 

whether the effect in the category in question differs significantly from that base case for that 

category’s indicator. Thus, whether obtaining separate coefficient estimates by category, which 

one can as easily do in pooled- as in separate-sample estimation, or obtaining one set of 

coefficients for a base category and another on a set of interactions with the other-category-

indicator(s) better facilitates interpretation and presentation depends on what substantive 

questions the researcher wishes to highlight more directly with the reported coefficients. In either 

case, as we showed in previous sections, one can interpret these interactive effects by calculating 

first differences or derivatives (pretending the non-continuous indicators are differentiable). 

In summary, the pooled-sample estimation facilitates at least equally and perhaps focuses 

attention more not just on comparison across subsamples but also on assessing the statistical 

certainty of such comparisons. Pooled-sample OLS estimation, moreover, imposes 

homoskedasticity across the subsamples, which, if true, adds some efficiency gains relative to 

separate-sample estimation.37 This common-variance assumption can be easily tested and relaxed 

if unwarranted. Likewise, imposing cross-subsample coefficient restrictions or, for that matter, 

any other cross-subsample restrictions, is at a minimum far easier to do in pooled than in 

separate-subsample estimation, and these too will enhance coefficient and standard-error 

estimates’ accuracy and efficiency if true. These gains could be large if subsamples are small 

and/or numerous, and they will be especially large if some of the coefficients may be constrained 

(correctly) to be equal across subsamples. If such homoskedasticity and/or equal-coefficient 

assumptions are false, however, the apparent efficiency gains will also be false, yielding 

                                                 

37 In this case, the efficiency gains imply that estimated standard errors will be more accurate not necessarily lower. 
As pooling borrows strength from the other subsamples to improve standard-error estimates, generally one (some) 
estimated effect(s) will receive lower and the (some) other(s) higher. 
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inaccurately smaller standard errors and/or bias and inconsistency. Still, to test for variance or 

coefficient differences across subsamples is simple. If the data insist that coefficients differ, this 

is easily allowed, and, if they insist that heteroskedasticity (and/or correlation) among residuals 

patterned by gender exists, then one can model that variance (or variance-covariance) structure 

as a function of sex and employ weighted (or feasible-generalized) least-squares as usual in the 

pooled sample. Thus, in short, compared to separate-sample estimation: (1) pooled-sample 

estimation can yield identical or superior interpretability; (2) it can encourage statistical 

comparison of effects more than mere eyeballing; and (3) it may improve efficiency (precision) 

of estimation more easily if any efficiency-enhancing cross-subsample coefficient or error-

variance/covariance constraints are warranted and easily test whether they are (and relax them if 

they are not). Therefore, we generally recommend researchers present pooled-sample estimates 

as their final analysis—and report on the statistical certainty of any differences in effects they 

deem substantively important—even if they find conducting preliminary exploratory analysis in 

separate subsamples more convenient. We return in section V.D below to some complicating 

considerations for this judgment raised by certain stochastic properties one might reasonably 

expect in some data structures, finding however that the core of our conclusion remains: in 

general, anything one can do in separate samples, one can do in pooled estimation with the 

corresponding interactions; some things will be easier or more convenient or presentationally 

advantageous in one approach than the other; and, in our view still, the techniques and emphases 

abetted by the pooled-sample estimation generally dominate. 

C. NONLINEAR MODELS. 

To this point, we have limited our discussion to interactive terms in linear models. It is 

fitting, though, to address interaction within nonlinear models also. For nonlinear models that 
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explicitly include interactive terms, much of the discussion in preceding sections continues to 

apply. However, a complication generally arises when we think about the effect of a variable x 

on a dependent variable y, when these variables are nonlinearly related. (A further complication 

may arise in the contexts discussed in the next section and is discussed there.) When this occurs, 

as, for example, in logit or probit models, the effect of a variable x on y already depends on the 

values of the other variables z due to the imposed nonlinear structure of the model. Thus, 

nonlinear specifications implicitly consist of conditional relationships between the variables, 

although they may not be explicitly modeled as such. The issue, then, regards the proper 

interpretation of these variables upon which a conditional relationship has been imposed, or 

assumed by construction, by virtue of the particular model specification employed. 

How much interaction substance can we extract from a model that imposes a conditional 

relationship upon all of the variables but does not explicitly model a particular interaction 

between two variables? The danger, as Frant (1991)  and Nagler (1991) suggest, occurs when 

scholars overlook the assumptions embedded in nonlinear specifications such as logit and probit.  

These nonlinear functional forms both 1) impose a conditional relationship on the 

variables by construction and 2) use an S-shaped functional form implying specific character to 

these interactions, namely that the effects of changes in one variable on Y are likely to be larger 

when the predicted probabilities are closer to the midpoint and smaller away from it. Nagler, for 

example, critiques Wolfinger and Rosenstone’s (1980) claim that the effects of registration 

requirements in discouraging turnout are greater for low education groups. He argues that this 

larger effect derives from the functional form assumed a priori and do not necessarily result 

from an explicit or direct interaction between education and registration requirements, e.g., that 

the less educated find surmounting registration requirements more difficult. The logit form by 
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itself implies only that education interacts with registration requirements and vice versa because 

and through the other variable’s effect on the overall propensity to vote. Insofar as the being less-

educated puts one nearer a 0.5 probability of voting and being more-educated puts one further 

from that point, registration requirements will have greater effect on the less-educated’s 

propensity to vote for that reason alone. Nagler explores explicitly whether, additionally, 

education interacts with registration requirements (and vice versa) to help determine where on 

this S-shaped propensity-to-vote curve one actually lies, which would correspond more directly 

to Wolfinger and Rosentone’s substantive interpretation, by including a specific interaction 

between education and registration requirement in the model connecting the independent 

variables to the logit or probit parameters and by disaggregating the sample to estimate these 

logit or probit coefficients separately for different education levels, with strict and lax 

registration requirements. He finds little support for Wolfinger and Rosenstone’s conclusion.38 

The notion that multiple, explicit interactions determine one’s dependent variable 

                                                 

38 Similarly, Frant (1991)  reviews Berry and Berry’s (1990) research on state lottery policy adoptions. Frant argues 
that Berry and Berry draw their conclusions about the interaction between motivation, obstacles to innovation, and 
resources to overcome obstacles to innovation from the assumption inherent in the probit specification they employ. 
Berry and Berry (1991), however, disagree. They believe that their theory suggests that they estimate a probit model 
with no interactions or a linear probability model with a number of multiplicative terms. However, they prefer the 
probit model because the complexly interactive theory driving their model would require “so large a number of 
multiplicative terms as to render the model useless for empirical analysis because of extreme colinearity” (578). To 
argue that the complexly interactive nature of one’s theory debars explicit modeling of it is a very weak defense by 
itself for applying a specific functional form (probit) to allow all the independent variables to interact according to 
that specific functional form rather than explicitly to derive the form of these complex interactions from the theory. 
That is, as we suggest in the next paragraph and Frant (1991) notes, a stronger argument in defense would have been 
to demonstrate directly and explicitly that the theory implied specifically a set of interactions like those entailed 
inherently in a probit model, which, indeed, seems possible in this case. To generalize the example, an argument 
might involve some overcoming of resistance from a broad set of conditions (explanatory factors) being necessary to 
produce an outcome. It might also then invoke some notion of a tipping point set by some values of this set of 
conditions, and possibly even consider the outcome to become increasingly ‘overdetermined’ as the factors all push 
for the outcome. Such an argument, which seems similar to Berry and Berry’s would indeed imply an S-shaped 
relation, such as logit or probit, between the explanatory factors and the outcome. Alternative sources or types of 
interactions, however, would not be inherent in sigmoid functions lacking those further, explicit interactions. 
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suggests explicit modeling of those interactions, in as precise a fashion as theoretically possible. 

