Interpreting and Presenting Statistical Results

 Mike Tomz Jason Wittenberg

 Mike Tomz Jason Wittenberg Harvard University

 Harvard University}

APSA Short Course September 1, 1999

A Reader's Nightmare

Table 19: Vote for George W. Bush? Heteroskedastic FIML Model

	Model 1	Model 2	Model 3
INCOME	$\begin{aligned} & 5.417 \text { *** } \\ & (2.10) \end{aligned}$	$\begin{aligned} & 5.746 \text { *** } \\ & (2.21) \end{aligned}$	$\begin{aligned} & 6.185 \text { ** } \\ & (2.81) \end{aligned}$
GENDER	$\begin{aligned} & 9.542 \text { * } \\ & (5.02) \end{aligned}$		$\begin{aligned} & 9.826 \text { ** } \\ & (4.27) \end{aligned}$
SUBURBS	$\begin{aligned} & 7.945 \\ & (6.10) \end{aligned}$	$\begin{aligned} & 7.135 \\ & (5.49) \end{aligned}$	$\begin{aligned} & 8.107 \text { * } \\ & (4.14) \end{aligned}$
RACE	$\begin{aligned} & 5.207 \text { ** } \\ & (2.60) \end{aligned}$	$\begin{aligned} & 4.217 \text { ** } \\ & (1.83) \end{aligned}$	
CONST	$\begin{aligned} & -4.061 \text { *** } \\ & (1.35) \end{aligned}$	$\begin{aligned} & -5.5988^{* * *} \\ & (1.60) \end{aligned}$	$\begin{aligned} & -5.323 \text { *** } \\ & (1.53) \end{aligned}$

Pseudo R ${ }^{2}$
0.37
0.34
0.35

Note: $\mathrm{N}=3017$. Estimated coefficients are given with standard errors in parentheses underneath. ${ }^{*} p<.05,{ }^{* *} p<.01,{ }^{* * *} p<.001$

Our method helps researchers

- Convey results in a reader-friendly manner

> - Uncover new facts about the political world

The method does not require
 - collecting new data
 - changing the statistical model
 - introducing new assumptions

This course has three parts.

1. The problem
2. A solution
3. Examples, with
software

Good methods of interpretation should satisfy three criteria:

1. Convey numerically precise

 estimates of the quantities of substantive interest2. Include reasonable estimates of uncertainty about those estimates
3. Require no specialized knowledge to understand

The most common methods of interpretation do not satisfy our criteria.

1. Listing coefficients and se's

- not intrinsically interesting
- hard to understand

1. Computing expected values or first differences exclusively

- ignores sampling error and fundamental uncertainty

Best current practice

- "Fitted", "predicted" (expected) values

Compute an expected value of the dependent variable given the estimated coefficients and interesting values of the explanatory variables.

- First Differences

Compute the difference between two expected values.

Both ignore sampling error and fundamental uncertainty.

Two kinds of uncertainty

- Sampling error

How much do estimated quantities differ from sample to sample?

- Fundamental uncertainty

How much do unmodeled random factors influence the outcome?

A better method

Our Goal

To obtain precise quantities of interest and estimates of uncertainty that are easy to understand.

The technique

Use simulation to extract all available information from a statistical model.

What is simulation?

1. Simulation is analogous to survey sampling.

Survey Sampling

Learn about a population by taking a random sample from it

Use the random sample to estimate a feature of the population

The estimate is arbitrarily precise for large N

Example: estimate the mean of the population

Simulation
Learn about a distribution by taking random draws from it

Use the random draws to approximate a feature of the distribution

The approximation is arbitrarily precise for large M

Example: approximate the mean of the distribution

2. Example: Approximating the mean

 of a distribution is like estimating the mean of a population.$$
\frac{1}{n} \sum_{i=1}^{n} y_{i} \quad \text { versus } \frac{1}{m} \sum_{j=1}^{m} \tilde{y}_{j}
$$

What is a model?

A statistical model is a representation of the social process that produces the outcomes of interest.

