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Making the Most of Statistical Analyses: 
Improving Interpretation and Presentation 

Gary King Harvard University 
Michael Tomz Harvard University 
Jason Wittenberg Harvard University 

Social scientists rarely take full advan- 

tage of the information available in 

their statistical results. As a conse- 

quence, they miss opportunities to 

present quantities that are of greatest 

substantive interest for their research 

and express the appropriate degree 

of certainty about these quantities. In 

this article, we offer an approach, built 

on the technique of statistical simula- 

tion, to extract the currently over- 

looked information from any statistical 

method and to interpret and present it 

in a reader-friendly manner. Using this 

technique requires some expertise, 

which we try to provide herein, but its 

application should make the results of 

quantitative articles more informative 

and transparent. To illustrate our rec- 

ommendations, we replicate the re- 

sults of several published works, 

showing in each case how the au- 

thors' own conclusions can be ex- 

pressed more sharply and informa- 

tively, and, without changing any data 

or statistical assumptions, how our 

approach reveals important new infor- 

mation about the research questions 

at hand. We also offer very easy-to- 

use software that implements our 

suggestions. 

' e  show that social scientists often do not take full advantage of 
the information available in their statistical results and thus 
miss opportunities to present quantities that could shed the 

greatest light on their research questions. In this article we suggest an ap- 
proach, built on the technique of statistical simulation, to extract the cur- 
rently overlooked information and present it in a reader-friendly manner. 
More specifically, we show how to convert the raw results of any statistical 
procedure into expressions that (1) convey numerically precise estimates of 
the quantities of greatest substantive interest, (2) include reasonable mea- 
sures of uncertainty about those estimates, and (3) require little specialized 
knowledge to understand. 

The following simple statement satisfies our criteria: "Other things be- 
ing equal, an additional year of education would increase your annual in- 
come by $1,500 on average, plus or minus about $500." Any smart high 
school student would understand that sentence, no matter how sophisti- 
cated the statistical model and powerful the computers used to produce it. 
The sentence is substantively informative because it conveys a key quantity 
of interest in terms the reader wants to know. At the same time, the sen- 
tence indicates how uncertain the researcher is about the estimated quan- 
tity of interest. Inferences are never certain, so any honest presentation of 
statistical results must include some qualifier, such as "plus or minus $500" 
in the present example. 
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In contrast, bad intepretations are substantively am- 
biguous and filled with methodological jargon: "the coef- 
ficient on education was statistically significant at the 
0.05 level." Descriptions like this are very common in so- 
cial science, but students, public officials, and scholars 
should not need to understand phrases like "coefficient," 
"statistically significant," and "the 0.05 level" to learn 
from the research. Moreover, even statistically savvy 
readers should complain that the sentence does not con- 
vey the key quantity of interest: how much higher the 
starting salary would be if the student attended college 
for an extra year. 

Our suggested approach can help researchers do bet- 
ter in three ways. First, and most importantly, it can ex- 
tract new quantities of interest from standard statistical 
models, thereby enriching the substance of social science 
research. Second, our approach allows scholars to assess 
the uncertainty surrounding any quantity of interest, so it 
should improve the candor and realism of statistical dis- 
course about politics. Finally, our method can convert raw 
statistical results into results that everyone, regardless of 
statistical training, can comprehend. The examples in this 
article should make all three benefits apparent. 

Most of this article describes our simulation-based 
approach to interpreting and presenting statistical re- 
sults. In many situations, what we do via simulation can 
also be done by direct mathematical analysis or other 
computationally-intensive techniques, and we discuss 
these approaches as well. To assist researchers in imple- 
menting our suggestions, we have developed an easy-to- 
use, public domain software package called CLARIFY, 
which we describe in the appendix. 

The Problem of Statistical Interpretation 

We aim to interpret the raw results from any member of 
a very general class of statistical models, which we sum- 
marize with two equations: 

Y,-f(8,, a), 

The first equation describes the stochastic component of 
the statistical model: the probability density (or mass) 
function that generates the dependent variable Y, ( i  = 

1, . . . , n) as a random draw from the probability density 
f(@,,a ) .  Some characteristics of this function vary from 
one observation to the next, while others remain con- 
stant across all the i's. We represent the varying charac- 
teristics with the parameter vector 8, and relegate non- 
varying features to the ancillary parameter matrix a .  The 

second equation gives the systematic component of the 
model; it indicates how Oi changes across observations, 
depending on values of explanatory variables (typically 
including a constant) in the 1 x k vector Xi and effect pa- 
rameters in the k x l vector p. The functional form d . , . ) ,  
sometimes called the link function, specifies how the ex- 
planatory variables and effect parameters get translated 
into Oi. 

One member of this general class is a linear-normal 
regression model, otherwise known as least-squares re- 
gression. To see this, let f(.,.) be the normal distribution 
N(.,.); set the main parameter vector to the scalar mean 
ei= E(Yi)= pi; and assume that the ancilliary parameter 
matrix is the scalar homoskedastic variance a = V(Yi)= 
02.Finally, set the systematic component to the linear 
form g(Xi,p) = XiP = Po + Xilpl + Xi2p,+ .... The result is 
familiar: 

Similarly, one could write a logit model by expressing the 
stochastic component as a Bernoulli distribution with 
main parameter 7 ~ ,= Pr(Y, = 1)-no ancillary parameter 
is necessary-and setting the systematic component to 
the logistic form: 

Equation 1 also includes as special cases nearly every 
other statistical model in the social sciences, including 
multiple-equation models in which Y, is a vector, as well 
as specifications for which the probability distribution, 
functional form, or matrix of explanatory variables is es- 
timated rather than assumed to be known. 

Having estimated the statistical model, many re- 
searchers stop after a cursory look at the signs and "sta- 
tistical significance" of the effect parameters. This 
approach obviously fails to meet our criteria for mean- 
ingful statisti$al communication since, for many nonlin- 
ear models, P and & are difficult to interpret and only 
indirectly related to the substantive issues that motivated 
the research (Cain and Watts 1970; Blalock 1967). In- 
stead of publishing the effect coefficients and ancillary 
parameters, researchers should calculate and present 
quantities of direct substantive interest. 

Some researchers go a step farther by computing de- 
rivatives, fitted values, and first differences (Long 1997; 
King 1989, subsection 5.2) which do convey numerically 
precise estimates of interesting quantities and require 
little specialized knowledge to understand. Even these 
approaches are inadequate, however, because they ignore 
two forms of uncertainty. Estimation uncertainty arises 
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from not knowing P and a perfectly, an unavoidable 
consequence of having fewer than an infinite number of 
observations. Researchers often acknowledge this un- 
certainty by reporting standard errors or t-statistics, 
but they ov$rlook it when computing quantities of inter- 
est. Since p and &. are uncertain, any calculations- 
including derivatives, fitted values, and first differences- 
based on those parameter estimates must also be 
uncertain, a fact that almost no scholars take into ac- 
count. A second form of variability, the fundamental un- 
certainty represented by the stochastic component (the 
distribution f ) in Equation 1, results from innumerable 
chance events such as weather or illness that may influ- 
ence Ybut are not included in X. Even if we knew the ex- 
act values of the parameters (thereby eliminating esti- 
mation uncertainty), fundamental uncertainty would 
prevent us from predicting Ywithout error. Our methods 
for computing quantities of interest must account for 
both types of uncertainty. 

Simulation-Based Approaches 
to Interpretation 

We recommend statistical simulation as an easy method 
of computing quantities of interest and their uncertain- 
ties. Simulation can also help researchers understand the 
entire statistical model, take full advantage of the param- 
eter estimates, and convey findings in a reader-friendly 
manner (see Fair 1980; Tanner 1996; Stern 1997). 