The defense for the specific form of interactivity implicit in logit, probit, and related models is, 

in fact, explicit and theoretical. The functional form of the outcome, i.e., that familiar S-shape, 

implies a particular and very specific set of interactions that produce such S-shapes (sigmoid 

functions); and, critically in our view, that such S-shapes should actually emerge is substantively 

and theoretically derived. Namely, it derives from the proposition that inducing probabilities to 

increase or to decrease becomes increasingly difficult, i.e. requires larger movements in 

independent variables, as those probabilities near one or zero, respectively (see also note 38). If 

the researcher wishes to infer beyond the specific forms of interactions that produce such S-

shapes, we concur with Nagler that she must model those further interactions explicitly. 

That said, we now discuss in more detail the interpretation of effects in two popular 

nonlinear models: probit and logit. For example, suppose the nonlinear function, often called a 

“link function”, is used to relate a binary outcome Y, with XB, where Y refers to a column vector 

of the dependent variable with n rows, X refers to a matrix of the regressors with dimension n x k 

(n observations by k regressors, including the intercept), and where B refers to a column vector 

of coefficients (the β ’s). In such a case, one could model the probability that a particular yi for 

observation i takes on a value of 1, )()1( Β== ii XFyp : thus, more generally, 

)()1( Β=≡= XFpyp . 

In the probit case, )( ΒΦ= Xp , where Φ  is the cumulative (standard) normal 

distribution. The cumulative normal distribution is indeed S-shaped so that ever larger increases 

or decreases in ΒX  are required to increase or decrease the probability y=1 as this probability 

draws closer to one or zero, respectively. In the logit case, )( ΒΛ= Xp , where Λ  refers to the 

logit function, which may be written as 1)]exp(1[)( −Β−+=ΒΛ XX . (Several other common 
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formulations of the same function, such as Β

Β

+
=ΒΛ X

X

e
eX

1
)( , also exist.)  

We begin with the simple equation modeled with the logit link function, omitting explicit 

interaction terms: 

1
0 )]...(exp(1[)( −++++−+=ΒΛ= wzxXp kzx ββββ  [37] 

As always, the effects of a variable x on p can be calculated by taking the first derivative of this 

function: using the chain rule. 39 

]/)()][(/[/ dxXBdFXBdFdpdxdp =  

In the probit case, this is simply: 

xXdxXBdFXBdFXddxdp βφ )(]/)()][(/)([/ Β=ΒΦ=  

where )( ΒXφ  is the (standard) normal probability density function evaluated at ΒX .40 Thus, as 

central to the theoretical proposition of an S-shaped relationship, the magnitude of effects of x on 

the probability that 1=y  are largest at 5.0=p  (at 0=ΒX ) and become smaller as that 

probability approaches one or zero (as ΒX  approaches infinity or negative infinity). 

In the logit case, the marginal effect of a particular x on p would be: 

2
2

))exp(1(
)exp(])][exp())exp(1([/ −

−

Β−+
Β−=Β−Β−+−=
X

XXXdxdp x
x

ββ  

In the specific model of equation [37], this would be:  

                                                 

39 Note the distinction here between conceptualizing marginal changes as a one-unit change in x literally computed 
(i.e., 1p̂ - 2p̂ ) versus an infinitesimal change in x (dy/dx). Generally, the former is recommended for discrete 
variables, and the latter for continuous variables. (See Greene 2003 for elaboration.) 

40 The derivative of any cumulative probability distribution, F, is the corresponding probability density function, f, 
so the derivative of Φ  is φ . 
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2
0

0

)}]...(exp{1[
)}]...([exp{/ −++++−+

++++−=
wzx

wzxdxdp
kzx

xkzx

ββββ
βββββ  

Obviously, the effect of x depends on the values of x, z,…, w as well as the estimated coefficients 

for kββ ,...,0 . Luckily, these somewhat complicated expressions simplify to something 

considerably more intuitive: 

xx pp
XX

Xdxdp ββ )1(
)]exp(1[

1
)]exp(1[

)][exp(/ −=
Β+Β+

Β=  

We can see directly in this formulation that the largest magnitude effects of x occur at 5.0=p  

and these effects become progressively smaller in magnitude as p approaches one or zero, 

producing that familiar S-shape again (although a slightly different S-shape). 

Now, when an explicit interaction term (for example, between x and z) is included in the 

model, the effects of x continue to depend on the values of the other variables via the nonlinear 

form, specifically the S-shape, of the model as above and now also movements along this S-

shape induced by movements in x depend directly on the value of z as well: 

1
0 )]...(exp(1[)( −+++++−+=ΒΛ= wxzzxXp kxzzx βββββ  [38] 

As always, the effects of x can be calculated using the derivative method or the method of 

differences in predicted values (in this case, predicted probabilities). A researcher following the 

first-derivative approach in interpreting a logit model with this explicit interaction in addition to 

its implicit ones would again apply the chain rule: 

2
2

))exp(1(
))(exp()])(][exp())exp(1([/ −

−

Β−+
+Β−=+Β−Β−+−=

X
zXzXXdxdp xzx

xzx
ββββ  

which again can be expressed conveniently as: 

])][(1)][([/ zXBXBdxdp xzx ββ +Λ−Λ=  

This is the same expression as before except that, now, the effect of x depends not only 
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on )](1)][([ XBXB Λ−Λ  as, and in the manner, implied by the sigmoid function connecting x to 

p, but also and again on the value of z in the manner implied by the linear-interaction of x and z 

contained in X. Thus, z modifies the effect of x on p not only by its role in the calculation of 

)]([ ΒΛ X , where it enters in the xzxzz ββ ++  terms, but also in the final term, dxdX /Β , where it 

enters in the expression zdxdX xzx ββ +=Β / .  

Alternatively, one could calculate the predicted probabilities, p̂ , with appropriate 

confidence intervals. The intuition behind calculating the predicted probabilities in a nonlinear 

model is exactly the same as that behind calculating predicted values of y in a linear model.  The 

nonlinear model just has an additional step in projecting the linear index (i.e., the sum of the 

coefficients times their covariates) through the nonlinear model (in this case) onto probability 

space. For example, suppose we estimated the following relationship:  

)( 0 xzzxFp xzzx ββββ +++=  

The predicted probabilities, generically, are )ˆ(ˆ Β= XFF . The linear index )ˆ( ΒX is computed in 

identical fashion to the OLS case:  

xzzxindex xzzx ββββ ˆˆˆˆ
0 +++=  

After calculation of the linear index, the researcher must use the link function (here, the logit 

)( ΒΛ X  or probit )( ΒΦ X ) to convert the linear index into probability space. In either case, the 

predicted probabilities would be calculated at various values of x (say, between xa and xb), 

holding z at some substantively meaningful and logically relevant value (e.g., its sample mean, 

z ), and of course allowing xz to vary from zxa  to zxc . The predicted probability in the logit 

case would thus be calculated first by computing the linear index:  

zxzxindex axzzaxa ββββ ˆˆˆˆ
0 +++=  
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And then projecting the linear index into probability space: 

ap̂  = )(exp
11

aindex−+  

For probit, the process is the same, substituting )( aindexΦ  for )(exp
11

aindex−+ , i.e. using the 

cumulative (standard) normal rather than the logit as the link function.  By repeating this process 

with x set to a value of xc, the researcher can thus see how a change in x (from xa to xc) induces a 

change in p̂  (from ap̂  to bp̂ ) when z is held at this particular meaningful level.  

We reiterate our strong recommendations for computation of measures of uncertainty 

around marginal effects and predicted probabilities. Standard errors for the marginal effects can 

be computed following the delta method, as described in any statistics text, e.g. Greene (2003). 

For any estimate of marginal effects, dp/dx, the asymptotic variance of that estimate is a function 

of the estimated variance-covariance matrix for Β̂  and the derivative (or gradient) of the 

marginal effects with respect to Β :   

Asy. Var[dp/dx] = [d(dp/dx)/d Β ]’V [d(dp/dx)/d Β ], where V = Asy. Var[ Β̂ ]. 

