
Review
Randomvariablesand
samplingtheory

In the discussion of estimation techniques in this text, much attention is given to
the following properties of estimators: unbiasedness, consistency, and efficiency.
It is essential that you have a secure understanding of these concepts, and the text
assumes that you have taken an introductory statistics course that has treated
them in some depth. This chapter offers a brief review.

Discrete random variables

Your intuitive notion of probability is almost certainly perfectly adequate for
the purposes of this text, and so we shall skip the traditional section on pure
probability theory, fascinating subject though it may be. Many people have
direct experience of probability through games of chance and gambling, and
their interest in what they are doing results in an amazingly high level of technical
competence, usually with no formal training.

We shall begin straight-away with discrete random variables. A random vari-
able is any variable whose value cannot be predicted exactly. A discrete random
variable is one that has a specific set of possible values. An example is the total
score when two dice are thrown. An example of a random variable that is not
discrete is the temperature in a room. It can take any one of a continuing range
of values and is an example of a continuous random variable. We shall come to
these later in this review.

Continuing with the example of the two dice, suppose that one of them is green
and the other red. When they are thrown, there are 36 possible experimental
outcomes, since the green one can be any of the numbers from 1 to 6 and the red
one likewise. The random variable defined as their sum, which we will denote
X, can take only one of 11 values—the numbers from 2 to 12. The relationship
between the experimental outcomes and the values of this random variable is
illustrated in Figure R.1.

Assuming that the dice are fair, we can use Figure R.1 to work out the probabil-
ity of the occurrence of each value of X. Since there are 36 different combinations
of the dice, each outcome has probability 1/36. {Green = 1, red = 1} is the only
combination that gives a total of 2, so the probability of X = 2 is 1/36. To
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Figure R.1 Outcomes in the example with two
dice

Table R.1

Value of X 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 2 3 4 5 6 5 4 3 2 1

Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

obtain X = 7, we would need {green = 1, red = 6} or {green = 2, red = 5}
or {green = 3, red = 4} or {green = 4, red = 3} or {green = 5, red = 2} or
{green=6, red=1}. In this case six of the possible outcomes would do, so the
probability of throwing 7 is 6/36. All the probabilities are given in Table R.1.
If you add all the probabilities together, you get exactly 1. This is because
it is 100 percent certain that the value must be one of the numbers from
2 to 12.

The set of all possible values of a random variable is described as the popu-
lation from which it is drawn. In this case, the population is the set of numbers
from 2 to 12.

Exercises

R.1 A random variable X is defined to be the difference between the higher
value and the lower value when two dice are thrown. If they have the
same value, X is defined to be 0. Find the probability distribution for X.

R.2 ∗ A random variable X is defined to be the larger of the two values when
two dice are thrown, or the value if the values are the same. Find the
probability distribution for X. [Note: Answers to exercises marked with
an asterisk are provided in the Student Guide.]

Expected values of discrete random variables

The expected value of a discrete random variable is the weighted average of
all its possible values, taking the probability of each outcome as its weight.
You calculate it by multiplying each possible value of the random variable by its
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probability and adding. In mathematical terms, if the random variable is denoted
X, its expected value is denoted E(X).

Let us suppose that X can take n particular values x1, x2, . . . , xn and that the
probability of xi is pi. Then

E(X) = x1p1 + · · · + xnpn =
n∑

i=1

xipi. (R.1)

(Appendix R.1 provides an explanation of � notation for those who would like
to review its use.)

In the case of the two dice, the values x1 to xn were the numbers 2 to 12:
x1 = 2, x2 = 3, . . . , x11 = 12, and p1 = 1/36, p2 = 2/36, . . . , p11 = 1/36. The
easiest and neatest way to calculate an expected value is to use a spreadsheet.
The left half of Table R.2 shows the working in abstract. The right half shows
the working for the present example. As you can see from the table, the expected
value is equal to 7.

Before going any further, let us consider an even simpler example of a random
variable, the number obtained when you throw just one die. (Pedantic note:
This is the singular of the word whose plural is dice. Two dice, one die. Like two
mice, one mie.) (Well, two mice, one mouse. Like two hice, one house. Peculiar
language, English.)