For example, linear regression:

$$
\begin{aligned}
& Y_{i}=\beta_{0 i}+\beta_{1 i} X+\varepsilon_{i} \\
& \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Equivalently:

$$
\begin{aligned}
& Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right) \\
& \mu_{i}=\beta_{0 i}+\beta_{1 i} X_{i}
\end{aligned}
$$

Logit and other models

Logistic regression:

$$
\begin{aligned}
& Y_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}\right) \\
& \pi_{i}=\frac{1}{1+e^{-X_{i} \beta}} .
\end{aligned}
$$

Most models can be written as:

$$
\begin{aligned}
Y_{i} & \sim f\left(\theta_{i}, \alpha\right) \\
\theta_{i} & =g\left(X_{i}, \beta\right)
\end{aligned}
$$

What parts of the model do we simulate?

Our Goal: Generate simulations of the outcome variable that account for both sampling error and fundamental uncertainty

Consider the Logit:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Bernoulli}\left(\pi_{i}\right) \\
\pi_{i} & =\frac{1}{1+e^{-X_{i} \beta}}
\end{aligned}
$$

Simulate the uncertain quantities.

How do we simulate the parameters?

1. Obtain the estimated coefficients and variance matrix

2. Draw (simulate) the parameters from a multivariate normal distribution

Obtain the estimated coefficients and variance matrix

reg yreg $x 1$

Source	SS	$d f$	MS
Model	364.960926	1	364.960926
lesidual	6904.20739	998	6.91804348
Total	7269.16832	999	7.27644476

$\begin{array}{lr}\text { Number of obs } & =1000 \\ \text { F(} 1 \text {, } 998 \text {) } & =52.75 \\ \text { Prob } & =0.0000 \\ \text { R-squared } & =0.0502 \\ \text { Adj R-squared } & =0.0493 \\ \text { Root MSE } & =2.6302\end{array}$

yreg ;	Coef.	Std. Err.	t	P>iti	[95\% Conf	Interual]
$\begin{array}{r} \text { x1 } \\ \ldots \operatorname{cons} \end{array}$	$\begin{array}{r} 2.15182 \\ -1.174021 \end{array}$	$\begin{array}{r} 296261 \\ .1698267 \end{array}$	$\begin{array}{r} 7.263 \\ -6.913 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} 1.570454 \\ -1.50728 \end{array}$	$\begin{array}{r} 2.733186 \\ -.840763 \end{array}$

$$
\hat{\gamma}=\left[\begin{array}{c}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\alpha}
\end{array}\right] \hat{V}=\left[\begin{array}{ccc}
v_{\hat{\beta}_{11}} & v_{\hat{\beta}_{12}} & v_{\hat{\beta}_{1} \hat{\alpha}} \\
v_{\hat{\beta}_{21}} & v_{\hat{\beta}_{22}} & v_{\hat{\beta}_{2} \hat{\alpha}} \\
v_{\hat{\alpha} \hat{\beta}_{1}} & v_{\hat{\alpha} \hat{\beta}_{2}} & v_{\hat{\alpha}}
\end{array}\right]
$$

A Primer on Normal Distributions

1. Univariate normal distribution

2. Bivariate normal distributions

Draw (simulate) parameters from a multivariate normal distribution

$$
\tilde{\gamma} \sim N(\hat{\gamma}, \hat{V})
$$

Each draw will be a vector of simulated parameters:

$$
\left[\begin{array}{c}
\tilde{\beta}_{11} \\
\widetilde{\beta}_{21} \\
\widetilde{\alpha}_{1}
\end{array}\right]\left[\begin{array}{c}
\tilde{\beta}_{12} \\
\widetilde{\beta}_{22} \\
\widetilde{\alpha}_{2}
\end{array}\right] \cdots\left[\begin{array}{l}
\tilde{\beta}_{1 \mathrm{M}} \\
\widetilde{\beta}_{2 \mathrm{M}} \\
\tilde{\alpha}_{\mathrm{M}}
\end{array}\right]
$$

$$
\begin{aligned}
& \quad \text { To simulate one } \\
& \quad \text { value of } Y \text { from } \\
& Y_{i} \sim f\left(\theta_{i}, \alpha\right), \quad \theta_{i}=g\left(X_{i}, \beta\right) \\
& \text { 1. Choose a scenario, } X_{c} . \\
& \text { 2. Draw one value of } \tilde{\gamma}=[\tilde{\beta} \tilde{\alpha}] \\
& \text { 3. Compute } \tilde{\theta}_{c}=g\left(X_{c}, \tilde{\beta}\right) . \\
& \text { 4. Draw } \tilde{Y}_{c} \text { from } f\left(\tilde{\theta_{c}}, \tilde{\alpha}\right) .
\end{aligned}
$$