In the logit case, this yields the (rather long) expression: 

Asy. Var[dp/dx] = [Λ(t)(1-Λ(t))]2[I+(1-2Λ(t)βx’]V[I+(1-2Λ(t))xβ’] 

= [p(1-p)]2[I-(1-2p)βx’]V[I-(1-2p)xβ] 

Standard errors for the predicted probabilities can be calculated using the delta method 

also, so, analogously, the asymptotic variance for F̂  is a function of the estimated variance-

covariance matrix for Β̂  and the derivative (or gradient) of F̂  with respect to Β :  

Asy. Var [ F̂ ] = [ Β̂/ˆ dFd ]’ V [ Β̂/ˆ dFd ], 

where V = Asy. Var[ β̂ ] and Β̂/ˆ dFd  = [ Β̂/ˆ dXFd ][ ΒΒ ˆ/ˆ ddX ] = Xf̂  
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where f̂  is the density function (corresponding to F) evaluated at the estimated Β̂X , and X is 

the vector of values at which all of the independent variables are set for calculating the predicted 

probability. In the logit case, f̂ conveniently equals )]ˆ(1)][ˆ([ ΒΛ−ΒΛ XX , yielding: 

Asy. Var [ F̂ ] = 2f̂ X’V X 

For practical purposes, this means squaring the product )ˆ1(ˆ pp −  and multiplying the result by 

X’VX. This latter term consists of pre-and post-multiplying the variance-covariance matrix of the 

coefficients by the x vector specified at the values of interest. 

The standard error for the difference between the two estimates of probabilities being 

used to illustrate the effect of x in this example, is a bit more complicated but follows the same 

general delta method: 

Asy. Var [ ca FF ˆˆ − ] = [ ( ) Β− ˆ/ˆˆ dFFd ca ]’ V [ ( ) Β− ˆ/ˆˆ dFFd ca ], 

where ( ) Β− ˆ/ˆˆ dFFd ca  = Β−Β ˆ/ˆˆ/ˆ dFddFd ca = ccaa XfXf ˆˆ −  

which implies: 

Asy. Var [ ca FF ˆˆ − ] = [ ] [ ]ccaaccaa XfXfXfXf ˆˆˆˆ −
′

− V  

Many existing statistical software packages will calculate these standard errors of 

estimated probabilities for the researcher, and some will even calculate standard errors for 

derivatives or differences at user-given levels of the variables. Our intention here is to provide 

readers with a sense of the mathematics underlying the production of these standard errors and to 

reemphasize the importance of examining effects rather than simply coefficients (or predicted 

levels), be they estimated in a linear or nonlinear specification. 

D. RANDOM-EFFECTS MODELS AND HIERARCHICAL MODELS  

When modeling relationships between a set of covariates X and a dependent variable y, 
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scholars make assumptions about the deterministic versus stochastic nature of that relationship. 

For example, scholars might propose that the effects of x and of z on y depend either 

deterministically or stochastically on the other variable. The burgeoning “random effects” 

literature proposes this sort probabilistic relationship. (The related multi-level-model or 

hierarchical-model literature addresses a similar issue, though with different assumptions about 

the properties of the stochastic aspects of the relationships: see below.) 

Let us start thus: 

εβββ +++= zxy 210  [39]  

As before, the linear-interactive specification of the posited interactive relationships could be: 

00 γβ = , z211 δδβ +=  and x432 δδβ +=  [40]   

in the deterministic case, suggesting the following linear-interactive regression model: 

εββββ ++++= xzzxy xzzx0   [41] 

 where 4231 ,, δδβδβδβ +=== xzzx  

The linear-interactive model with stochastic effects would instead be:  

000 εγβ += , 1211 εδδβ ++= z , and 2432 εδδβ ++= x  [42]   

suggesting the following, similar-looking linear-interactive regression model:  

*0 εβββγ ++++= xzzxy xzzx  [43] 

but with: zx 210* εεεεε +++= . 

Thus, as easily seen now, the distinction between the deterministically interactive and the 

stochastically interactive models occurs only in the “error” term; i.e., the two models are 

identical except in their error terms, ε  versus *ε . In the first case, where the conditioning 

effects are assumed to be deterministic in nature, OLS (provided the specified model is correct, 



92 

of course) would be BLUE. In the second case, where the conditioning effects are assumed to be 

of a stochastic, or probabilistic, nature, one suspects OLS estimates might not be BLUE. Notice, 

however, that, assuming these stochastic terms have mean zero, E( kεε ,...,0 ) = 0, and do not 

covary with the regressors, Cov[( kεε ,...,0 ),X]=0, as commonly done in most regression contexts 

including hierarchical modeling, OLS estimation would still yield unbiased  and consistent 

coefficient-estimates. On the other hand, the composite residual’s variance, V( *ε  ), is not 

constant, which violates homoskedasticity (even if V( 0ε ), … ,V( kε ) are all constant), rendering 

coefficient estimates and standard errors inefficient. Moreover, this non-constant variance, i.e. 

heteroskedasticity, in fact depends on the values of x and z, which implies that the standard-error 

estimates (but not the coefficient estimates) are biased and inconsistent as well. Thus, even if the 

error components in the random effects model had constant variance, mean zero, and no 

correlation with regressors, as we would commonly assume, OLS coefficient estimates will be 

inefficient, and OLS standard-error estimates will be biased, inconsistent, and inefficient. These 

problems, though potentially serious, are probably small in magnitude in most cases and, 

anyway, easy to redress by simple techniques with which political scientists are already familiar.  

As mentioned above, similar modeling issue arises in the literature on hierarchical, or 

multi-level models (see, e.g., Bryk and Raudenbush 2001). Often these models propose that 

some individual-level yij is dependent on a contextual-level variable varying only across and not 

within the j contexts, zj, and an individual-level variable, xij, and furthermore that the effect of the 

individual-level variable xij depends (deterministically or stochastically) on zj: 

ijjijij zxy εβββ +++= 210  [44]  

)( 000 ijεγβ +=  
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)( 1211 jjz εδδβ ++=  

)( 2432 ijijx εδδβ ++=  

which implies that one may model y for regression analysis as:  

*0 εβββγ ++++= xzzxy xzzx   [45] 

where: )(* 210 jijijjijij zx εεεεε +++=  and the coefficients remain identical to those above. 

Assuming deterministic conditional relationships so that ijεε =*  and the parenthetical 

terms are all zero and assuming that this residual is well-behaved (mean zero, constant variance, 

and no correlation with regressors, as usual), OLS is BLUE of course. If, instead, ijε  exhibits 

heteroskedasticity and/or correlation across i or j, then OLS coefficient and standard-error 

estimates would be unbiased and consistent but inefficient in the case that the patterns of these 

non-constant variances and correlations were themselves uncorrelated with the regressors (their 

cross-products or squares). In the case that these patterns correlated in some fashion with the 

regressors (their cross-products or squares), OLS coefficient estimates would still be unbiased 

and consistent but inefficient, but OLS standard errors would be biased and inconsistent as well 

as inefficient, as usual in this context. These standard-error inconsistency problems could be 

redressed as usual by replacing the OLS formula for estimating the variance-covariance of 

estimated coefficients with a heteroskedasticity-consistent formula like White’s or the 

appropriate heteroskedasticity-and-correlation-consistent formula like Newey-West for temporal 

correlation, Beck-Katz for contemporaneous (spatial) correlation, or cluster for the case of a 

common correlation of stochastic components within units i. 

With stochastic dependence such that jijijjijij zx 210* εεεεε +++= , OLS coefficient-

estimates are still unbiased and consistent, but we see that the error term presents us with two 
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issues even in the case of well-behaved ijε : heteroskedasticity (with the composite residual term, 

*ε , depending on some linear combination of x and z) as well as autocorrelation (since j1ε  will 

be shared amongst all individuals i in context j).41  

Thus, the random-effects case and the multi-level case produce identical problems with 

OLS. Accordingly, the same solutions will apply. To begin, notice that some form of the familiar 

White’s or Huber-White’s style consistent variance-covariance estimators, i.e. so-called “robust” 

standard errors, will redress the inconsistency in the OLS estimates of the estimated coefficients’ 

variance-covariance. Recall that, given nonspherical disturbances,  

V( B̂ ) = E[( Β - B̂ )( Β - B̂ )’]          [46] 

= E[(X’X)-1X’(ε )[(X’X)-1X’(ε )]’] 

= E[(X’X)-1X’ 'εε [(X’X)-1X]] 

= (X’X)-1X’ E[ 'εε ](X’X)-1X 

Under classical linear regression model assumptions, ε ~N(0, 2σ ), E(ε X)=0.  