There are six possible outcomes: x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 =
6. Each has probability 1/6. Using these data to compute the expected value, you

Table R.2 Expected value of X, example with two dice

X p Xp X p Xp

x1 p1 x1p1 2 1/36 2/36

x2 p2 x2p2 3 2/36 6/36

x3 p3 x3p3 4 3/36 12/36

. . . . . . . . . 5 4/36 20/36

. . . . . . . . . 6 5/36 30/36

. . . . . . . . . 7 6/36 42/36

. . . . . . . . . 8 5/36 40/36

. . . . . . . . . 9 4/36 36/36

. . . . . . . . . 10 3/36 30/36

. . . . . . . . . 11 2/36 22/36

xn pn xnpn 12 1/36 12/36

Total E(X) =
n∑

i=1
xipi 252/36=7
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find that it is equal to 3.5. Thus in this case the expected value of the random
variable is a number you could not obtain at all.

The expected value of a random variable is frequently described as its popu-
lation mean. In the case of a random variable X, the population mean is often
denoted by µX, or just µ, if there is no ambiguity.

Exercises

R.3 Find the expected value of X in Exercise R.1.
R.4∗ Find the expected value of X in Exercise R.2.

Expected values of functions of
discrete random variables

Let g(X) be any function of X. Then E[g(X)], the expected value of g(X), is
given by

E[g(X)] = g(x1)p1 + · · · + g(xn)pn =
n∑

i=1

g(xi)pi, (R.2)

where the summation is taken over all possible values of X.
The left half of Table R.3 illustrates the calculation of the expected value of

a function of X. Suppose that X can take the n different values x1 to xn, with
associated probabilities p1 to pn. In the first column, you write down all the values
that X can take. In the second, you write down the corresponding probabilities.
In the third, you calculate the value of the function for the corresponding value
of X. In the fourth, you multiply columns 2 and 3. The answer is given by the
total of column 4.

The right half of Table R.3 shows the calculation of the expected value of X2

for the example with two dice. You might be tempted to think that this is equal
to µ2, but this is not correct. E(X2) is 54.83. The expected value of X was shown
in Table R.2 to be equal to 7. Thus it is not true that E(X2) is equal to µ2,which
means that you have to be careful to distinguish between E(X2) and [E(X)]2 (the
latter being E(X) multiplied by E(X), that is, µ2).

Exercises

R.5 If X is a random variable with mean µ, and λ is a constant, prove that the
expected value of λX is λµ.

R.6 Calculate E(X2) for X defined in Exercise R.1.
R.7∗ Calculate E(X2) for X defined in Exercise R.2.
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Table R.3 Expected value of g(X), example with two dice

Expected value of g(X) Expected value of X2

X p g(X) g(X)p X p X2 X2p

x1 p1 g(x1) g(x1)p1 2 1/36 4 0.11

x2 p2 g(x2) g(x2)p2 3 2/36 9 0.50

x3 p3 g(x3) g(x3)p3 4 3/36 16 1.33

. . . . . . . . . . . . 5 4/36 25 2.78

. . . . . . . . . . . . 6 5/36 36 5.00

. . . . . . . . . . . . 7 6/36 49 8.17

. . . . . . . . . . . . 8 5/36 64 8.89

. . . . . . . . . . . . 9 4/36 81 9.00

. . . . . . . . . . . . 10 3/36 100 8.83

. . . . . . . . . . . . 11 2/36 121 6.72

xn pn g(xn) g(xn)pn 12 1/36 144 4.00

Total E[g(X)] =
n∑

i=1
g(xi)pi 54.83

Expected value rules

There are three rules that we are going to use over and over again. They are
virtually self-evident, and they are equally valid for discrete and continuous
random variables.

Rule 1 The expected value of the sum of several variables is equal to
the sum of their expected values. For example, if you have three random
variables X, Y, and Z,

E(X + Y + Z) = E(X) + E(Y) + E(Z). (R.3)

Rule 2 If you multiply a random variable by a constant, you multiply its
expected value by the same constant. If X is a random variable and b is
a constant,

E(bX) = bE(X). (R.4)

Rule 3 The expected value of a constant is that constant. For example,
if b is a constant,

E(b) = b. (R.5)
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Rule 2 has already been proved as Exercise R.5. Rule 3 is trivial in that it follows
from the definition of a constant. Although the proof of Rule 1 is quite easy, we
will omit it here.