What Is Statistical Simulation? 

Statistical simulation uses the logic of survey sampling to 
approximate complicated mathematical calculations. In 
survey research, we learn about a population by taking a 
random sample from it. We use the sample to estimate a 
feature of the population, such as its mean or its vari- 
ance, and our estimates become more precise as we in- 
crease the sample size, n. Simulation follows a similar 
logic but teaches us about probability distributions, 
rather than populations. We learn about a distribution by 
simulating (drawing random numbers) from it and us- 
ing the draws to approximate some feature of the distri- 
bution. The approximation becomes more accurate as we 
increase the number of draws, M, Thus, simulation en- 
ables us to approximate any feature of a probability dis- 
tribution without resorting to advanced mathematics. 

For instance, we could compute the mean of a prob- 
ability distribution P(y) by taking the integral E ( Y )  = 

r yP(y)dy, which is not always the most pleasant of ex- 
c.z 


periences! Alternatively, we could approximate the mean 
through simulation by drawing many random numbers 
from P(y) and computing their average. If we were inter- 
ested in the theoretical variance of Y, we could calculate 
the sample variance of a large number of random draws, 
and if we wanted the probability that Y > 0.8, we could 
count the fraction of draws that exceeded 0.8. Likewise, 
we could find a 95-percent confidence interval for a func- 
tion of Yby drawing 1000 values of Y, computing the 
function for each draw, sorting the transformed draws 
from lowest to highest and taking the 25th and 976th val- 
ues. We could even approximate the entire distribution 
of, say, fi,by plotting a histogram of the square roots of 
a large number of simulations of Y. 

Approximations can be computed to any desired de- 
gree of precision by increasing the number of simula- 
tions (M),which is analagous to boosting the number of 
observations in survey sampling. Assessing the precision 
of the approximation is simple: run the same procedure, 
with the same number of simulations, repeatedly. If the 
answer remains the same to within four decimal points 
across the repetitions, that is how accurate the approxi- 
mation is. If more accuracy is needed, raise the number 
of simulations and try again. Nothing is lost by simu- 
lation-except a bit of computer time-and much is 
gained in ease of use. 

Simulating the Parameters 

We now explain how researchers can use simulation to 
compute quantities of interest and account for uncer- 
tainty. The first step involves simulating the main and 
$ncillary parameters. Recall that the parameter estimates 
p and &. are never certain because our samples are finite. 
To capture this estimation uncertainty, we draw many 
plausible sets of parameters from their posterior or sam- 
pling distribution. Some draws will be smaller or larger 
than p and &. ,reflecting our uncertainty about the exact 
value of the parameters, but all will be consistent with 
the data and statistical model. 

To simulate the parameters, we need the point esti- 
mates and the variance-covariance matrix of the esti- 
mates, which most statistical packages will report on re; 
quest. We denote ? as the vector produ$ed by stacking P 
on top of &. . More formally, ?A = vec(p,&.), where "vec" 
stacks the unique elements of p and &. in a column vec- 
tor. Let +(?) designate the variance matrix associated 
with these estimates. The central limit theorem tells us 
that with a large enough sample and bounded variance, 
we can randomly draw (simulate) the parameters from a 



multivariate normal distribution with mean equal to ? 
and variance equal to $(?) .l Using our notation, 

Thus, we can obtain one simulation of yby following 
these steps: 

1. Estimate the model by running the usual software 
program (which usually maximizes a likelihood func- 
tion), and record the point estimates ? and variance 
matrix $(?). 

2. 	 Draw one value of the vector y from the multivariate 
normal distribution in Equation 4. Denote the 7 = 

vec(p,&). 

Repeat the second step, say, M = 1000 times to obtain 
1000 draws of the main and ancillary parameters. 

If we knew the elements of y perfectly, the sets of 
draws would all be identical; the less information we have 
about y (due to larger elements in the variance matrix), 
the more the draws will differ from each other. The spe- 
cific pattern of variation summarizes all knowledge 
about the parameters that we can obtain from the statis- 
tical procedure. We still need to translate y into substan- 
tively interesting quantities, but now that we have sum- 
marized all knowledge about y we are well positioned to 
make the translation. In the next three subsections, we 
describe algorithms for converting the simulated param- 
eters into predicted values, expected values, and first 
differences. 

Predicted Values 

Our task is to draw one value of Y conditional on one 
chosen value of each explanatory variable, which we 
represent with the vector X,. Denote the simulated 8 as 
8, and the corresponding Y as ?,, a simulated predicted 
value. Predicted values come in many varieties, depend- 
ing on the kind of X-values used. For instance, X, may 
correspond to the future (in which case ?, is a simulated 
forecast), a real situation described by observed data 
(such that F, is a simulated predicted value), or a hypo- 
thetical situation not necessarily in the future (making 
?, a simulated counterfactual predicted value). None of 

'This distributional statement is a shorthand summary of the 
Bayesian, likelihood, and Neyman-Pearson theories of statistical 
inference. The interpretive differences among these theories (such 
as whether 0 or 0 is the random variable) are important but need 
not concern us here, as our approach can usually be employed 
with any of these and most other theories of inference (see Barnett 
1982). 
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these is equivalent to the expected value ( ?) in a linear 
regression, which we discuss in the following subsection. 

To simulate one predicted value, follow these steps: 

1. Using the algorithm in the previous subsection, draw -

one value of the vector 7=vec(p,a). 


2. 	 Decide which kind of predicted value you wish to 
compute, and on that basis choose one value for each 
explanatory variable. Denote the vector of such val- 
ues X,. 

3. 	 Taking the simulated effect coefficients from the top 
portion of 7, compute 8, = g ( ~ , ,p) ,where g(.,.) is 
the systematic component of the statistical model. 

4. 	 Simulate the outcome variable ?, by taking a random 
draw from f (8,,a),the stochastic component of the 
statistical model. 

Repeat this algorithm, say, M = 1000 times, to produce 
1000 predicted values, thereby approximating the entire 
probability distribution of Y,. From these simulations 
the researcher can compute not only the average pre- 
dicted value but also measures of uncertainty around the 
average. The predicted value will be expressed in the 
same metric as the dependent variable, so it should re- 
quire little specialized knowledge to understand. 

Expected Values 

Depending on the issue being studied, the expected or 
mean value of the dependent variable may be more inter- 
esting than a predicted value. The difference is subtle but 
important. A predicted value contains both fundamental 
and estimation uncertainty, whereas an expected value 
averages over the fundamental variability arising from 
sheer randomness in the world, leaving only the estima- 
tion uncertainty caused by not having an infinite num- 
ber of obs~rvations. Thus, predicted values have a larger 
variance than expected values, even though the average 
should be nearly the same in both cases.2 

When choosing between these two quantities of in- 
terest, researchers should reflect on the importance of 
fundamental uncertainty for the conclusions they are 
drawing. In certain applications, such as forecasting the 
actual result of an election or predicting next month's 
foreign exchange rate, scholars and politicians-as well 
as investors-want to know not only the expected out- 
come, but also how far the outcome could deviate from 
expectation due to unmodeled random factors. Here, a 

21n linear models, the average predicted value is identical to the ex- 
pected value. For nonlinear cases, the two can differ but are often 
close if the nonlinearity is not severe. 
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predicted value seems most appropriate. For other appli- 
cations, the researcher may want to highlight the average 
effect of a particular explanatory variable, so an expected 
value would be the best choice. 