In the random coefficient case, zx 210* εεεεε +++= .  In the hierarchical model case, 

jijijjijij zx 210* εεεεε +++= . Both of these cases violate the assumptions of the classical linear 

regression model in essentially the same way: 
                                                 

41 Some of the current literature suggests that OLS coefficients are biased in the presence of multi-level random 
effects. This is false. Provided that the context-specific or other components of the composite error term do not 
correlate with the regressors, OLS will remain unbiased and consistent. The fact that Zj and εj are both common to 
all individuals in context j implies that the pattern of the non-sphericity in the composite V(ε*) relates to a regressor, 
Z, producing biased, inconsistent, and inefficient OLS standard-error estimates, but does not imply that the 
Cov(Zj,ε*) is non-zero. As long as this latter term is zero, OLS coefficient-estimates are unbiased and consistent, 
although inefficient. The inefficiency may be sufficiently great as to render unbiasedness and consistency of little 
practical comfort, but the problem is not bias. The “problem” with OLS for hierarchical models therefore resides 
solely in the efficiency of OLS coefficient-estimates and in the OLS estimates of the variance-covariance matrix of 
b. The problem is similar to that typically induced by strong temporal or spatial correlation: OLS coefficient 
estimates are unbiased and consistent but inefficient; standard errors are biased, inconsistent, and inefficient. Again, 
the inefficiency in coefficient estimates can be dramatic if the within-context correlation of individual errors is great, 
but, even so, bias and inconsistency do not correctly describe the problem. 



95 

In our random coefficient case: 

E( 'εε ) = )')(( 210210 zxzxE εεεεεεεε ++++++      [47] 

''''''''''''''''( 12111010201000210 εεεεεεεεεεεεεεεεεεεεεεεε zxxxxxzxzxE +++++++++++=  

)'''''''' 2221202 εεεεεεεε zzxzzz ++++  

Even assuming 20 ,...,, εεε  iid ~N(0, 2σ ), the variance-covariance matrix for B̂  in the random 

coefficient model is: 

V( B̂ )RC = 22σ  + xx’ 2σ  + zz’ 2σ  = 2σ (2I + xx’+ zz’)     [48] 

In the hierarchical model case, the basic structure is the same but the assumption that 

20 ,...,, εεε  iid ~N(0, 2σ ), is less credible because it is unlikely that the context-level variance 

( j1ε ) would be equal to individual-level variance ( ijijij 20 ,, εεε ). It might be more plausible to 

assume that between-level variation differs but within-level variation is constant. In that case, the 

variance-covariance matrix for B̂  in the hierarchical model is:  

V( B̂ )HC = 22 indσ  + 2
contextσ [xx’] + 2

indσ [zz’]       [49] 

Notice from these last two equations that the expression for V(b)HM in the hierarchical 

case  has almost identical mathematical form to the expression for V(b)RC in the random-

coefficient case. The only difference is the separation we allow for the variances of components 

of ε* in the hierarchical case, V( B̂ )HC, because they seem substantively sensible, that we do not 

allow in the random-coefficient case, V( B̂ )RC, because they may not. In either case, the familiar 

class of robust estimators (and/or reasonably familiar versions of Feasible Generalized Least 

Squares) will redress the problems sufficiently in a relatively straightforward manner.  

Recall that White’s heteroskedastic-consistent estimator, for example, is 

Est. Asy. Var[b] = n (X’X)-1 S0 (X’X)-1 
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where S0 = ∑
=

n

i
iii xxe

n 1

2 '1   

As Greene (2003) writes, the White’s estimator “implies that, without actually specifying 

the type of heteroskedasticity, we can still make appropriate inferences based on the results of 

least squares” (199). More precisely, White’s estimator produces consistent estimates of the 

coefficient estimates’ variance-covariance matrix in the presence of pure heteroskedasticity (non-

constant variance) whose pattern is somehow related to a pattern in xx’, i.e. to some pattern in the 

regressors, the regressors squared, or the cross-products of the regressors. In the random 

coefficient case, White’s estimator provides consistency (“robustness”) to precisely the 

heteroskedasticity issue raised because the pattern of non-constant variance depends on the 

regressors x and z and heteroskedasticity is the only issue raised. In the hierarchical-model case, 

we might additionally have concerns about a correlation among residuals due to the common 

component, ε1j, in the errors of all individuals in context j. The pattern of this induced correlation 

will likewise relate to the regressors x and z (and their products and cross-products). In this case, 

a Huber-White heteroskedasticity-and-clustering consistent variance-covariance estimator will 

produce the appropriately “robust” standard errors. 

One issue with that would remain with either sort of “robust” standard-error estimator is 

that coefficient and standard error estimates would remain inefficient. To redress this issue, a 

Feasible Weighted Least Squares (FWLS) approach may be appropriate for the pure 

heteroskedasticity induced by simple random effects, and a Feasible Generalized Least Squares 

(FGLS) approach may be appropriate for the heteroskedasticity and correlation induced by the 

clustering likely in the hierarchical context. Specifically, since the patterns of heteroskedasticity 

or correlated errors producing the concerns are a simple function of the regressors involved in 

the interactions, one can conduct FWLS if appropriate and desired as usual following these steps: 
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(1) estimate by OLS; (2) save the OLS residuals; (3) square the OLS residuals; (4) regress the 

squared residuals on the offending regressors (x and z here); (5) save the predicted values of this 

auxiliary regression.  The researchers would then (6) use the inverse of the square root of these 

predicted values as weights for the FWLS re-estimation.42 One may wish instead to regress the 

log of the squared OLS residuals on the offending regressors and save the exponential of these 

fitted values in step (5) to avoid estimating negative variances and then attempting to invert their 

square root in step (6). The procedure for implementing FGLS if appropriate and desired is 

similar, except that both variance and covariance parameters are to be estimated in steps (3)-(4) 

for insertion into the estimated V( ε̂ ) matrix whose “square-root inverse” is to provide the 

weighing matrix in step (6). Also, the “square-root inverse” of a matrix with non-zero off-

diagonal elements is not a simple inversion of the square root of each of the elements, as it is in 

the FWLS case. However, most existing statistical software packages will find the “square-root 

inverse” of a matrix, so we need not detain the reader with these computations.  

As evidence in support of the claim that some form of a robust-cluster estimate will 

suffice in the hierarchical model with random coefficients case, we conducted several Monte 

Carlo experiments applying OLS, OLS with heteroskedasticity-consistent standard-error 

estimation, OLS with heteroskedasticity-and-cluster-consistent standard-error estimation, and 

random-effect-model estimation.43 In all cases, the data were actually generated using 

hierarchical model structures (with several alternative relative variances and covariances of the 

                                                 

42 One could iterate this procedure 

43 The variance-covariance matrix for coefficients estimated with the particular robust cluster we implemented 

(using Stata) is: V(b) = (X’X)-1SJ(X’X)-1 where Sj = ∑
=

J

j
jj uu

1
' and where uj = ∑

=

nj

i
ijij xe

1

. We estimated the random 

effects model using HLM software.  
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error components and the right-hand-side variables) and in samples with 50 i units and 100 

observations per unit (to correspond to a rather small survey conducted in each of the 50 US 

states). All four estimation techniques yielded unbiased coefficient estimates, but the standard 

error estimates, not surprisingly, were wrong with OLS and with robust standard-error estimates 

that ignore within-level autocorrelation (i.e., estimators consistent to heteroskedasticity only), but 

nearly as good with the robust-cluster-estimation strategy as with the full random effects model 

(the standard errors were within 5% of each other). Appreciable efficiency gains in coefficient 

estimates from the hierarchical models relative to the OLS ones were also notably absent. 