Putting the three rules together, you can simplify more complicated expres-
sions. For example, suppose you wish to calculate E(Y), where

Y = b1 + b2X. (R.6)

and b1 and b2 are constants. Then,

E(Y) = E(b1 + b2X)

= E(b1) + E(b2X) using Rule 1

= b1 + b2E(X) using Rules 2 and 3. (R.7)

Therefore, instead of calculating E(Y) directly, you could calculate E(X) and
obtain E(Y) from equation (R.7).

Exercises

R.8 Let X be the total when two dice are thrown. Calculate the possible values
of Y, where Y is given by

Y = 2X + 3.

and hence calculate E(Y). Show that this is equal to 2E(X) + 3.

Independence of random variables

Two random variables X and Y are said to be independent if E[g(X)h(Y)] is
equal to E[g(X)]E[h(Y)] for any functions g(X) and h(Y). Independence implies,
as an important special case, that E(XY) is equal to E(X)E(Y).

Population variance of a discrete random variable

In this text there is only one function of X in which we shall take much interest,
and that is its population variance, a useful measure of the dispersion of its
probability distribution. It is defined as the expected value of the square of the
difference between X and its mean, that is, of (X−µ)2, where µ is the population
mean. It is usually denoted σ 2

X, with the subscript being dropped when it is
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Table R.4 Population variance of X, example with
two dice

X P X − µ (X − µ)2 (X − µ)2p

2 1/36 −5 25 0.69

3 2/36 −4 16 0.89

4 3/36 −3 9 0.75

5 4/36 −2 4 0.44

6 5/36 −1 1 0.14

7 6/36 0 0 0.00

8 5/36 1 1 0.14

9 4/36 2 4 0.44

10 3/36 3 9 0.75

11 2/36 4 16 0.89

12 1/36 5 25 0.69

Total 5.83

obvious that it is referring to a particular variable.

σ 2
X = E[(X − µ)2]

= (x1 − µ)2p1 + · · · + (xn − µ)2pn =
n∑

i=1

(xi − µ)2pi. (R.8)

From σ 2
X one obtains σX, the population standard deviation, an equally popular

measure of the dispersion of the probability distribution; the standard deviation
of a random variable is the square root of its variance.

We will illustrate the calculation of population variance with the example of
the two dice. Since µ = E(X) = 7, (X − µ)2 is (X − 7)2 in this case. We shall
calculate the expected value of (X − 7)2 using Table R.3 as a pattern. An extra
column, (X −µ), has been introduced as a step in the calculation of (X −µ)2. By
summing the last column in Table R.4, one finds that σ 2

X is equal to 5.83. Hence
σX, the standard deviation, is equal to

√
5.83, which is 2.41.

One particular use of the expected value rules that is quite important is to
show that the population variance of a random variable can be written

σ 2
X = E(X2) − µ2, (R.9)

an expression that is sometimes more convenient than the original definition.
The proof is a good example of the use of the expected value rules. From its
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definition,

σ 2
X = E[(X − µ)2]

= E(X2 − 2µX + µ2)

= E(X2) + E( − 2µX) + E(µ2)

= E(X2) − 2µE(X) + µ2

= E(X2) − 2µ2 + µ2

= E(X2) − µ2. (R.10)

Thus, if you wish to calculate the population variance of X, you can calculate
the expected value of X2 and subtract µ2.

Exercises

R.9 Calculate the population variance and the standard deviation of X as
defined in Exercise R.1, using the definition given by equation (R.8).

R.10∗ Calculate the population variance and the standard deviation of X as
defined in Exercise R.2, using the definition given by equation (R.8).

R.11 Using equation (R.9), find the variance of the random variable X defined
in Exercise R.1 and show that the answer is the same as that obtained
in Exercise R.9. (Note: You have already calculated µ in Exercise R.3
and E(X2) in Exercise R.6.)