[Repeat steps 2-4 many times to approximate the distribution of $Y X_{c}$]

Example of simulating \tilde{Y}_{c}

Regress income on education, as in

$$
\begin{aligned}
& \text { Income } \sim N\left(\mu, \sigma^{2}\right) \\
& \mu=\beta_{0}+\beta_{1} \times \text { education } .
\end{aligned}
$$

To simulate one value of income,

1. Choose a scenario for education, for example education $=12$ years.
2. Draw one value of $\tilde{\gamma}=\left[\begin{array}{lll}\widetilde{\beta}_{0} & \widetilde{\beta}_{1} & \widetilde{\sigma}^{2}\end{array}\right]$
3. Compute $\widetilde{\mu}_{c}=\widetilde{\beta}_{0}+\widetilde{\beta}_{1} \times$ education $_{c}$.
4. Draw one value of income, conditional on education ${ }_{c}$, from income ${ }_{c} \sim N\left(\tilde{\mu}_{c}, \tilde{\sigma}^{2}\right)$.
[Repeat steps 2-4 many times to approximate the distribution of income|education=12 years]

With \tilde{Y}_{c} we can compute any quantity, including:

- Predicted values
- Expected values
- First differences

To simulate one expected value,

1. Choose a scenario, X_{c}.
2. Draw one value of $\widetilde{\gamma}=\left[\begin{array}{ll}\widetilde{\beta} & \widetilde{\alpha}\end{array}\right]$,
3. Compute $\tilde{\theta}_{c}=g\left(X_{c}, \tilde{\beta}\right)$.
4. Draw m values of $\tilde{Y}_{c} \sim f\left(\tilde{\theta}_{c}, \tilde{\alpha}\right)$.
5. Calculate the mean

$$
\tilde{E}\left(Y_{c}\right)=\sum_{\mathrm{a} \| \tilde{F}_{c}} \frac{\tilde{Y}_{c}}{m} .
$$

For one first difference,

1. Choose starting scenario, X_{s}.
2. Calculate $\tilde{E}\left(Y_{s}\right)$.
3. Choose an ending scenario, X_{e}.
4. Calculate $\tilde{E}\left(Y_{e}\right)$.
5. Compute $\tilde{E}\left(Y_{e}\right)-\tilde{E}\left(Y_{s}\right)$.

With many draws of the quantity of interest, we can calculate:

- Average values - Confidence intervals
- Anything else we want!

Tricks for simulating parameters

\author{

1. Simulate betas and ancillary parameters.
}
2. Transform parameters to make them unbounded and symmetric.

Tricks for simulating the quantity of interest

1. Increase simulations for more precision, reduce for computational speed.
2. Reverse transformations of the dependent variable.
3. Advanced users can take shortcuts to simulate the expected value and other quantities.

The method in practice (Please try this at home!)

There are three main steps.

1. Estimate the model and simulate the parameters.
2. Choose a scenario for the explanatory variables.
3. Simulate quantities of interest.

We provide software to get you started.

How to use CLARIFY

- Clarify works with Stata version 5.0+
- Issue three simple commands.
estsimp estimates the model and simulates the parameters
setx
sets values for explanatory variables (the X's)
simqi simulates quantities of interest

Basic Syntax

The commands have an intuitive syntax.

```
estsimp model depvar indvars
setx indvar1 value1 indvar2 value2 ...
simqi
```

Consider a hypothetical example:

```
estsimp logit y x1 x2 x3
setx x1 mean x2 p20 x3 .4
simqi
```


Here is the intermediate output.