Accordingly, the main conclusion of our exercise was that one seemed generally to have little to 

gain from complicated random-coefficients and hierarchical modeling strategies as any of the 

more-familiar and far-easier-to-implement OLS with robust Variance-Covariance estimators 

appended to OLS (e.g., in STATA, one simply appends “, robust” or “, robust cluster” to the end 

of the estimation command) seemed generally to suffice.44 

VI. SUMMARY 

In this brief manuscript, we have emphasized the importance of understanding the links 

between substantive theory and empirical tests of those theories. Political scientists often 

formulate hypotheses that demand some complexity beyond the simple linear additive model. 

Multiplicative interaction terms provide one simple means often sufficient to enhance the match 

of these complex theories to appropriate empirical statistical analyses. 

We conclude with this summary of our recommendations on the use and interpretation of 

                                                 

44 Of course, we would demand much further simulation, across wider and more-systematically varying ranges of 
parameters and sample dimensions to support this conclusion more whole-heartedly as a general one, but it certainly 
seems, across a reasonably broad range of parameters in this sample-dimension context at least, that the simpler 
strategies work almost indistinguishably from the more complex ones, so we’re happy to argue for simplicity. 
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interactive terms in linear regression models. In order: 

 Theory: What is the scientific phenomenon to be studied? Does your theory 

suggest that the effects of some variable(s) X depend on some other variable(s) Z 

(which implies the converse that the effect(s) of Z depend(s) on X)? Does it imply 

anything more specific about the manner in which the effects of X and of Z 

depend on each other? 

 Model: What is the appropriate mathematical model to express your theory? Write 

the formal mathematical expression that encapsulates your theory. In the case 

where the theory implies that the effect(s) of X depend(s) on Z and vice versa, (a) 

simple multiplicative interaction term(s) will often suffice to express that (those) 

proposition(s). If the theory implies something more specific, ideally one would 

specify that more-specific (perhaps nonlinear) form of the interactions. 

 Estimation: Estimate the model with an appropriate estimation strategy; OLS (or 

nonlinear regression model) with some “robust” or “robust cluster” standard-error 

estimator will usually suffice for most interactive propositions. 

 Interpretation: What are the substantive effects of interest? Calculate marginal 

effects using first derivatives to describe the effects of the variable(s) of interest, 

X and/or Z at various, meaningful levels of the other variables. Calculate changes 

in the predicted values of y induced as some variable(s) of interest, X and/or Z, 

change(s) at various, meaningful levels of the other variables. Either way, 

calculate also the standard errors of these estimated effects. 

 Presentation: Present tables or graphs including both marginal effects and 

accompanying measures of uncertainty or including both predicted values and 
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accompanying measures of uncertainty, plotting or tabulating both at various, 

meaningful levels of the other variables. 
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VII. APPENDIX A: DIFFERENTIATION RULES. 

Table of differentiation rules (for a more complete list of differentiation rules, we refer the reader 
to Kleppner and Ramsey 1985). 
Let  b = a constant 
 y = a function of some variable(s) 
 X, Z, W = variables 
f(), g() = functions 
 

Expression dy/dX Verbal 
Description 

Example 

y = a  0/ =dxda  The derivative of 
a constant is 
zero.  

d7/dX=0 

y = bZ  0/)( =dxbZd  The derivative of 
a term that does 
not depend on X 
is zero.  

d3Z/dX=0 

y = bX  bdXbXd =/)(   The derivative of 
a term involving 
a linear 
coefficient and X 
is that 
coefficient.  

d3X/dX=3 

y = bXn  1/)( −= nn nbXdXbXd  The derivative of 
a term involving 
a linear 
coefficient and X 
raised to the nth 
power is the 
product of n, b, 
and X raised to 
the (n-1) power.  

d3X4/dX=12X3 

y = bXZ  bZdybXZd =/)(  The derivative of 
a term involving 
a linear 
coefficient, X, 
and another 
variable Z is the 
product of the 
coefficient and 
the variable (we 
can treat the 
variable 
essentially as a 
constant here, 
with respect to 
X). 

d3XZ/dX=3Z 
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y = bXZW  bZWdxbXZWd =/)(  The result 
extends to 
higher-order 
interactions, 
where again the 
variables that are 
not a function of 
the variable with 
respect to which 
one is 
differentiating 
are treated as 
fixed. 

d3XZW/dX=3ZW 

y = a + bxX + 
bzZ + bxzXZ + 

bwW 
X
Wb

X
XZb

X
Zb

X
Xb

X
a wxzzx

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂

= Zbb xzx +  

The derivative of 
some linear 
additive function 
equals the sum 
of the derivative 
of each of the 
terms. 

d(3X+4Z+5XZ+6W)/dX 
=3+0+5Z+0=3+5Z 

y=f(g(X)) )/)(/( dxdgdgdf  This is the chain 
rule for nested 
functions. 

d(3X+4Z+5XZ+6W)3/dX 
=3(3X+4Z+5XZ+6W)2·(3+5Z)

F ≡ a cumulative 
probability 

function for the 
probability 
function f. 

( ) ( )xf
x
xF =

∂
∂

 
The derivative 
of any 
cumulative 
probability 
function is the 
corresponding 
probability 
density 
function. 

( ) ( )x
x
x φ=

∂
Φ∂
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VIII. APPENDIX B: STATA SYNTAX.  

Many statistical software packages are available to researchers. Because STATA is 

prominent in the discipline, we have provided STATA-based syntax for readers to use in 

following our advice.   

A. MARGINAL EFFECTS, STANDARD ERRORS, AND CONFIDENCE INTERVALS. 
To estimate the following “standard model,” given variables y, x, and z in the dataset.   

εββββ ++++= xzzxy xzzx0  

The first step is to generate the multiplicative term, xz.   

gen xz = x*z 

Then the next step, naturally, is to run the linear regression model: 

regress y x z xz 

This command regresses y on x, z, and xz. 

Recall that the marginal effects of x and z consists of the first derivative based on the estimation 

results: 

zdxdy xzx ββ +=/  

xdzdy xzz ββ +=/  

The estimated marginal effects of x and z are calculated using the estimates of βx, βz, and βxz: 

zdxdy xzx ββ ˆˆ/ +=  

xdzdy xzz ββ ˆˆ/ +=  

Suppose one wanted to calculate the estimated marginal effects of x as z takes on evenly 

values from its minimum to its maximum.  One could, technically, enter each evenly spaced 

value into a dataset (e.g., 1; 2; 3; etc.), but if the dataset contains more than a handful of 
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observations, then this could quickly become tedious.  A more efficient way of setting values of z 

is easily found.  First, we create variables that capture the sample minimum and maximum 

values of z: 

egen zmin = min(z) 

egen zmax = max(z) 

We can take advantage of STATA’s stored assignment of “_n” which contains the 

number of the current observation.  We create a variable z0 that takes on evenly spaced values 

between z’s minimum to z’s maximum: 

gen z0 = minmin)max(
)1(_
)1(_ zzz

N
n +−

−
−

 

 

Theoretically, if the dataset contains 1001 observations, and, for example, we wanted z0 

to take on values between 2 and 5, for example, the expression above returns the proper values; 

observation 1 in the dataset is assigned a value of 22)25(
)11001(

)11( =+−
−

− , observation 501 in 

the dataset is assigned a value of 5.32)25(
)11001(
)1501( =+−

−
− , and observation 1001 in the dataset 

is assigned a value of 52)25(
)11001(
)11001( =+−

−
− .  This would be an excellent approach, but it also 

requires handling a very large matrix, and with even larger datasets, it would quickly become 

unwieldy.  