R.12∗ Using equation (R.9), find the variance of the random variable X defined
in Exercise R.2 and show that the answer is the same as that obtained
in Exercise R.10.(Note: You have already calculated µ in Exercise R.4
and E(X2) in Exercise R.7.)

Probability density

Discrete random variables are very easy to handle in that, by definition, they can
take only a finite set of values. Each of these values has a ‘packet’ of probability
associated with it, and, if you know the size of these packets, you can calculate
the population mean and variance with no trouble. The sum of the probabilities
is equal to 1. This is illustrated in Figure R.2 for the example with two dice. X
can take values from 2 to 12 and the associated probabilities are as shown.

Unfortunately, the analysis in this text usually deals with continuous random
variables, which can take an infinite number of values. The discussion will be
illustrated with the example of the temperature in a room. For the sake of argu-
ment, we will assume that this varies within the limits of 55 to 75 ◦F, and initially
we will suppose that it is equally likely to be anywhere within this range.
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Figure R.2 Discrete probabilities (example with two dice)
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Since there are an infinite number of different values that the temperature
can take, it is useless trying to divide the probability into little packets and we
have to adopt a different approach. Instead, we talk about the probability of the
random variable lying within a given interval, and we represent the probability
graphically as an area within the interval. For example, in the present case,
the probability of X lying in the interval 59 to 60 is 0.05 since this range is
one twentieth of the complete range 55 to 75. Figure R.3 shows the rectangle
depicting the probability of X lying in this interval. Since its area is 0.05 and its
base is one, its height must be 0.05. The same is true for all the other one-degree
intervals in the range that X can take.

Having found the height at all points in the range, we can answer such ques-
tions as ‘What is the probability that the temperature lies between 65 and 70 ◦F?’.
The answer is given by the area in the interval 65 to 70, represented by the shaded
area in Figure R.4. The base of the shaded area is 5, and its height is 0.05, so
the area is 0.25. The probability is a quarter, which is obvious anyway in that
65 to 70 ◦F is a quarter of the whole range.

The height at any point is formally described as the probability density at that
point, and, if it can be written as a function of the random variable, it is known
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as the ‘probability density function’. In this case it is given by f (x), where X is
the temperature and

f (x) = 0.05 for 55 ≤ x ≤ 75

f (x) = 0 for x < 55 or x > 75.
(R.11)

The foregoing example was particularly simple to handle because the proba-
bility density function was constant over the range of possible values of X. Next
we will consider an example in which the function is not constant, because not
all temperatures are equally likely. We will suppose that the central heating and
air conditioning have been fixed so that the temperature never falls below 65 ◦F,
and that on hot days the temperature will exceed this, with a maximum of 75 ◦F
as before. We will suppose that the probability is greatest at 65 ◦F and that it
decreases evenly to 0 at 75 ◦F, as shown in Figure R.5.

The total area within the range, as always, is equal to 1, because the total
probability is equal to 1. The area of the triangle is 1/2 × base × height, so
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one has

1/2 × 10 × height = 1 (R.12)

and the height at 65 ◦F is equal to 0.20.
Suppose again that we want to know the probability of the temperature lying

between 65 and 70 ◦F. It is given by the shaded area in Figure R.6, and with a
little geometry you should be able to verify that it is equal to 0.75. If you prefer
to talk in terms of percentages, this means that there is a 75 percent chance that
the temperature will lie between 65 and 70 ◦F, and only a 25 percent chance that
it will lie between 70 and 75 ◦F.

In this case the probability density function is given by f (x), where

f (x) = 1.5 − 0.02x for 65 ≤ x ≤ 75

f (x) = 0 for x < 65 or x > 75. (R.13)

(You can verify that f (x) gives 0.20 at 65 ◦F and 0 at 75 ◦F.)
Now for some good news and some bad news. First, the bad news. If

you want to calculate probabilities for more complicated, curved functions,
simple geometry will not do. In general you have to use integral calculus
or refer to specialized tables, if they exist. Integral calculus is also used in
the definitions of the expected value and variance of a continuous random
variable.