- Stata Resulis			
- use testlog - estsimp logit ylog 4142 ns			
Iteretion 0: log likelihood $=-693.04918$			
Iteration 1: \quad Iteretion 2 likelihood $=-486.16969$			
Iteretion 3: \quad og likelihood $=-466.72909$			
Logit estimetes	Humber of obs LF ehiel 3 Prob > chiz		
Log likelihood $=-466.72345$			
ylog Coef. Std. Err.	P>izi	[95\% Conf. Interuel]	
 1 2.171585 3031084 164	0.000		
$42 \quad 4.379989 \quad .3845468$ 13.092	0.600	3.724	
43 -4.238202 .3255733 -13.018 cons -1.09851 .239139	0.000	-4.876	
Simulating main parameters. Flesse wit.: 2 of simulations oompleted: 25% 50\% 75\% 100\%			
Number of simulations : 1000 limes of new wariables : bi be bs b4			

Here is the final output.

Using estsimp to estimate

Type "estsimp" before a standard command
Which models does it estimate?

Model Name
regress
logit, probit
ologit, oprobit
mlogit
poisson, nbreg

Type of Y
continuous
binary
ordered
categorical
count

Using estsimp to simulate

estsimp simulates all the parameters and stores them as new variables

obs	y	x
1	1	4.0
2	0	2.4
3	0	7.1
4	0	6.4
5	0	7.0
6	0	4.6
7	1	3.8
8	0	4.3
9	1	5.1
10	0	0.1

obs	y	x	b1	b2
1	1	4.0	0.09	-0.37
2	0	2.4	0.14	-0.67
3	0	7.1	0.17	-0.81
4	0	6.4	0.17	-0.93
5	0	7.0	0.09	-0.38
6	0	4.6	0.12	-0.66
7	1	3.8	0.17	-0.88
8	0	4.3	0.12	-0.60
9	1	5.1	0.13	-0.62
10	0	0.1	0.13	-0.56
11		.	0.15	-0.75
12		.	0.16	-0.79
13		.	0.12	-0.58
14			0.14	-0.66
15			0.16	-0.75

Ways to verify what clarify simulated

```
#Stata Riesulis
Gimulating mein paremeters. Fleges weit.....
% of simulati ons completed: 25% 50% 75% 100%
Humber of simulations : 1000
HEmes of new weriables: bi be bS b4
```

V		x
b1	Simulated $x 1$ parameter	\star
b2	Simulated x 2 parameter	
b3	Simulated x 3 parameter	
b4	Simulated _cons parameter	
x1	1st explanatory yariable	
x 2	2nd explanatory yariable	
$x 3$	Frd explanatory yariable	
ylog	Y for Logit	-

Or summarize the simulated parameters and compare to point estimates

Using setx

Use setx to choose a real or hypothetical value for each explanatory variable. Options include:

Value		Syntax
arithmetic mean		mean
median		median
minimum		min
maximum		max
\#th percentile		$\mathrm{p} \mathrm{\#} \#$
math expression	$5 \star 5$	
numeric value		$\#$
contents of macro		'macro'
value in \#th obs	$[\#]$	

You can set each value individually or assign values to groups of variables.

Using simqi

By default, simqi displays sensible quantities of interest for each model. For example:

Model	
regress	$E\left(Y \mid X_{c}\right)$
logit	$\operatorname{Pr}\left(Y=1 \mid X_{c}\right)$
oprobit	$\operatorname{Pr}\left(Y=j \mid X_{c}\right)$ for all j

Simqi allows many options for displaying and saving quantities of interest.

How do education and age affect voter turnout?

Dependent variable:
Did the person vote? ($1=y e s, 0=n o$)
Explanatory variables:
age, education, income, race, age 2
Logit model:

$$
\begin{aligned}
& \text { turnout }_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}\right) \\
& \pi_{i}=\frac{1}{1+e^{-X_{i} \beta}}
\end{aligned}
$$

One way of presenting logit results

Explanatory Variable	Estimated Coefficient	Standard Error
Education	0.181 **	0.007
Age	0.109 **	0.006
Age ${ }^{2} / 100$	-0.078 **	0.007
Income	0.151 **	0.010
White	0.116 **	0.054
Constant	-4.715 **	0.174

Better ways to present logit results

"Other things equal, someone with a college degree is $9-12 \%$ more likely to vote than someone with only a high school education."