Instead, we advise plotting some reasonable number (v) (for example, 10 or 100) of 

evenly spaced values between zmin and zmax:  

gen z0 = minmin)max(
)1(
)1(_ zzz

v
n +−
−
−

 in 1/v 
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Marginal effects are calculated by adding the estimated xβ̂  to the product of each value in 

z0 with the estimated coefficient xzβ̂ .  The user could simply take the estimated coefficients 

from the regression output and thus generate a new variable: 

gen dyhatdx= xβ̂ +z0* xzβ̂  

Where the estimated value xβ̂  from the regression output (e.g., “-2”) is entered instead of 

“ xβ̂ ”, and the estimated value of xzβ̂  from the regression output (e.g, “10”) is entered in place of 

“ xzβ̂ ”.  This command line would thus create v values corresponding with the marginal effects of 

x, as z varies from its minimum to its maximum.  One disadvantage to the procedure above is 

that it is entirely possible that one might mistype one of the estimated values, and this would of 

course impose error in the calculated values.  A less error-prone way of calculating the marginal 

effects of x, then, would be to take advantage of the estimates that STATA stores in memory.   

For our purposes, STATA stores the estimated coefficient xβ̂  in memory as _b[x] and 

the coefficient xzβ̂  in memory as _b[xz], so a variable that consists of the marginal effects of x 

as the variation in z is captured by z0 is generated as follows:  

gen dyhatdx=_b[x]+_b[xz]*z0 

The variable dyhatdx thus contains the estimated marginal effects of x along values of 

z0.  A table of selected marginal effects for evenly spaced values of interest could thus be easily 

created.   

Marginal effects, however, are only part of the story.  We reiterate that discussions of 

marginal effects should also include an indication of our level of certainty or uncertainty 

regarding these marginal effects.  Recall that the variance of each marginal effect, following the 

specific example above, is formally expressed as: 
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)ˆ,ˆ(2)ˆvar()ˆvar()/ˆvar( 2
xzxxzx zCovzdxyd ββββ ++=  

Thus, calculating )/ˆvar( dxyd  is a fairly straight-forward computational expression.  The 

variance-covariance matrix of the estimated coefficients is available for display by typing “vce” 

after viewing the regression output. 

The user could then simply generate a new variable by taking the specific values of 

Var( xβ̂ ), Var( xzβ̂ ), and Cov( xβ̂ , xzβ̂ ), acquired from viewing the values in the variance-

covariance matrix.   

gen vardyhatdx = )ˆ,ˆ(*0*2)ˆvar(*0*0)ˆvar( xzxxzx Covzzz ββββ ++  

Where Var( xβ̂ ), Var( xzβ̂ ), and Cov( xβ̂ , xzβ̂ ), would be replaced by their estimated 

values (e.g., “2”).   

Again, although this “enter by hand” method is transparent, human error in data entry 

could lead to erroneous values.  A less error-prone way of calculating the variances of the 

marginal effects, then, would be to take advantage of the estimates that STATA stores in 

memory.  The variance can be calculated by utilizing the estimates that STATA stores in 

memory: Var( xβ̂ ) is stored as its square root in the form of “_se[x]”; Var( xzβ̂ )is stored as its 

square root in the form of “_se[xz]”, and Cov( xβ̂ , xzβ̂ ) is stored as the element in the 

respective cell in the estimated variance-covariance matrix of the coefficient estimates, VCE.  In 

this particular case, given the order in which the variables are entered in the estimated equation, 

Cov( xβ̂ , xzβ̂ ) is located in the third row, first column of the estimated variance-covariance 

matrix (and, because the variance-covariance matrix is symmetric, it is also located in the first 

row, third column as well).   

First, we create a new matrix V to represent the variance-covariance matrix of the 
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coefficient estimates, VCE. 

matrix V = get(VCE) 

We can pull out the stored element Cov( xβ̂ , xzβ̂ )  as follows: 

matrix C= V[3,1] 

This command line pulls out the Cov( xβ̂ , xzβ̂ ) value, which is stored as element [3,1] in 

the variance-covariance matrix (note that the specific row and column numbers will depend on 

the order in which the variables of interest are entered into the model; in our model, x was 

entered first and xz third, which is why element [3,1] contains the covariance between the 

respective coefficients).   

The command line extracts this value as a 1x1 matrix (a scalar). 

We then generate a variable containing only values of 1, to allow us to apply this 

covariance to all observations: 

gen column1 = 1 in 1/v 

We then convert this column of 1’s into a vector, to allow us to apply this covariance to 

all observations: 

mkmat column1, matrix(col1) 

Finally, we multiply our 1x1 matrix C by this vector of 1’s: 

matrix cov_x_xz = C*col1 

The vector cov_x_xz contains the value of Cov( xβ̂ , xzβ̂ ) for all v observations.  

Finally, we convert the vector into a variable cov_x_xz1, which contains the covariance of 

interest. 

svmat cov_x_xz, name(cov_x_xz) 

The variance of each marginal effect can thus be calculated as: 
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gen vardyhatdx=(_se[x])^2+(z0*z0)*(_se[xz]^2)+2*z0*cov_x_xz1 

gen sedyhatdx=sqrt(vardyhatdx) 

Tables of marginal effects can thus include either the standard errors that correspond with 

those marginal effects.  A table could be generated as follows: 

tabdisp z0, cellvar(dyhatdx sedyhatdx) 

This command line would present a table featuring all v values of z0, with the appropriate 

marginal effect and standard error of the marginal effect.  This table is likely to be useful for the 

researcher for interpretation, but for presentational purposes, only a set of selected values of z0 

might be incorporated into an abbreviated table. 

Alternatively, marginal effects can be graphed.  Recall that confidence intervals can be 

generated with the following formula: 

)/ˆ(/ˆ , dxydVartdxyd pdf±  

STATA stores the degrees of freedom from the previous estimation as  “e(df_m),” and 

the researcher can utilize the inverse t-distribution function to create the multiplier pdft , .  For a 

95% confidence interval, the lower and upper bounds are calculated as follows: 

gen LBdyhatdx=dyhatdx-invttail(e(df_m),.05)*sedyhatdx 

gen UBdyhatdx=dyhatdx+invttail(e(df_m),.05)*sedyhatdx 

The graph of marginal effects and accompanying confidence intervals can be created by 

the following command line: 

twoway connected dyhatdx LBdyhatdx UBdyhatdx z0 

These procedures are summarized in Table B1.   

[TABLE B1 ABOUT HERE] 
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B. PREDICTED VALUES, STANDARD ERRORS, AND CONFIDENCE INTERVALS. 
To estimate the following “standard model,” given variables y, x, and z in the dataset.   

εββββ ++++= xzzxy xzzx0  

The first step is to generate the multiplicative term, xz.   

gen xz = x*z 

Then the next step, naturally, is to run the linear regression model: 

regress y x z xz 

This command regresses y on x, z, and xz. 

The predicted values, ŷ , are generated by summing the products between set values of 

the right-hand-side variables and their corresponding coefficients: ŷ =Mh β̂ , where Mh is a 

matrix of values at which x, z, and any other variables in the model are set. 

The next step is create the matrix Mh which sets the values of the variables x, z, and xz for 

which ŷ  will be calculated.  Suppose we are interested in the effects of x as it varies across a 

range of values, from value a, its minimum, to c, its maximum, for example, and we want to hold 

z at a specific value zh (for example, its sample mean).  

As above, we recommend calculating these values for the first v observations in the 

dataset. 

egen xmin = min(x) 

egen xmax = max(x) 

 

gen xh = minmin)max(
)1(
)1(_ xxx

v
n +−
−
−

 in 1/v 

 

Next, we create a variable that sets z at some specified value; here, we set it specifically 

to equal its mean.   
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egen zh=mean(z) 

Next, we create the interactive term that reflects the values to which x and z are held: 

gen xhzh=xh*zh 

This step creates a variable that consists of a column of 1’s (to be multiplied by the 

intercept term).   

gen col1h=1 

Now that we have created these separate variables, we need to assemble them into a 

matrix: 

mkmat xh zh xhzh col1h in 1/v, matrix(Mh) 

This command creates matrix Mh which contains the specified values at which our 

variables are set: zh is fixed at its mean, xh varies at regular intervals between a and c, and 

xhzh correspondingly varies, since it is the product of zh and xh. 