Now for the good news. First, specialized probability tables do exist for all the
functions that are going to interest us in practice. Second, expected values and
variances have much the same meaning for continuous random variables that
they have for discrete ones (formal definitions will be found in Appendix R.2),
and the expected value rules work in exactly the same way.
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Fixed and random components of a randomvariable

Instead of regarding a random variable as a single entity, it is often possible
and convenient to break it down into a fixed component and a pure random
component, the fixed component always being the population mean. If X is
a random variable and µ its population mean, one may make the following
decomposition:

X = µ + u, (R.14)

where u is what will be called the pure random component (in the context of
regression analysis, it is usually described as the disturbance term).

You could of course look at it the other way and say that the random
component, u, is defined to be the difference between X and µ:

u = X − µ. (R.15)

It follows from its definition that the expected value of u is 0. From
equation (R.15),

E(ui) = E(xi − µ) = E(xi) + E(−µ) = µ − µ = 0. (R.16)

Since all the variation in X is due to u, it is not surprising that the population
variance of X is equal to the population variance of u. This is easy to prove. By
definition,

σ 2
x = E[(X − µ)2] = E(u2) (R.17)

and

σ 2
u = E[(u − mean of u)2]

= E[(u − 02] = E(u2). (R.18)

Hence σ 2 can equivalently be defined to be the variance of X or u.
To summarize, if X is a random variable defined by (R.14), where µ is a fixed

number and u is a random component, with mean 0 and population variance
σ 2, then X has population mean µ and population variance σ 2.

Estimators

So far we have assumed that we have exact information about the random vari-
able under discussion, in particular that we know the probability distribution,
in the case of a discrete random variable, or the probability density function, in
the case of a continuous variable. With this information it is possible to work
out the population mean and variance and any other population characteristics
in which we might be interested.
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Table R.5

Population characteristic Estimator

Mean µ X̄ = 1
n

n∑
i=1

xi

Population variance σ 2 s2 = 1
n−1

n∑
i=1

(xi − X̄)2

Now, in practice, except for artificially simple random variables such as the
numbers on thrown dice, you do not know the exact probability distribution
or density function. It follows that you do not know the population mean or
variance. However, you would like to obtain an estimate of them or some other
population characteristic.

The procedure is always the same. You take a sample of n observations and
derive an estimate of the population characteristic using some appropriate for-
mula. You should be careful to make the important distinction that the formula
is technically known as an estimator; the number that is calculated from the sam-
ple using it is known as the estimate. The estimator is a general rule or formula,
whereas the estimate is a specific number that will vary from sample to sample.

Table R.5 gives the usual estimators for the two most important population
characteristics. The sample mean, X̄, is the usual estimator of the population
mean, and the formula for s2 given in Table R.5 is the usual estimator of the
population variance.

Note that these are the usual estimators of the population mean and variance;
they are not the only ones. You are probably so accustomed to using the sample
mean as an estimator of µ that you are not aware of any alternatives. Of course,
not all the estimators you can think of are equally good. The reason that we
do in fact use X̄ is that it is the best according to two very important criteria,
unbiasedness and efficiency. These criteria will be discussed later.

Estimators are random variables

An estimator is a special case of a random variable. This is because it is a com-
bination of the values of X in a sample, and, since X is a random variable, a
combination of a set of its values must also be a random variable. For instance,
take X̄, the estimator of the mean:

X̄ = 1
n

(x1 + x2 + · · · + xn) = 1
n

n∑
i=1

xi. (R.19)
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We have just seen that the value of X in observation i may be decomposed into
two parts: the fixed part, µ, and the pure random component, ui:

xi = µ + ui. (R.20)

Hence

X̄ = 1
n

(µ + µ + · · · + µ) + i
n

(u1 + u2 + · · · + un)

= 1
n

(nµ) + ū = µ + ū, (R.21)

where ū is the average of ui in the sample.
From this you can see that X̄, like X, has both a fixed component and a pure

random component. Its fixed component is µ, the population mean of X, and
its pure random component is ū, the average of the pure random components in
the sample.