Calculating the probability of voting

Suppose we are interested in the probability of voting for the following scenario:

30 year old, college-educated black with an annual salary of $\$ 50,000$

How would we simulate that?
estsimp logit turnout age agesqrd educate white income
setx age 30 agesqrd $30^{\wedge} 2 / 100$ educate 16 white 0 income 50
simqi

Calculating changes in the probability of voting

Suppose we wanted to know:
For a typical American, how would the probability of voting change if we increased age from 20 to 40 years?

How would we simulate the answer?
setx age 45.4 agesqrd 45.4^2/100 educ mean white 1 inc mean
simqi, fd(pr) changex (age 2040 agesqrd 20^2/100 40^2/100)

Calculating percentage changes in the probability of voting

Remember the example:
"Other things equal, someone with a college degree is $9-12 \%$ more likely to vote than someone with only a high school education."

Here is the code:

```
setx educ 12
simqi, prval(1) genpr(ed12)
setx educ 16
simqi, prval(1) genpr(ed16)
generate qoi }=(\mathrm{ ed16-ed12)*100/ed12
summarize qoi
```


Calculating and graphing probabilities for many scenarios

1. Estimate the model and simulate 1000 sets of parameters
2. Choose a scenario for the explanatory variables
3. Calculate1000 values of

$$
\pi_{c} \equiv \operatorname{Pr}(\text { turnout }=1) \mid \widetilde{\beta}, X_{c}
$$

4. Save the 95% confidence interval
5. Repeat steps 2-4 for many different scenarios
6. Graph the confidence intervals

Making the graph in Clarify

```
generate plo = .
generate phi = .
generate ageaxis = _n + 17 in 1/78
setx educate 12 white 1 income mean
local a = 18
while `a' <= 95 {
    setx age `a' agesqrd `a'^2/100
    simqi, prval(1) genpr(pi)
    _pctile pi, p(2.5,97.5)
    replace plo =r(r1) if ageaxis==`'a'
    replace phi =r(r2) if ageaxis==`'a'
    drop pi
    local a = `a' + 1
}
sort ageaxis
graph plo phi ageaxis, s(ii) c(|)
```


How does partisanship affect employment in state government?

Dependent variable:
In(employment in state government)
Explanatory variables:
In(state population),
In(proportion of Democrats in House)
Regression model:

$$
\begin{aligned}
& \ln (\text { employment })_{i} \sim N\left(\mu_{i}, \sigma^{2}\right) \\
& \mu_{i}=X_{i} \beta
\end{aligned}
$$

Two ways of presenting regression results

Explanatory Variable	Estimated Coefficient		Standard Error
			$0.779^{* *}$
Lpop		0.026	
Ldem		$0.312^{* *}$	
Constant	$-2.057^{* *}$		0.095

or

Increasing Democratic control from half to two-thirds of the lower house tends to raise government employment by 9\% ($\pm 5 \%$). Decreasing control to one-third would cut employment by 12% ($\pm 6 \%$).

Simulating state employment

1. Estimate the model and simulate 1000 sets of parameters.
2. Set $\operatorname{ldem}=\ln (1 / 2)$ and $\operatorname{lpop}=\ln ($ mean $)$.
3. Simulate 1000 expected values of employment. To obtain one,

> draw lots of $\ln ($ employment $) \mid \widetilde{\beta}, X_{s}$
> exponentiate to recover $\tilde{\text { employment }}$
> take the mean of the \tilde{e} mployment's
> this gives one value of \tilde{E} (employment $) \mid \widetilde{\beta}, X_{s}$
4. Repeat steps $2-3$ with Idem $=\ln (2 / 3)$ to simulate 1000 values of $\tilde{E}($ employment $) \mid \tilde{\beta}, X_{e}$
5. Subtract the expected values to get first differences

Code (available in the next release of Clarify)

estsimp regress lemp lpop ldem
summarize pop, meanonly
local popmean $=r($ mean $)$
setx lpop $\ln (`$ popmean') ldem $\ln (.5)$
simqi, tfunc(exp) fd(ev) changex (ldem $\ln (.5) \ln (2 / 3))$

Why did Salinas win the Mexican election of 1988?