Recall that ŷ =Mh β̂ .  β̂  is a column vector of coefficients, but STATA stores the 

estimated coefficients as a 1 x k row vector, e(b).  So we want to create betas, a column 

vector with k x 1 dimensions, that takes the stored coefficients and transposes them into ( β̂ ): 

matrix betas=e(b)’ 

This command creates the column vector of estimated coefficients. 

Calculating the predicted values is simply a matter of multiplying Mh by betas.  This 

command creates a column vector that contains the product of the specified values and the 

coefficient vector. 

matrix yhat=Mh*betas 

Then convert the column vector into a variable, yhat1. 

svmat yhat, name(yhat) 
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Recall that Var( ŷ )=MhVar( β̂ )Mh
’.  As mentioned above, STATA stores the estimated 

variance-covariance matrix of the estimated coefficients, Var( β̂ ), as VCE in its memory.  We 

want to create a matrix V to represent the estimated Var( β̂ ):  

matrix V=VCE 

We can now calculate the variance of the predicted values as follows: 

matrix VYH=Mh*V*Mh’ 

This command creates a matrix, VYH, that contains variances and covariances of 

predicted values.  The diagonal elements in the variance-covariance matrix of predicted values 

are those of interest to us, as they correspond with the estimated variance of the predicted values.  

We want to extract these diagonal elements into a vector, and we do so as follows: 

matrix DVYH= vecdiag(VYH) 

This command creates a row vector from the diagonal elements of the variance-

covariance matrix of the predicted values.  But we want a column vector rather than a row 

vector, so that we can convert the column vector into a variable that can later be graphed.  This 

command transposes the row vector into a column vector. 

matrix VARYHAT=DVYH’ 

This command creates a new variable, varyhat1, which contains a unique variance to 

correspond with each predicted value yhat1.  

svmat VARYHAT, name(varyhat) 

Taking the square root produces the standard error of each predicted value yhat1. 

gen seyhat1 = sqrt(varyhat1) 

The researcher can next present a table of predicted values with corresponding standard 

errors of the predicted values: 
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tabdisp xh, cellvar(yhat1 seyhat1) 

Graphically, predicted values are more effectively displayed when graphed with 

confidence intervals.  The confidence intervals around predicted values ŷ  can be constructed as 

follows: 

)ˆ(ˆ , yVarty pdf±  

Where ŷ  corresponds with the values in yhat1, )ˆ(yVar  corresponds with the values 

in seyhat1, and pdft ,  refers to the relevant critical value from the t-distribution.  STATA stores 

the degrees of freedom from the previous estimation as  “e(df_m),” and the researcher can utilize 

the inverse t-distribution function to create the multiplier pdft , .   

For a 95% confidence interval, the lower and upper bounds are calculated as follows: 

gen LByhat1=yhat1-invttail(e(df_m),.05)*sqrt(varyhat1) 

gen UByhat1=yhat1+invttail(e(df_m),.05)*sqrt(varyhat1) 

These values can easily be graphed along values of Xh as follows: 

twoway connected yhat1 LByhat1 UByhat1 xh 

These procedures are summarized in Table B2.   

[TABLE B2 ABOUT HERE] 
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X. TABLES. 

Table 1. OLS Regression Results.  

 Coefficient 
(standard error) 

2-Sided P-Level  
(probability |T|>t) referring to 
Null Hypothesis that β=0 

Ethnic Groups -0.979 
(0.770) 

0.136 

Runoff -2.491 
(1.561) 

0.228 

Ethnic Groups * Runoff  2.005 
(0.941) 

0.054 

Intercept 4.303 
(1.229) 

0.004 

N 16  
Adjusted R2 0.203  
P>F 0.132  

 

Table 2. Predicted Effective Number of Presidential Candidates 

 When Runoff = 0 When Runoff = 1 
Ethnic Groups = 1 3.324 2.838 
Ethnic Groups = 1.5 2.835 3.351 
Ethnic Groups = 2 2.345 3.865 
Ethnic Groups = 2.5 1.855 4.378 
Ethnic Groups = 3 1.366 4.891 
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Table 3. Does Y Depend on X or Z? 

Hypothesis Mathematical Expression45 Statistical test 
X affects Y, or 

Y is a function of (depends on) X 
Y=f(X) 

dy/dx=bx+bxzZ ≠ 0 
F- test: H0: bx =bxz=0 

X increases Y dy/dx= bx+bxzZ > 0 Multiple t-tests:  
H0: bx+bxzZ≤0 

X decreases Y dy/dx = bx+bxzZ < 0 Multiple t- tests:  
H0: bx+bxzZ≥0 

   
Z affects Y, or 

Y is a function of (depends on) Z 
Y=g(Z) 

dy/dz= bz+bxzX ≠ 0 
F- test:  

H0: bz=bxz=0 
Z increases Y dy/dx= bz+bxzX > 0 Multiple t-tests:  

H0: bz+bxzX≤0 
Z decreases Y dy/dx= bz+bxzX < 0 Multiple t- tests:  

H0: bz+bxzX≥0 

                                                 

45 The mathematical expression refers to the standard linear-interactive model, such as that in Equation [17]. 
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Table 4: Is Y’s Dependence on X Conditional on Z and vice versa? How? 

Hypothesis Mathematical Expression46 Statistical test 

The effect of X on Y depends on 
Z 

Y=f(XZ,•) 
dy/dx=bx+bxzZ=g(Z) 

d(dy/dx)/dZ 
=d2Y/dXdZ=bxz=0 

t-test: H0: bxz=0 

The effect of X on Y increases in 
Z 

d(dy/dx)/dZ 
=d2Y/dXdZ=bxz >0 t-test: H0: bxz ≤0 

The effect of X on Y decreases in 
Z 

d(dy/dx)/dZ 
=d2Y/dXdZ=bxz<0 t-test: H0: bxz ≥ 0 

The effect of Z on Y depends on 
X 

Y=f(XZ,•) 
dy/dz=bz + bxzX=h(X) 

d(dy/dz)/dX 
=d2Y/dZdX=bxz =0 

t-test: H0: bxz =0 

The effect of Z on Y increases in 
X 

d(dy/dz)/dX 
=d2Y/dZdX=bxz >0 t-test: H0: bxz ≤0 

The effect of Z on Y decreases in 
X 

d(dy/dz)/dX 
=d2Y/dZdX=bxz <0 t-test: H0: bxz ≥ 0 

 

                                                 

46 The mathematical expression refers to the standard linear-interactive model, such as that in Equation [17]. 
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Table 5: Does Y Depend on X, Z, or Some Combination Thereof? 

Hypothesis Mathematical Expression47 Statistical Test 
Y is a function of (depends on) 
X, Z, and/or their interaction Y=f(X,Z,XZ) F-test: H0: bx=bxz=bz=0 

 

                                                 

47 The mathematical expression refers to the standard linear-interactive model, such as that in Equation [17]. 
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Table 6. Variance-Covariance Matrix of Coefficient Estimates 

 Ethnic Groups Runoff Ethnic Groups * 
Runoff 

Intercept 

Ethnic Groups 0.593    
Runoff  0.900 2.435   
Ethnic Groups* 
Runoff  

-0.593 -1.377 0.885  

Intercept -0.900 -1.509 0.900 1.509 
 

Table 7. Hypothesis Tests of whether Ethnic Groups affects Number of Presidential Candidates. 

 dY/dEG Var 
(dY/dEG) 

s.e. 
(dY/dEG)

t-
statistic

One-tailed  
p-value  
H0:  
βEG+βEG*RRunoff ≤0 

One-tailed  
p-value  
H0:  
βEG+βEG*RRunoff ≥0 

Runoff = 0 -0.979 0.593 0.770 -1.260 0.884 0.116 
Runoff = 1 1.026 0.292 0.540 1.900 0.041 0.959 

 

Table 8. Hypothesis Tests of whether Runoff affects Number of Presidential Candidates. 