The probability density functions of both X and X̄ have been drawn in the
same diagram in Figure R.7. By way of illustration, X is assumed to have a
normal distribution. You will see that the distributions of both X and X̄ are
centered over µ, the population mean. The difference between them is that the
distribution for X̄ is narrower and taller. X̄ is likely to be closer to µ than a
single observation on X, because its random component µ̄ is an average of the
pure random components u1, u2, . . . , un in the sample, and these are likely to
cancel each other out to some extent when the average is taken. Consequently
the population variance of ū is only a fraction of the population variance of u.
It will be shown in Section 1.7 that, if the population variance of u is σ 2, then
the population variance of ū is σ 2/n.

probability density 
function of X  

probability density 
function of X   

µ µx x

Figure R.7 Comparison of the probability density functions of a single observation and the mean
of a sample
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s2, the unbiased estimator of the population variance of X, is also a random
variable. Subtracting (R.21) from (R.20),

xi − X̄ = ui − ū. (R.22)

Hence

s2 = 1
n − 1

n∑
i=1

[(xi − X̄)2] = 1
n − 1

n∑
i=1

[(ui − ū)2]. (R.23)

Thus s2 depends on (and only on) the pure random components of the observa-
tions on X in the sample. Since these change from sample to sample, the value
of the estimator s2 will change from sample to sample.

Unbiasedness

Since estimators are random variables, it follows that only by coincidence will
an estimate be exactly equal to the population characteristic. Generally there
will be some degree of error, which will be small or large, positive or negative,
according to the pure random components of the values of X in the sample.

Although this must be accepted, it is nevertheless desirable that the estimator
should be accurate on average in the long run, to put it intuitively. To put it
technically, we should like the expected value of the estimator to be equal to the
population characteristic. If this is true, the estimator is said to be unbiased. If it
is not, the estimator is said to be biased, and the difference between its expected
value and the population characteristic is described as the bias.

Let us start with the sample mean. Is this an unbiased estimator of the
population mean? Is E(X̄) equal to µ? Yes, it is, and it follows immediately
from (R.21).

X̄ has two components, µ and ū. ū is the average of the pure random compo-
nents of the values of X in the sample, and since the expected value of the pure
random component in any observation is 0, the expected value of ū is 0. Hence

E(X̄) = E(µ + ū) = E(µ) + E(ū) = µ + 0 = µ. (R.24)

However, this is not the only unbiased estimator of µ that we could construct.
To keep the analysis simple, suppose that we have a sample of just two observa-
tions, x1 and x2. Any weighted average of the observations x1 and x2 will be an
unbiased estimator, provided that the weights add up to 1. To see this, suppose
we construct a generalized estimator:

Z = λ1x1 + λ2x2. (R.25)
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The expected value of Z is given by

E(Z) = E(λ1x1 + λ2x2) = E(λ1x1 + E(λ2x2)

= λ1E(x1) + λ2E(x2) = λ1µ + λ2µ

= (λ1 + λ2)µ. (R.26)

If λ1 and λ2 add up to 1, we have E(Z) = µ, and Z is an unbiased estimator of µ.
Thus, in principle, we have an infinite number of unbiased estimators. How do

we choose among them? Why do we always in fact use the sample average, with
λ1 = λ2 = 0.5? Perhaps you think that it would be unfair to give the observations
different weights, or that asymmetry should be avoided on principle. However,
we are not concerned with fairness, or with symmetry for its own sake. We will
find in the next section that there is a more compelling reason.

So far we have been discussing only estimators of the population mean. It
was asserted that s2, as defined in Table R.5, is an estimator of the population
variance, σ 2. One may show that the expected value of s2 is σ 2, and hence that it is
an unbiased estimator of the population variance, provided that the observations
in the sample are generated independently of each another. The proof, though
not mathematically difficult, is laborious, and it has been consigned to Appendix
R.3 at the end of this review.

Efficiency

Unbiasedness is one desirable feature of an estimator, but it is not the only
one. Another important consideration is its reliability. It is all very well for
an estimator to be accurate on average in the long run, but, as Keynes once
said, in the long run we are all dead. We want the estimator to have as high a
probability as possible of giving a close estimate of the population characteristic,
which means that we want its probability density function to be as concentrated
as possible around the true value. One way of summarizing this is to say that we
want its population variance to be as small as possible.