We now offer an algorithm for creating one simula-
tion of an expected value: 

1. Following the procedure for simulating the - param-
eters, draw one value of the vector = vec(p,&). 

2. 	 Choose one value for each explanatory variable and 
denote the vector of values as X,. 

3. 	 Taking the simulated effect coefficients from the top 
portion of 7 ,compute 0,  = g ( ~ ,,p), where g(.,.)is 
the systematic component of the statistical model. 

4. 	 Draw m values of the outcome variable Gk)( k  = 
1, . . . ,m) from the stochastic component f(B,,a). 
This step simulates fundamental uncertainty. 

5. 	Average over the fundamental uncertainty by calcu- 
lating the the mean of the m simulations to yield one 

simulated expected value E(Y,)= En' 9jk)/m,
k=l 

When m = 1, this algorithm reduces to the one for pre- 
dicted values. If m is a larger number, Step 4 accurately 
portrays the fundamental variability, which Step 5 aver-
ages away to produce an expected value. The larger the 
value of m, the more successful the algorithm will be in 
purging E(Y, ) of any fundamental uncertainty. 

To generate 1000 simulations of the expected value, 
repeat the entire algorithm M = 1000 times for some 
fixed value of'm. The resulting expected values will differ 
from each other due to estimation uncertainty, since each 
expected value will correspond to a different 7 .These M 
simulations will approximate the full probability distri- 
bution of E(Y,), enabling the researcher to compute aver- 
ages, standard errors, confidence intervals, and almost 
anything else desired. 

The algorithm works in all cases but involves some 
approximation error, which we can reduce by setting 
both m and M sufficiently high. For some statistical 
models, there is a shortcut that curtails both computa- 
tion time and approximation error. Whenever E(Y,) = 0,) 
the researcher can slup steps 4-5 of the expected value al- 
gorithm, since steps 1-3 suffice to simulate one expected 
value. This shortcut is appropriate for the linear-normal 
and logit models in Equations 2 and 3. 

First Differences 

A first difference is the difference between two expected, 
rather than predicted, values. To simulate a first differ- 
ence, researchers need only run steps 2-5 of the expected 
value algorithm twice, using different settings for the ex- 
planatory variables. 

For instance, to simulate a first difference for the first 
explanatory variable, set the values for all explanatory 
variables except the first at their means and fix the first 
one at its starting point. Denote this vector of starting 
values for the explanatory variables as X,and run the ex- 
pected value algorithm once to generate E(Y,), the aver- 
age value of Y conditional on X,. Next change the value of 
the first explanatory variable to its ending point, leaving 
the others at their means as before. Denote the new vec- 
tor as X,and rerun the algorithm to get E(Y,), the mean 
of Y conditional on X,. The first difference is simply 
E(Y,) -E(Y,). Repeat the first difference algorithm, say, 
M = 1000 times to approximate the distribution of first 
differences. Average the simulated values to obtain a 
point estimate, compute the standard deviation to obtain 
a standard error, or sort the values to approximate a con- 
fidence interval. 

We previously discussed expected values of Y, and 
until now this section has considered first differences 
based on only this type of expected value. Different ex- 
pectations, such as Pr(Y= 3) in an ordered-probit model, 
may also be of interest. For these cases, the expected 
value algorithm would need to be modified slightly. We 
have made the necessary modifications in CLARIFY, the 
software package described in the appendix, which al- 
lows researchers to calculate a wide variety of expected 
values and first differences, as well as predicted values 
and other quantities of interest. 

The algorithms in this article do not require new as- 
sumptions; rather, they rest on foundations that have be- 
come standard in the social sciences. In particular, we as- 
sume that the statistical model is identified and correctly 
specified (with the appropriate explanatory variables and 
functional form), which allows us to focus on interpret- 
ing and presenting the final results. We also assume that 
the central limit theorem holds sufficiently for the avail- 
able sample size, such that the sampling distribution of 
parameters (not the stochastic component) can be de- 
scribed by a normal distribution3 Although we focus on 
asymptotic results, as do the vast majority of the applied 
researchers using nonlinear models, simulation works 
with finite sample distributions, which are preferable 
when feasible. In short, our algorithms work whenever 
the usual assumptions work. 

Alternative Approaches 

In this section, we discuss several other techniques for 
generating quantities of interest and measuring the un- 
certainty around them. These approaches can be valuable 

3From a Bayesian perspective, we exclude unusual cases where a 
flat prior generates an improper posterior. 
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complements to simulation, because they provide impor- 
tant mathematical intuition or, in some cases, enable fi- 
nite sample approximations. We briefly summarize some 
of the leading computer-intensive and analytical alterna- 
tives to simulation. 

Computer-intensive alternatives. Our version of simula- 
tion is not the only computer-intensive technique for ob- 
taining quantities of interest and measures of uncer- 
tainty. Fully Bayesian methods, using Markov-Chain 
Monte Carlo techniques, are more powerful than our al- 
gorithms because they allow researchers to draw froin 
the exact finite-sample distribution, instead of relying on 
the central limit theorem to justify an asymptotic normal 
approximation (Carlin and Louis 1996). Unfortunately 
these methods remain difficult to use, particularly since 
statisticians still disagree about appropriate criteria for 
determining when a Markov chain has converged in dis- 
tribution to the true posterior (Cowles and Carlin 1996; 
Kass et al. 1998). Nonetheless, this field has shown re- 
markable progress over the last decade and is well worth 
monitoring by political scientists. 

Another useful alternative is bootstrapping, a non- 
parametric approach that relies on the logic of re-
sampling to approximate the distribution of parameters 
(Mooney and Duval 1993; Mooney 1996). In theory, the 
sampling distribution of .jcan be viewed as a histogram 
of an infinite number of Ys, each estimated from a dif- 
ferent sample of size n from the same population. Boot- 
strapping mimicks this process by drawing many sub- 
samples (with replacement) from the original sample, 
estimating 9 for each subsample, and then constructing 
a histogram of the various .j's. Bootstrapping has many 
advantages. It does not require strong distributional as- 
sumptions, and Monte Carlo studies have demonstrated 
that it has superior small sample properties for some 
problems. It also has the advantage of not requiring 
strong parametric distributional assumptions. Program- 
ming a bootstrapped estimator is not difficult, although 
commercial software packages have not been quick to 
adopt this method. The weakness of bootstrapping is 
that it gives biased estimates for certain quantities of in- 
terest, such as max( Y). 

For both Bayesian methods and bootstrapping, all of 
the methods of interpretation we discuss in this article 
can be used directly. The only change is that instead of 
drawing the parameters from the multivariate normal in 
Equation 4, we would use MCMC-based simulation or 
bootstrapping. Even our software, CLARIFY, could be 
used without additional programming. 

Like our method, MCMC and bootstrapping gener- 
ate simulations of the parameters. In cases where the pa- 

GARY KING, MICHAEL TOM& AND JASON WITTENBERG 

rameters are not of intrinsic interest, researchers must 
convert them into quantities such as predicted values, ex- 
pected values, and first differences. The algorithms above 
show how to make the conversion and are therefore es- 
sential supplements. Indeed, our software, CLARIFY, 
could easily be modified to interpret the parameters gen- 
erated by these alternative approaches. 