 dY/dEG Var 
(dY/dEG) 

s.e. 
(dY/dEG)

t-
statistic

One-tailed  
p-value  
H0:  
βR+βEG*RRunoff ≤0 

One-tailed  
p-value  
H0:  
βR+βEG*RRunoff ≥0 

Ethnic 
Groups=1 

-0.486 2.134 1.461 -0.333 0.627 0.373 

Ethnic 
Groups=1.5 

0.517 2.647 1.627 0.318 0.378 0.622 

Ethnic 
Groups=2 

1.520 3.603 1.898 0.801 0.219 0.781 

Ethnic 
Groups=2.5 

2.522 5.001 2.236 1.128 0.141 0.859 

Ethnic 
Groups=3 

3.525 6.842 2.616 1.348 0.101 0.899 
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Table 9. Confidence Interval around Marginal Effect of Ethnic Groups.  

 dY/dEG Var(dY/dEG) 90% Confidence 
Interval 

Runoff = 0 -0.979 0.593 [-2.351, 0.393] 
Runoff = 1 1.026 0.292 [0.063, 1.989] 

 

Table 10. Confidence Interval around Marginal Effect of Runoff. 

 dY/dRunoff Var(dY/dRunoff) 90% Confidence 
interval 

Ethnic Groups = 1 -0.486 2.134 [-3.089, 2.118] 
Ethnic Groups = 1.5 0.517 2.647 [-2.383, 3.417] 
Ethnic Groups = 2 1.520 3.603 [-1.863, 4.903] 
Ethnic Groups = 2.5 2.522 5.001 [-1.463, 6.508] 
Ethnic Groups = 3 3.525 6.842 [-1.137, 8.187] 
 

Table 11. Variance of Predicted Values of Effective Number of Presidential Candidates  

 ŷ |Runoff = 0 Var( ŷ |Runoff=0) 
 

ŷ |Runoff = 1 Var( ŷ |Runoff=1) 
 

Ethnic Groups = 1 3.324 0.302 2.838 0.264 
Ethnic Groups = 1.5 2.835 0.143 3.351 0.152 
Ethnic Groups = 2 2.345 0.281 3.865 0.186 
Ethnic Groups = 2.5 1.855 0.715 4.378 0.366 
Ethnic Groups = 3 1.366 1.446 4.891 0.692 
 

Table 12. Confidence Intervals for Predicted Values of Effective Number of Presidential 
Candidates  

 ŷ | Runoff = 0 90% Confidence  
Interval 
( ŷ |Runoff=0)  
 

ŷ | Runoff = 1 90% Confidence 
Interval 
( ŷ |Runoff=1)  
 

Ethnic Groups = 1 3.324 [2.345, 4.304] 2.838 [1.923,3.754] 
Ethnic Groups = 1.5 2.835 [2.160, 3.509] 3.351 [2.657, 4.046] 
Ethnic Groups = 2 2.345 [1.400, 3.290] 3.865 [3.096, 4.633] 
Ethnic Groups = 2.5 1.855 [0.348, 3.363] 4.378 [3.299, 5.456] 
Ethnic Groups = 3 1.366 [-0.777, 3.509] 4.891 [3.408, 6.373] 
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Table B1. STATA commands for marginal effects of x on y, standard errors, and confidence 
intervals 

Procedures  Command syntax 

Generate the multiplicative 
term.  

gen xz = x*z 

Run the linear regression 
model. 

regress y x z xz 

Create range of v evenly 
spaced values for z from its 
minimum to its maximum. 

egen zmin = min(z) 
egen zmax = max(z) 
gen z0 = ((_n-1)/(v-1))*(zmax-zmin) in 1/v  
 

Calculate the estimated 
marginal effect. 

gen dyhatdx=_b[x]+_b[xz]*z0 

Create a matrix from the 
estimated covariance matrix 
of the coefficient estimates. 

matrix V = get(VCE) 

Pull out the stored element 
estimating Cov( xβ̂ , xzβ̂ ). 

matrix C= V[3,1] 

Generate a variable 
containing only values of 1. 

gen column1 = 1 in 1/v 

Convert this column of 1’s 
into a vector. 

mkmat column1, matrix(col1) 

Create a vector with values 
of the estimated  
Cov( xβ̂ , xzβ̂ ). 

matrix cov_x_xz = C*col1 

Convert the vector into a 
variable. 

svmat cov_x_xz, name(cov_x_xz) 

Calculate the estimated 
variance of each estimated 
marginal effect. 

gen 
vardyhatdx=(_se[x])^2+(z0*z0)*(_se[xz]^2)+2*z0*cov_x_xz

Calculate the estimated 
standard error of each 
estimated marginal effect. 

gen sedyhatdx=sqrt(vardyhatdx) 

Generate a table displaying 
estimated marginal effects 
and standard errors for all v 
values of z0  

tabdisp z0, cellvar(dyhatdx sedyhatdx) 
 

Generate lower and upper 
confidence interval bounds. 

gen LBdyhatdx=dyhatdx-invttail(e(df_m),.05)*sedyhatdx 
gen UBdyhatdx=dyhatdx+invttail(e(df_m),.05)*sedyhatdx 

Graph the estimated 
marginal effects and the 
upper and lower confidence 
intervals. 

twoway connected dyhatdx LBdyhatdx UBdyhatdx z0 
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Table B2. STATA commands for calculating predicted values of y, standard errors, and confidence 
intervals 

Procedures  Command syntax 

Generate the multiplicative 
term.  

gen xz = x*z 

Run the linear regression 
model. 

regress y x z xz 

Create the variables which set 
the values of the variables x, 
z, and xz for which ŷ  will be 
calculated. 

egen xmin = min(x) 
egen xmax = max(x) 
gen xh = ((_n-1)/(v-1))*(xmax-xmin) in 1/v  
egen zh=mean(z) 
gen xhzh=xh*zh 
gen col1h=1 

Assemble the variables into a 
matrix, Mh 

mkmat xh zh xhzh col1h in 1/v, matrix(Mh) 

Create betas, a column 
vector with k x 1 dimensions. 

matrix betas=e(b)’ 

Calculate the predicted 
values. 

matrix yhat=Mh*betas 
 

Convert the vector into a 
variable. 

svmat yhat, name(yhat) 

Create a matrix from the 
estimated covariance matrix 
of the coefficient estimates. 

matrix V = get(VCE) 

Calculate the variance of the 
predicted values. 

matrix VYH=Mh*V*Mh’ 

Extract the diagonal elements 
into a row vector. 

matrix DVYH= vecdiag(VYH) 

Tranpose elements into a 
column vector. 

matrix VARYHAT=DVYH’ 

Convert the vector into a 
variable. 

svmat VARYHAT, name(varyhat) 

Calculate the estimated 
standard error of each 
predicted probability. 

gen seyhat1 = sqrt(varyhat1) 

Present a table of predicted 
values with corresponding 
standard errors of the 
predicted values. 

tabdisp xh, cellvar(yhat1 seyhat1) 

Generate lower and upper 
confidence interval bounds. 

gen LByhat1=yhat1-invttail(e(df_m),.05)*seyhat1 
gen UByhat1=yhat1+invttail(e(df_m),.05)*seyhat1 

Graph the predicted 
probabilities and the upper 
and lower confidence 
intervals. 

twoway connected yhat1 LByhat1 UByhat1 xh 
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XI. FIGURES. 

Figure 1. Marginal Effect of Runoff with 90% Confidence Interval. 
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Figure 2. Marginal Effect of Runoff, Extending the Range of Ethnic Groups. 
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Figure 3. Predicted Number of Candidates, when Runoff=0. 

Predicted Number of Candidates|Runoff=0

0

2

4

6

8

0 1 2 3 4

Ethnic Groups

yh
at

Lower Bound
Upper Bound
yhat

 



128 

Figure 4. Predicted Number of Candidates, when Runoff=1. 
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Figure 5. Predicted Number of Candidates. 
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Figure 6. Predicted Number of Candidates, with 90% Confidence Intervals. 
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Figure 7. Predicted Number of Candidates, Extending the Range of Ethnic Groups. 
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