Dependent variable:
Vote for Salinas, Cardenas, Clouthier (3×1 vector)
Explanatory variables:
Attitude toward PRI
Many other variables
Multinomial logit model:

$$
\begin{aligned}
& \text { vote }_{i} \sim \operatorname{Multinomial}\left(\pi_{i}\right) \\
& \pi_{i}=\frac{e^{x_{i} \beta_{h}}}{\sum_{k=1}^{3} e^{x_{i} \beta_{k}}}
\end{aligned}
$$

One way to present multinomial logit results

Variable	Salinas		Cardenas	
	Coefficient	S.E.	Coefficient	S.E.
pri82	-0.701	0.290 **	-1.137	0.244 **
pan82	2.483	0.377 **	1.027	0.368 **
novote82	0.110	0.347	-0.083	0.304
deathok	0.072	0.104	0.152	0.094
forinvok	0.209	0.121	0.139	0.107
limimp	-0.055	0.106	-0.043	0.095
paydebt	0.110	0.124	-0.224	0.106 **
keepind	0.034	0.112	0.162	0.098
polint	-0.034	0.106	0.015	0.095
auth	0.073	0.131	-0.051	0.118
natecon	0.067	0.144	0.022	0.129
futecok	-0.314	0.147 **	-0.060	0.130
persecon	0.043	0.173	-0.141	0.151
futperok	-0.208	0.103 **	-0.064	0.091
school	-0.035	0.057	0.084	0.053
age	-0.012	0.010	-0.005	0.009
female	-0.098	0.237	-0.158	0.211
prof	-0.267	0.345	-0.726	0.314 **
working	-0.385	0.347	0.121	0.283
union	-0.805	0.278 **	-0.178	0.228
townsize	0.099	0.078	0.020	0.068
north	-0.100	0.308	-0.699	0.292 **
south	-0.800	$0.341^{* *}$	-0.259	0.278
zmgm	-0.246	0.312	0.158	0.273
religion	0.089	0.076	-0.114	0.066
pristr	-0.417	0.132 **	-0.341	0.116 **
othecok	0.912	0.157 **	0.927	0.139 **
othsocok	0.431	0.208 **	0.276	0.186
ratemdm	-0.093	0.048	-0.137	0.043 **
traitmjc	1.070	0.104 **	0.139	0.123
traitccs	0.165	0.097	0.751	0.073 **
one	-2.663	1.231 **	-1.228	1.069

Another way to present multinomial logit results

Simulating the results of multi-candidate elections

1. Estimate the model, simulate 1000 sets of parameters
2. For each voter,
(a) Assume the PRI is weakening and set other X's to their true values
(b) Draw 1000 predicted values of vote88, one for each set of simulated parameters
This gives us 1000 simulated elections.
3. For each simulated election, calculate the percentage of votes going to each party.
4. Repeat steps $2-3$ assuming the PRI is strengthening
5. Graph the results

Simulating elections in Clarify

```
estsimp mlogit vote88 pri82 pan82 novote82 ...
gen salinas =0 in 1/1000
gen clouthie =0 in 1/1000
gen cardenas =0 in 1/1000
local nvoter=1
while `nvoter' <= 1359 {
    setx ['nvoter']
    setx pristr 1 othcok 3 othsocok 2
    simqi, pv genpv(vote)
    replace salinas = salinas +1 if vote==1
    replace clouthie = clouthie +1 if vote==2
    replace cardenas = clouthie +1 if vote==3
    drop vote
    local nvoter = `nvoter' + 1
}
triplot clouthie cardenas salinas
```


How can I set the values of "interaction terms"?

Set the values by hand
setx x1x2 10*13
Use macros
summarize x 1
local meanx $1=r($ mean $)$
summarize x 2
local meanx2 $=r($ mean $)$
setx x1x2 'meanx1'*'meanx2'

What if I want a different confidence level?

Use the level(\#) option in simqi
simqi, level(90)
Use the sumqi command

simqi, genpr(myvar)
replace myvar $=\operatorname{sqrt}($ myvar $)$
sumqi myvar, level(90)

Why does Clarify give slightly different results every time?

- It uses random numbers
- You can check the precision of your results

Rerun the analysis and see if anything of importance changes.

- You can increase the precision of your results

Simply increase the number of simulations and take a coffee break!