Analytical approaches. The main analytical (mathemati- 
cal) alternative to simulation is the delta method, which 
uses the tools of calculus to approximate nonlinear func- 
tions of random variables (van der Vaart 1998). Suppose 
that we are interested in the mean and variance of 8 = 

g(X,, P), where gis a nonlinear function. Assuming that g 
is approximately linear in a range where P has high prob- 
ability, then a Taylor-series expansion o$ g aboyt P is 9f- 
ten reasonable. To the first order, 8 = g(P)+ g'(P)(P -P) , 
where g'(a) = ag (a ) l aa .  As a result, the maximum- 
likelihood estimate of 8 is approxjmately g(P),  and its 
variance is approximately g'(P)V(P)g'(P)'. For example, 
in the exponential Poisson regression model (King 1989, 
Chapter 5 ) )where Y is Poisson with mean h = E(Y IX) 
= eXf', suppose we wish to compute the expected num- 
ber of events given X = Xo. In this case, the maximum 
likelihood estimate of the expected numberA of events is 
g(B) = exop and its variance is ( ~ , e ~ o p ) ~ ( ~ ) ( X , e ~ o p ) ' .  
Note that this maximum-1ik:lihood estimate still does 
not reflect the uncertainty in p, as done automatically by 
simulation and the other computationally intensive 
methods. To incorporate this additional uncertainty re- 
quires another level of mathematical complexify i~ that 
we must now approximate the integral exopp(P)dP and 
its variance. A detailed example is given by King and 
Zeng (1999) in the case of logistic regression. 

Despite its utility for increasing computing speed 
and revealing statistical intuition through mathematical 
analysis, the delta method suffers from two shortcomings 
that simulation can help overcome. First, the method is 
technically demanding, since it requires researchers to 
calculate derivatives and compute the moments of lin- 
earized functions."hus, it is not surprising that most 
scholars do not use the delta method, even when they ap- 
preciate the importance of reporting uncertainty. Sec- 
ond, the Taylor series used in the delta method only ap- 
proximates a nonlinear form. Although researchers can 
sometimes improve the approximation with additional 
terms in the Taylor series, this can be difficult, and find- 

M e n  g is linear there is obviously no need for a linearizing ap- 
proximation; an exact analytical solution exists for the mean and 
variance of many quantities of interest that we described earlier. 
Simulation produces the same answer, however, and requires less 
mathematical proficiency. 
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ing estimates of the additional terms is often impossible. 
In practice most researchers stop after expanding the se- 
ries to the first or second order, which can compromise 
the accuracy of the approximation. With simulation one 
can achieve an arbitrarily high degree of precision simply 
by increasing M and letting the computer run longer. 

Several general arguments weigh in favor of simula- 
tion. First, there is a simulation-based alternative to 
nearly every analytical method of computing quantities 
of interest and conducting statistical tests, but the reverse 
is not true (Noreen 1989). Thus, simulation can provide 
accurate answers even when no analytical solutions exist. 
Second, simulation enjoys an important pedagogical ad- 
vantage. Studies have shown that, no matter how well 
analytical methods are taught, students get the right an- 
swer far more often via simulation (Simon, Atkinson, 
and Shevokas 1976). One scholar has even offered a 
$5,000 reward for anyone who can demonstrate the su- 
periority of teaching analytical methods, but so far no 
one has managed to earn the prize (Simon 1992). Of 
course, there are advantages to the insight the mathemat- 
ics underlying the delta method can reveal and so, when 
feasible, we encourage researchers to learn both simula- 
tion and analytical methods. 

Tricks of the Trade 

The algorithms in the previous section apply to all statis- 
tical models, but they can be made to work better by fol- 
lowing a few tricks and avoiding some common mis- 
understandings. 

Tricks for Simulating Parameters 

Statistical programs usually report standard errors for 
parameter estimates, but accurate simulation requires 
the f ~ ~ l l  
e(f) 

variance matrix f i ( f) .  The diagonal elements of 
contain the squared standard errors, while the off- 

diagonal elements express the covariances between one 
parameter estimate and another in repeated draws from 
the same probability distribution. Simulating each pa- 
rameter independently would be incorrect, because this 
procedure would miss the covariances among param- 
eters. Nearly all good statistical packages can report the 
full variance matrix, but most require researchers to re- 
quest it explicitly by setting an option or a global. The 
software described in the appendix fetches the variance 
matrix automatically. 

One common mistake is to exclude some parameters 
when drawing from the multivariate normal distribu- 

tion. Parameters have different logical statuses, such as 
the effect parameters p versus the ancillary parameters a, 
but our algorithms do not need to distinguish between 
the two: both are uncertain and should be simulated, 
even if only one proves useful in later calculations. It may 
be possible to accelerate our algorithms by excluding cer- 
tain parameters from the simulation stage, but for the 
vast majority of applications these tricks are unnecessary 
and could lead to errors. Researchers usually will risk 
fewer mistakes by following, without deviation, our algo- 
rithm for simulating the parameters. 

In some statistical models, the elements of y are or- 
thogonal, so software packages provide separate variance 
matrices for each set. When implementing the algorithm 
for simulating the parameters, researchers may want to 
create a bloc diagonal matrix by placing the separately es- 
timated variance matrices on the diagonal and inserting 
zeros everywhere else. Obviously, if the subsets of y truly 
are orthogonal, equivalent draws from the two sets can 
be made from independent multivariate normal distri- 
butions, but it may be easier to work with a single sam- 
pling distribution. 

Researchers should reparameterize the elements of y 
to increase the likelihood that the asymptotic multivari- 
ate normal approximation will hold in finite samples. In 
general, all parameters should be reparameterized unless 
they are already unbounded and logically symmetric, as a 
Normal must be. For instance, a variance parameter like 
rs2 must be greater than zero, so it will pay to reparam- 
eterize by using an expression like o2= ell. This allows re- 
searchers to estimate v, which is on the scale from -w to 
w, as one element of y,which is assumed to be multi- 
variate normal. When making reparameterizations, of 
course, we add an extra step to the algorithm for simulat- 
ing the parameters: after drawing y from the multivariate 
normal, we reparameterize back to the original scale by 
computing 6' = efi.5 

Several other reparameterizations may come in 
handy. A correlation parameter p, ranging from -1 to 1, 
can be reparameterized to 11 (reusing the same symbol) 
on an unbounded scale with the inverse of Fisher's Z 
transformation: p = (e2n - l ) / ( e 2 V  1). Likewise, a 
parameter representing a probability .rr: can be made 

SReparameterization also malces liltelihood-maximization algo-
rithms easier to use by avoiding problems caused by the optimiza- 
tion procedure choosing inadmissable parameter values (which of- 
ten result in the program terminating abnormally because of 
attempts to divide by zero or logging negative numbers). Since 
maximum lilcelihood estimates are invariant to reparameteri- 
zation, the reparameterization has no effect except on the finite 
sample djstribution around the point estimate. For example, esti- 
mating 02directly gives the same estimate as estimating q and 
transforming to 02by using 02= efi. 
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unbounded using the logistic transformation, .rr: = 
[ l+ e-q]-'. These and other tricks should enhance the ef- 
fectiveness of simulating the parameters. 

Tricks for Simulating Quantities of Interest 

When converting the simulated parameters into quanti- 
ties of interest, it is safest to simulate Y and use this as a 
basis for obtaining other quantities. This rule is equiva- 
lent to incorporating all simulated parameters-and thus 
all information from the statistical model-into the cal- 
culations. Of course, some shortcuts do exist. We have al- 
ready mentioned that, in a logit model, one can obtain 
E(Y) by stopping with 5 , since drawing dichotomous 
Y's and averaging would yield exactly 5 . If one is not 
sure, though, it is helpful to continue until one has simu- 
lations of the outcome variable. 

If some function of Y, such as ln(Y), is used as the de- 
pendent variable during the estimation stage, the re- 
searcher can simulate ln(Y) and then apply the inverse 
function exp(ln(Y)) to reveal Y.We adopt this procedure 
in the first example, below, where we estimate a log-log 
regression model. This sequence of simulation and trans- 
formatio*rucial, since the usual procedure of calcu- 
lating E(ln(Y)) = bwithout simulation and then expo- 
nentiating gives the wrong answer: exp@) # Y. With 
simulation, both Y and E(Y)  can be computed easily, re- 
gardless of the scale that the researcher used during the 
estimation stage. 