Suppose that we have two estimators of the population mean, that they are
calculated using the same information, that they are both unbiased, and that
their probability density functions are as shown in Figure R.8. Since the proba-
bility density function for estimator B is more highly concentrated than that for
estimator A, it is more likely to give an accurate estimate. It is therefore said to
be more efficient, to use the technical term.

Note carefully that the definition says ‘more likely’. Even though estimator B
is more efficient, that does not mean that it will always give the more accurate
estimate. Some times it will have a bad day, and estimator A will have a good day,
and A will be closer to the truth. But the probability of A being more accurate
than B will be less than 50 percent.
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Figure R.8 Efficient and inefficient estimators

It is rather like the issue of whether you should fasten your seat belt when
driving a vehicle. A large number of surveys in different countries have shown
that you are much less likely to be killed or seriously injured in a road accident
if you wear a seat belt, but there are always the odd occasions when individuals
not wearing belts have miraculously escaped when they could have been killed,
had they been strapped in. The surveys do not deny this. They simply conclude
that the odds are on the side of belting up. Similarly, the odds are on the side
of the efficient estimator. (Gruesome comment: In countries where wearing seat
belts has been made compulsory, there has been a fall in the supply of organs
from crash victims for transplants.)

We have said that we want the variance of an estimator to be as small as
possible, and that the efficient estimator is the one with the smallest variance. We
shall now investigate the variance of the generalized estimator of the population
mean and show that it is minimized when the two observations are given equal
weight.

Provided that x1 and x2 are independent observations, the population variance
of the generalized estimator is given by

σ 2
Z = population variance of (λ1x1 + λ2x2)

= σ 2
λ1x1

+ σ 2
λ2x2

+ 2σλ1x1,λ2x2

= λ2
1σ

2
x1

+ λ2
2σ

2
x2

+ 2λ1λ2σx1x2 if x1 and x2 are independent

= (λ2
1 + λ2

2)σ 2. (R.27)

(We are anticipating the variance rules discussed in Chapter 1. σx1x2 , the
population covariance of x1 and x2, is 0 if x1 and x2 are generated independently.)

Now, we have already seen that λ1 and λ2 must add up to 1 if the estimator
is to be unbiased. Hence for unbiased estimators λ2 equals (1 − λ1) and

λ2
1 + λ2

2 = λ2
1 + (1 − λ1)2 = 2λ2

1 − 2λ1 + 1. (R.28)
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Since we want to choose λ1 in such a way that the variance is minimized, we
want to choose it to minimize (2λ2

1 − 2λ1 + 1). You could solve this problem
graphically or by using the differential calculus. In either case, the minimum
value is reached when λ1 is equal to 0.5. Hence λ2 is also equal to 0.5.

We have thus shown that the sample average has the smallest variance of
estimators of this kind. This means that it has the most concentrated probability
distribution around the true mean, and hence that (in a probabilistic sense) it
is the most accurate. To use the correct terminology, of the set of unbiased
estimators, it is the most efficient. Of course we have shown this only for the
case where the sample consists of just two observations, but the conclusions are
valid for samples of any size, provided that the observations are independent of
one another.

Two final points. First, efficiency is a comparative concept. You should use
the term only when comparing alternative estimators. You should not use it to
summarize changes in the variance of a single estimator. In particular, as we
shall see in the next section, the variance of an estimator generally decreases
as the sample size increases, but it would be wrong to say that the estimator is
becoming more efficient. You must reserve the term for comparisons of different
estimators. Second, you can compare the efficiency of alternative estimators only
if they are using the same information, for example, the same set of observations
on a number of random variables. If the estimators use different information,
one may well have a smaller variance, but it would not be correct to describe it
as being more efficient.

Exercises

R.13 For the special case σ 2 = 1 and a sample of two observations, calculate
the variance of the generalized estimator of the population mean using
equation (28) with values of λ1 from 0 to 1 at steps of 0.1, and plot
it in a diagram. Is it important that the weights λ1 and λ2 should be
exactly equal?

R.14 Show that, when you have n observations, the condition that the gener-
alized estimator (λ1x1 + · · · + λnxn) should be an unbiased estimator of
µ is λ1 + · · · + λn = 1.