Researchers should assess the precision of any simu- 
lated quantity by repeating the entire algorithm and see- 
ing if anything of substantive importance changes. If 
something does change, increase the number of simula- 
tions (Mand, in the case of expected values, m) and try 
again. In certain instances-particularly when the re- 
searcher has misspecified a nonlinear statistical model- 
the number of simulations required to approximate an 
expected value accurately may be larger than normal. 
Numerical estimates should be reported to the correct 
level of precision, so for instance if repeated runs with 
the same number of simulations produce an estimate 
that changes only in the fourth decimal point, then- 
assuming this is sufficient for substantive purposes-the 
number reported should be rounded to two or three 
decimal points. 

The simulation procedures given in this article can 
be used to compute virtually all quantities that might be 
of interest for nearly all parametric statistical models that 
scholars might wish to interpret. As such, they can be 
considered canonical methods of simulation. Numerous 
other simulation algorithms are available, however, in the 
context of specific models. When these alternatives could 
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speed the approximation or make it more accurate for a 
fixed number of simulations, they should be incorpo- 
rated into computer programs for general use. In some 
cases, analytical computations are also possible and can 
get speedier results. But our algorithms provide social 
scientists with all they need to understand the funda- 
mental concepts: which quantities are being computed 
and how the computation is, or could be, done. More- 
over, as long as M and m are large enough, these and all 
other correct algorithms will give identical answers. 

Empirical Examples 

To illustrate how our algorithms work in practice, we in- 
clude replications or extensions of five empirical works. 
Instead of choosing the most egregious, we choose a 
large number of the best works, from our most presti- 
gious journals and presses, written by some of our most 
distinguished authors. Within this group, we eliminated 
the many publications we were unable to replicate and 
then picked five to illustrate a diverse range of models 
and interpretative issues. The procedures for model in- 
terpretation in all five were exemplary. If we all followed 
their examples, reporting practices in the discipline 
would be greatly improved. For each article, we describe 
the substantive problem posed and statistical model cho- 
sen; we also accept rather than evaluate their statistical 
procedures, even though in some cases the methods 
could be improved. We then detail how the authors inter- 
preted their results and demonstrate how our procedures 
advance this state of the art. 

Linear Regression 

Following Tufte (1974)) we estimated a log-log regression 
model of the size of government in the U.S. states. Our 
dependent variable, Y,, was the natural log of the number 
of people (measured in 1000s) that the state government 
employed on a full-time basis in 1990. Tufte was inter- 
ested (for a pedagogical example) in whether Y, would 
increase with state population; but consider another hy- 
pothesis that may be of more interest to political scien- 
tists: the number of employees might depend on the pro- 
portion of Democrats in the state legislature, since 
Democrats are reputed to favor bigger government than 
Republicans, even after adjusting for state population. 
Thus, our two main explanatory variables were the log of 
state gopulation P,in 1000s and the logged proportion of 
lower-house legislators who identified themselves as 
-Democrats D,. 
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We applied the predicted value algorithm to predict 
the number of government employees in a state with six 
million people and an 80 percent Democratic house. 
First, we used the statistical software described in the ap- 
pendix to estimate the log-linear model and simulate one 
set of values for the effect coefficients (6) and the ancil- 
lary parameter (6).Next, we set the main explanatory 
variables at PC = ln(6000) and Dc = ln(0.8), so we could 
construct Xc and compute 8, = x C p .  We then drew one 
value of F, from the normal distribution N(8,)o2) .Fi-
nally, we calculated exp@,) to transform our simulated 
value into the actual number of government employees, 
a quantity that seemed more understandable than its 
natural logarithm. By repeating this process M = 1000 
times, we generated 1000 predicted values, which we 
sorted from lowest to highest. The numbers in the 25th 
and the 976th positions represented the upper and lower 
bounds of a 95-percent confidence interval. Thus, we 
predicted with 95-percent confidence that the state gov- 
ernment would employ between 73,000 and 149,000 
people. Our best guess was 106,000 full-time employees, 
the average of the predicted values. 

We also calculated some expected values and first 
differences and found that increasing Democratic con- 
trol from half to two-thirds of the lower house tended to 
raise state government employment by 7,000 people on 
average. The 95-percent confidence interval around this 
first difference ranged from 3,000 to 12,000 full-time em- 
ployees. Our result may be worth following up, since, to 
the best of our knowledge, researchers have not ad- 
dressed this relationship in the state-politics literature. 

Logit Models 

The algorithms in the third section can also help re- 
searchers interpret the results of a logit model. Our ex- 
ample draws on the work of Rosenstone and Hansen 
(1993)) who sought to explain why some individuals are 
more likely than others to vote in U.S. presidential elec- 
tions. Following Rosenstone and Hanson, we pooled data 
from every National Election Study that was conducted 
during a presidential election year. Our dependent vari- 
able, Yi, was coded 1 if the respondent reported voting in 
the presidential election and 0 otherwise. 

For expository purposes we focus on a few demo- 
graphic variables that Rosenstone and Hanson empha- 
sized: &e (Ai) and Education (Ei) in years, Income (Ii) 
in 10,000s of dollars, and Bace (coded Ri = 1 for whites 
and 0 otherwise). We also include a quadratic term to 

FIGURE1 Probability of Voting by Age 
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Vertical bars indicate 99-percent confidence intervals 

= {I ,  Ai, A;, Ei, I,, Ri}, where 1 is a constant and A? is 
the quadratic term. 

In our logit model, the probability of voting in a 
presidential election is E( Yi) = xi,  an intuitive quantity of 
interest. We estimated this probability, and the uncer- 
tainty surrounding it, for two different levels of educa- 
tion and across the entire range of age, while holding 
other variables at their means. In each case, we repeated 
the expected value algorithm M = 1000 times to approxi- 
mate a 99-percent confidence interval around the prob- 
ability of voting. The results appear in Figure 1, which il- 
lustrates the conclusions of Rosenstone and Hansen 
quite sharply: the probability of voting rises steadily to a 
plateau between the ages of 45 and 65, and then tapers 
downward through the retirement years. The figure also 
reveals that uncertainty associated with the expected 
value is greatest at the two extremes of age: the vertical 
bars, which represent 99-percent confidence intervals, 
are longest when the respondent is very young or olde6 

A Time-Series C ~ O S S - S ~ C ~ ~ O ~ ~ I  Model 

We also used our algorithms to interpret the results of a 
time-series cross-sectional model. Conventional wisdom 
holds that the globalization of markets has compelled 
governments to slash public spending, but a new book 
by Garrett (1998) offers evidence to the contrary. Where 
strong leftist parties and encompassing trade unions 
coincide, Garrett argues, globalization leads to greater 

test the hypothesis that turnout rises with age until the 
6The confidence intervals are quite narrow, because the large 

nears retirement, when the re- number of observations ( N =  15,837) eliminated most of the esti- 
verses itself. Thus, our set of explanatory variables is X, mation uncertainty 



government spending as a percentage of GDP, whereas 
the opposite occurs in countries where the left and labor 
are weak. 

To support his argument, Garrett constructed a 
panel of economic and political variables, measured an- 
nually, for fourteen industrial democracies during the 
period 1966-1990. He then estimated a linear-normal re- 
gression model where the dependent variable, Y,,is gov- 
ernment spending as a percentage of GDP for each coun- 
try-year in the data set. The three key explanatory 
variables were Capital mobility, Ci (higher values indicate 
fewer government restrictions on cross-border financial 
flows), Trade, Ti(larger values mean more foreign trade 
as a percentage of GDP), and Left-labor power, Li (higher 
scores denote a stronger combination of leftist parties 
and labor union^).^ 

To interpret his results, Garrett computed 

a series of counterfactual estimates of government 
spending under different constellations of domestic 
political conditions and integration into global mar-

kets. This was done by setting all the other variables 
in the regressioil equations equal to their mean lev- 
els and multiplying these means by their corre- 
sponding coefficients, and then by examining the 
counterfactual impact of various combinations of 
left-labor power and globalization. . . . (1998,82) 

In particular, Garrett distinguished between low and high 
levels of L,, TI, and C,. For these variables, the 14th per- 
centile in the dataset represented a low value, whereas the 
86th percentile represented a high one.8 

The counterfactual estimates appear in Table 1, 
which Garrett used to draw three conclusions. First, 
"government spending was always greater when left- 
labor power was high than when it was low, irrespective 
of the level of market integration" (entries in the second 
row in each table exceeded values in the first row). Sec- 
ond, "the gap between the low and high left-labor power 
cells was larger in the high trade and capital mobility 
cases than in the cells with low market integration," im- 
plying that "partisan politics had more impact on gov- 

7Garrett also focused on two interactions among the variables, CiLi 
and TILl,and he included a battery of business cycle and demo- 
graphic controls, as well as the lagged level of government spend- 
ing and dummy variables for countries and time. 

"'So as not to exaggerate the substantive effects" of the relation- 
ships he was studying, Garrett "relied on combinations of the 20th 
and 80th percentile scores" (1998,82). Unfortunately, due to a mi- 
nor arithmetic error, the values he reports (1998, 84) correspond 
only to the 14th and 86th percentiles. To facilitate comparison with 
Garrett, we use the 14th and 86th percentiles in our simulations. 
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TABLE1 	 Garrett's Counterfactual Effects on 
Government Spending (% of GDP) 

Trade 	 Capital Mobility 

Low High Low High 

power 
High 

Each entry is the expected level of government spending for gven  con- 
figurations eft-abor power and trade or c a p t a  mobility holding all other 
variables constant at their means. 

ernment spending where countries were highly inte- 
grated into the international economy than in more 
closed contexts." Finally, "where left-labor power was low, 
government spending decreased if one moved from low 
to high levels of market integration, but the converse was 
true at high levels of left-labor power" (1998,83). 

Garrett's counterfactuals go far beyond the custom- 
ary list of coefficients and t-tests, but our tools can help 
us extract even more information from his model and 
data. For instance, simulation can reveal whether the dif- 
ferences in values across the cells might have arisen by 
chance alone. To make this assessment, we reestimated 
the parameters in Garrett's regression equation9 and 
drew 1000 sets of simulated coefficients from their poste- 
rior distribution, using the algorithm for simulating the 
parameters. Then we fixed L, and T,at their 14th percen- 
tiles, held other variables at their means, and calculated 
1000 (counterfactual) expected values, one for each set of 
simulated coefficients. Following the same procedure, we 
produced counterfactuals for the other combinations of 
L,, T,, and C, represented by the cells of Table 1. Finally, 
we plotted "density estimates" (which are smooth ver- 
sions of histograms) of the counterfactuals; these appear 
in Figure 2. One can think of each density estimate as a 
pile of simulations distributed over the values govern- 
ment spending. The taller the pile at any given level of 
government spending, the more simulations took place 
near that point. 

Figure 2 shows that when globalization of trade or 
capital mobility is low, leftist governments spend only 
slightly more than rightist ones. More importantly, the 

9 0 u r  coefficients differed from those in Garrett (1998, 80-81) by 
only 0.3 percent, on average. Standard errors diverged by 6.8 per- 
cent, on average, apparently due to discrepancies in the method of 
calculating panel-corrected standard errors (Franzese 1996). 
None of the differences made any substantive difference in the 
conclusions. 
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FIGURE2 Simulated Levels of Government Spending 

Low Exposure to Trade High Exposure to Trade 

Government Spending (% of GDP) Government Spending (% of GDP) 

Low Capital Mobility High Capital Mobility 

Government Spending (% of GDP) Government Spending (% of GDP) 

These panels contain density estimates (smooth versions of histograms) of expected govern- 
ment spending for countries where left-labor power is high (the solid curve) and low (the dotted 
curve). The panels, which add uncertainty estmates to the concepts in Table 1, demonstrate 
that left-labor power has a dstinguishable effect only when exposure to trade or capital mobil- 
ity s high. 

density estimates overlap so thoroughly that it is difficult 
to distinguish the two spending patterns with much con- 
fidence. (Another way to express one aspect of this point 
is that the means of the two distributions are not statisti- 
cally distinguishable at conventional levels of signifi- 
cance.) In the era of globalization, by contrast, domestic 
politics exerts a powerful effect on fiscal policy: leftist 
governments outspend rightist ones by more than two 
percent of GDP on average, a difference we can affirm 
with great certainty, since the density estimates for the 
two regime-types are far apart. In summary, our simula- 
tions cause us to question Garrett's claim that left-labor 
governments always outspend the right, regardless of the 
level of market integration: although the tendency may 
be correct, the results could have arisen from chance 
alone. The simulations do support Garrett's claim that 
globalization has intensified the relationship between 
partisan politics and government spending. 

Nlultinomial Logit Models -

How do citizens in a traditional one-party state vote when 
they get an opportunity to remove that party from office? 
Dominguez and McCann (1996) addressed this question 

survey data from the 1988 Mexican presi-
dential election. In that election, voters chose among three 

presidential candidates: Carlos Salinas (from the ruling 
PRI), Manuel Clouthier (representing the PAN, a right- 
wing party), and CuauhtCmoc Chrdenas (head of a leftist 
coalition). The election was historically significant, be- 
cause for the first time all three presidential candidates 
appeared to be highly competitive. Dominguez and 
McCann used a multinomial logit model to explain why 
some voters favored one candidate over the others. The 
following equations summarize the model, in which Yi 
and niare 3 x 1 vectors: 

n .  = t; . ' where j = 1,2,3 candidates. (5) 

' x : = l e X ~ ~ *  

The effect parameters can vary across the candidates, so 
pl, P2, and p, are distinct vectors, each with k x 1 
elements.IO 

The book focuses on individual voting behavior, as 
is traditional in survey research, but we used simulation 
to examine the quantity of interest that motivated 

10Dominguez and McCann included thirty-one explanatory vari- 
ables in their model. For a complete listing of the variables and 
question wording, see Dominguez and McCann (1996,213-216). 
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Dominguez and McCann in the first place: the electoral 
outcome itself. In particular, if every voter thought the 
PRI was weakening, which candidate would have won 
the presidency? To answer this question, we coded each 
voter as thinking that the PRI was weakening and let 
other characteristics of the voter take on  their true 
values. Then we used the predicted value algorithm to 
simulate the vote for each person in the sample and used 
the votes to run a mock election. We repeated this exer- 
cise 100 times to generate 100 simulated election out- 
comes. For comparison, we also coded each voter as 
thinking the PRI was strengthening and simulated 100 
election outcomes conditional on those beliefs. 

Figure 3 displays our results. The figure is called a 
"ternary plot" (see Miller 1977; Katz and King 1999), and 
coordinates in the figure represent predicted fractions of 
the vote received by each candidate under a different 
simulated election outcome. Roughly speaking, the closer 
a point appears to one of the vertices, the larger the frac- 
tion of the vote going to the candidate whose name ap- 
pears on the vertex. A point near the middle indicates that 
the simulated election was a dead heat. We also added 
"win lines" to the figure that divide the ternary diagram 
into areas that indicate which candidate receives a plural- 
ity and thus wins the simulated election (e.g., points that 
appear in the top third of the triangle are simulated elec- 
tion outcomes where Cardenas receives a plurality). 

In this figure, the 0's (all near the bottom left) are 
simulated outcomes in which everyone thought the PRI 
was strengthening, while the dots (all near the center) 
correspond to beliefs that the PRI was weakening. The 
figure shows that when the country believes the PRI is 
strengthening, Salinas wins hands down; in fact, he wins 
every one of the simulated elections. If voters believe the 
PRI is weakening, however, the 1988 election is a toss-up, 
with each candidate having an equal chance of victory. 

This must be a sobering thought for those seeking to 
end PRI dominance in Mexico. Hope of defeating the 
PRI, even under these optimistic conditions, probably re- 
quires some lund of compromise between the two oppo- 
sition parties. The figure also supports the argument 
that, despite much voter fraud, Salinas probably did win 
the presidency in 1988. He may have won by a lesser mar- 
gin than reported, but the figure is strong evidence that 
he did indeed defeat a divided opposition." 

Censored Weibull Regression Models 

How do wars affect the survival of political leaders? 
Bueno de Mesquita and Siverson (1995) examine this 

"See Scheve a n d  T o m z  (1999) o n  s i m u l a t i o n  o f  coun te r  factual  
predic t ions a n d  Sterman a n d  Wi t tenberg  (1999) o n  s imu la t ion  o f  
predic ted values, b o t h  in the context o f  b i n a r y  log i t  models. 

FIGURE3 Simulated Electoral Outcomes 

Cardenas 

Salinas Clouthier 

Coordinates in this ternary diagram are predicted fractions of the vote 
rece~ved by each of the three candidates Each point is an election out- 
come drawn randomly from a world in w h c h  a voters belleve Salinas' 
PRI party is strengthing (for the "0"'s in the bottom left) or weakening (for 
the "."'s in the middle), with other variables held constant at their means. 

question by estimating a censored Weibull regression (a 
form of duration model) on a dataset in which the de- 
pendent variable, Yi, measures the number of years that 
leader i remains in office following the onset of war. For 
fully observed cases (the leader had left office at the time 
of the study), the model is 

where o is an ancilliary shape parameter and l- is the 
gamma function, an interpolated factorial that works for 
continuous values of its argument. The model includes 
four explanatory variables: the leader's pre-war tenure in 
years, an interaction between pre-war tenure and democ- 
racy, the number of battle deaths per 10,000 inhabitants, 
and a dummy variable indicating whether the leader won 
the war.12 The authors find that leaders who waged for- 
eign wars tended to lose their grip on power at home, but 
authoritarian leaders with a long pre-war tenure were 
able to remain in office longer than others. 

Bueno de Mesquita and Siverson discuss the mar- 
ginal impact of their explanatory variables by computing 
the "hazard rate" associated with each variable. Hazard 
rates are the traditional method of interpretation in the 
literature, but understanding them requires considerable 
statistical knowledge. Simulation can help us calculate 
more intuitive quantities, such as the number of months 
that a leader could expect to remain in office following 

12The f irst three variables are expressed in logs. 
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FIGURE4 Regime Type and and Political Survivability in Wars 

(a) Effect of Pre-War Tenure for Authoritarians (b) Effect of Pre-War Tenure for Democrats 
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Density estimates of the number of years of survival in office for (a) authoritarian and (b) democratic leaders with median pre-war 

tenure (dotted n e )  and long pre-war tenure (solid line). 

the outbreak of war. As a first step, we predicted the sur- 
vival time in ofice for a democrat with the median level 
of pre-war tenure, holding other variables at their means. 
After repeating this exercise for an authoritarian leader, 
we asked what would have happened if the leaders had 
ten extra years of pre-war tenure under their belts. In 
each of our four cases, we generated 500 simulations to 
reflect both estimation and fundamental uncertainty. 

The results appear in Figure 4, which displays den- 
sity estimates of survival time for authoritarians and 
democrats, conditional on pre-war tenure. The dotted 
curves correspond to leaders with average levels of pre- 
war tenure, whereas the solid lines represent densities for 
leaders with ten extra years of pre-war experience. The 
arrows in the graphs indicate the median outcome under 
each scenario. These arrows are further apart in the left 
panel (a) than in the right one (b), lending strong sup- 
port to  the authors' original claim that prewar tenure 
matters more for authoritarians than it does for demo- 
crats. On average, experienced authoritarians managed 
to retain power 11.8 years longer than their less experi- 
enced counterparts; by contrast, an extra decade of pre- 
war experience extended the post-war tenure of demo- 
crats by only 2.8 years. 

Figure 4 also illustrates the value of plotting the en- 
tire distribution of a quantity of interest, instead of fo- 
cusing on a single summary like the mean. Due to assym- 
metries in the distributions, the modal survival time (the 
peak of each distribution) does not correspond closely to 
the median survival time, which is arguably more inter- 
esting. The exact nature of the dramatic skewness is also 
important, since it shows clearly that most survival times 

are relatively short (under 5 years) and densely clustered, 
with longer times distributed over a much wider range 
(5-20 years and more). 

Concluding Remarks 

Political scientists have enjoyed increasing success in ex- 
tracting information from numerical data. Thanks to the 
work of political methodologists in the last decade or 
two, we have imported and adapted statistical ap- 
proaches from other disciplines, created new models 
from scratch, and applied these models in every empiri- 
cal subfield. We now collect and analyze quantitative data 
from a wide range of sources and time periods, and we 
deposit numerous data sets in archives such as the Inter- 
university Consortium for Political and Social Research. 
Most impressively, about half of all articles in political 
science journals now include some form of statistical 
analysis, and the methods are becoming increasingly so- 
phisticated and appropriate to the problems at hand. 

Unfortunately, our success at developing and imple- 
menting new quantitative methods has come at some cost 
in communication. Many quantitative articles contain 
impenetrable statistical jargon and unfamiliar math- 
ematical expressions that confuse readers and seem to ob- 
scure more of social reality than they reveal. This problem 
may even account for much of the acrimony between 
quantitative and qualitative researchers, despite the com- 
mon goals both groups have in learning about the world. 
Statistical methods are difficult to learn, harder to use, 
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and seemingly impossible to present so that nonquanti- 
tative social scientists can understand. Few argue against 
the centrality of statistics for analyzing numerical data, 
just as few claim any longer that either quantitative or 
qualitative information will ever be sufficient in isola- 
tion. Yet statistical analysts have a responsibility to present 
their results in ways that are transparent to everyone. In 
too much research, understanding even the substantive 
conclusions of sophisticated quantitative models can be 
challenging at best and impossible at worst. 

Political scientists have attacked this communication 
problem from many angles. Most graduate programs now 
offer a sequence of courses in political methodology, and 
an increasing number offer informal math classes during 
the summer. Methodologists regularly sponsor retraining 
programs and write pedagogical articles. Yet, all this activ- 
ity will not make statisticians out of qualitative research- 
ers, nor would it be even remotely desirable to do so. 

As a new line of attack, we suggest that the "produc- 
ers" rather than the "consumers" of statistical research 
should bear some of the cost of retraining. Our proposals 
for extracting new information from existing statistical 
models should enable scholars to interpret and present 
their results in ways that convey numerically precise esti- 
mates of the quantities of substantive interest, include rea- 
sonable assessments of uncertainty about those estimates, 
and require little specialized knowledge to understand. 

The methods we propose are more onerous than the 
methods currently used in political science. They require 
more computation, and researchers who put them into 
practice will have to think much harder about which 
quantities are of interest and how to communicate to a 
wider audience. But our approach could help bridge the 
acrimonious and regrettable chasm that often separates 
quantitative and nonquantitative scholars, and make the 
fruits of statistical research accessible to all who have a 
substantive interest in the issue under study. Perhaps most 
importantly, the proposals discussed here have the poten- 
tial to improve empirical research and to reveal new facts 
currently ignored in our already-run statistical proce- 
dures. That is, without new assumptions, new statistical 
models, or new data collection efforts, the interpretive 
procedures we propose have the potential to generate new 
conclusions about the political and social world. 

Appendix 

Software 


We have written easy-to-use statistical software, called 
CLARIFY Softwarefor Inter~retingand Presenting Statistical 
Results, to implement our approach. This software, a set of 
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macros for the Stata statistics package, will calculate quanti- 
ties of interest for the most commonly used statistical mod- 
els, including linear regression, binary logit, binary probit, 
ordered logit, ordered probit, multinomial logit, Poisson re- 
gression, negative binomial regression, and a growing num- 
ber of others. The software and detailed documentation are 
available at http://GKing.Harvard.Edu. We provide a brief 
description here. 

The package includes three macros that are intended to 
be run in this order: 

ESTSIMP estimates a chosen model and generates random 
draws from the multivariate normal distribution (i.e., com- 
putes 7). 
SETX sets X,to desired values such as means, medians, per- 
centiles, minima, maxima, specified values, and others. 

SIMQI computes desired quantities of interest such as pre- 
dicted values, expected values, and first differences. 

These programs come with many options, but to show 
how easy they can be to use, we provide one brief example. 
Suppose we have an ordered-probit model in which the de- 
pendent variable y takes on the values 1,2,3,4, or 5 and the 
explanatory variables are xl and x2. Suppose we want to 
find the probability that y has the value 4 when xl = 12.8 
and x2 is fured at its mean, and want a 90 percent confidence 
interval around that probability. To generate this quantity of 
interest, we would type the following three commands from 
the Stata command prompt: 

estsimp oprobit y xl x2 
setx xl 12.8 x2 mean 
simqi, prval(4) level(90) 

The first line estimates the ordered probit model of y on 
xl and x2 and generates and stores simulated values of all 
estimated parameters. The second line sets xl to 12.8 and x2 
to its mean. The third line computes the desired quantity of 
interest (a gobability d u e  of 4) and the (90-percent) level 
of confidence associated with an interval to be computed 
around it. 

These programs are very flexible and will compute 
many more quantities of interest than included in this brief 
example. The online help gives detailed descriptions. We in- 
vite others to write us with contributions to this set of mac- 
ros to cover additional statistical models or other quantities 
of interest. We also plan to continue adding to them. 

References 

Barnett, Vic. 1982. Comparative Statistical Inference. 2nd ed. 
New York: Wiley. 

http://GKing.Harvard.Edu


IMPROVING STATISTICAL INTERPRETATION A N D  PRESENTATION 361 

Blalock, Hubert M. 1967. "Causal Inferences, Closed Popula- 
tions, and Measures of Association:' American Political Sci- 
ence Review 61: 130-136. 

Bueno de Mesquita, Bruce, and Randolph M. Siverson. 1995. 
"War and the Survival of Political Leaders: A Comparative 
Study of Regime Types and Political Accountability." Ameri-
can Political Science ReviewVol. 89: 841-855. 

Cain, Glen G., and Harold W. Watts. 1970. "Problems in Mak- 
ing Policy Inferences from the Coleman Report." American 
Sociological Review 35: 228-242. 

Carlin, Bradley P., and Thomas A. Louis. 1996. Bayes and Em- 
pirical Bayes Methods for Data Analysis. London: Chapman 
and Hall. 

Cowles, Mary Kathryn, and Bradley P. Carlin. 1996. "Markov 
Chain Monte Carlo Convergence Diagnostics: A Compara- 
tive Review:' Journal of the American Statistical Association, 
91: 883-904. 

Dominguez, Jorge I., and James A. McCann. 1996. Democratiz-
ing Mexico: Public Opinion and Electoral Choices. Baltimore: 
The Johns Hopkins University Press. 

Fair, Ray C. 1980. "Estimating the Expected Predictive Accuracy 
of Econometric Models:' International Economic Review 21: 
355-378. 

Franzese, Jr., Robert J. 1996. "PCSE.G: A Gauss Procedure to 
Implement Panel-Corrected Standard-Errors in Non-Rect- 
angular Data Sets." Cambridge: Harvard University. 

Garrett, Geoffrey. 1998. Partisan Politics in the Global Economy. 
New York: Cambridge University Press. 

Kass, Robert E., Bradley P. Carlin, Andrew Gelman, and 
Radford M. Neal. 1998. "Markov Chain Monte Carlo in 
Practice: A Roundtable Discussion" The American Statisti- 
cian. 52920: 93-100,1998 May. 

Katz, Jonathan, and Gary King. 1999. "A Statistical Model for 
Multiparty Electoral Data." American Political Science Re- 
view. 93:15-32. 

King, Gary. 1989. Unifying Political ~ e t h o d o l o g i :  The  Likeli- 
hood Theory of Statistical Inference. New York: Cambridge 
University Press. 

King, Gary, and Langche Zeng. 1999. "Logistic Regression in 
Rare Events Data." Unpublished manuscript available at 
http:llGKing.Harvard.edu. 

Long, Scott J. 1997. Regression Models for Categorical and Lim- 
ited Dependent Variables. Thousand Oaks, Calif.: Sage Pub- 
lications. 

Miller, William L. 1977. Electoral Dynamlcs  i n  Britain since 
1918. London: Macmillan. 

Mooney, Christopher Z. 1996. "Bootstrap Statistical Inference: 
Examples and Evaluations for Political Science." American 
Journal of Political Science 40: 570-602. 

Mooney, Christopher Z., and Robert D. Duval. 1993. 
Bootstrapping: A Nonparametric Approach to Statistical In- 
ference. Newbury Park, Calif.: Sage Publications. 

Noreen, Eric. 1989. Computer-Intensive Methods for Testing Hy-  
potheses. New York, Wiley. 

Rosenstone, Steven J., and John Mark Hansen. 1993. Mobiliza-
tion, Participation, and Democracy i n  America. New York: 
MacMillan. 

Scheve, Kenneth, and Michael Tomz. 1999. "Electoral Surprise 
and the Midterm Loss in U.S. Congressional Elections." 
British Journal of Political Science 19: 507-21. 

Simon, Julian Lincoln. 1992. Resampling: The  N e w  Statistics. 
Arlington, Va.: Resampling Stats. 

Simon, Julian Lincoln, David T. Atkinson, and Carolyn 
Shevokas. 1976. "Probability and Statistics: Experimental 
Results of a Radically Different Teaching Method." T h e  
American Mathematical Monthly 83: 733-739. 

Sterman, John D., and Jason Wittenberg. 1999 "Path-Depen- 
dence, Competition, and Succession in the Dynamics of Sci- 
entific Revolution." Organization Science 10: 322-341. 

Stern, Steven. 1997. "Simulation-Based Estimation." Journal of 
Econonzic Literature XXXV: 2006-2060. 

Tanner, Martin A. 1996. Tools for Statistical Inference: Methods 
for the Exploration of Posterior Distributions and Likelihood 
Functions. 3rd ed. New York: Springer-Verlag. 

Tufte, Edward R. 1974. Data Analysis for Politics and Policy. 
Englewood Cliffs, N.J.: Prentice-Hall. 

van der Vaart, A. W. 1998. Asymptotic Statistics. New York: 
Cambridge University Press. 

http:llGKing.Harvard.edu