Conflicts between unbiasedness and
minimumvariance

We have seen in this review that it is desirable that an estimator be unbiased and
that it have the smallest possible variance. These are two quite different criteria
and occasionally they conflict with each other. It sometimes happens that one can
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construct two estimators of a population characteristic, one of which is unbiased
(A in Figure R.9), the other being biased but having smaller variance (B).

A will be better in the sense that it is unbiased, but B is better in the sense
that its estimates are always close to the true value. How do you choose between
them?

It will depend on the circumstances. If you are not bothered by errors, provided
that in the long run they cancel out, you should probably choose A. On the other
hand, if you can tolerate small errors, but not large ones, you should choose B.

Technically speaking, it depends on your loss function, the cost to you of
an error as a function of its size. It is usual to choose the estimator that yields
the smallest expected loss, which is found by weighting the loss function by the
probability density function. (If you are risk-averse, you may wish to take the
variance of the loss into account as well.)

A common example of a loss function, illustrated by the quadratic curve in
Figure R.10, is the square of the error. The expected value of this, known as the
mean square error (MSE), has the simple decomposition:

MSE of estimator = Variance of estimator + Bias2. (R.29)

To show this, suppose that you are using an estimator Z to estimate an
unknown population parameter θ . Let the expected value of Z be µZ. This
will be equal to θ only if Z is an unbiased estimator. In general there will be a

probability density  
function 

θ 

estimator B 

estimator A 

Figure R.9 Which estimator is to be preferred? A is unbiased but B has smaller variance

Figure R.10 Loss function

loss

error (negative) error (positive)
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bias, given by (µZ − θ ). The variance of Z is equal to E[(Z − µZ)2]. The MSE of
Z can be decomposed as follows:

E[(Z − θ )2] = E[({Z − µZ} + {µZ − θ})2]

= E[(Z − µZ)2 + 2(Z − µZ)(µZ − θ ) + (µZ − θ )2]

= E[(Z − µZ)2] + 2(µZ − θ )E(Z − µZ) + E[(µZ − θ )2]. (R.30)

The first term is the population variance of Z. The second term is 0 because

E(Z − µZ) = E(Z) + E( − µZ) = µZ − µZ = 0. (R.31)

The expected value of the third term is (µZ − θ )2, the bias squared, since both
µZ and θ are constants. Hence we have shown that the mean square error of
the estimator is equal to the sum of its population variance and the square of
its bias.

In Figure R.9, estimator A has no bias component, but it has a much larger
variance component than B and therefore could be inferior by this criterion.

The MSE is often used to generalize the concept of efficiency to cover compar-
isons of biased as well as unbiased estimators. However, in this text, comparisons
of efficiency will mostly be confined to unbiased estimators.

Exercises

R.15 Give examples of applications where you might (1) prefer an estimator
of type A, (2) prefer one of type B, in Figure R.9.

R.16 Draw a loss function for getting to an airport later (or earlier) than the
official check-in time.

R.17 If you have two estimators of an unknown population parameter, is the
one with the smaller variance necessarily more efficient?

The effect of increasing the sample size on
the accuracy of an estimate

We shall continue to assume that we are investigating a random variable X
with unknown mean µ and population variance σ 2, and that we are using
X̄ to estimate µ. How does the accuracy of X̄ depend on the number of
observations, n?

Not surprisingly, the answer is that, as you increase n, the more accurate X̄
is likely to be. In any single experiment, a bigger sample will not necessarily
yield a more accurate estimate than a smaller one—the luck factor is always at
work—but as a general tendency it should. Since the population variance of X̄
is given by σ 2/n, the bigger the sample, the smaller the variance and hence the
more tightly compressed is the probability density function of X̄.
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Figure R.11 Effect of increasing the sample size on the distribution of X̄

This is illustrated in Figure R.11. We are assuming that X is normally dis-
tributed and that it has mean 100 and standard deviation 50. If the sample size
is 4, the standard deviation of X̄, σ/

√
n, is equal to 50/

√
4 = 25. If the sample

size is 25, the standard deviation is 10. If it is 100, the standard deviation is
5. Figure R.11 shows the corresponding probability density functions. That for
n = 100 is taller than the others in the vicinity of µ, showing that the probability
of it giving an accurate estimate is higher. It is lower elsewhere.

The larger the sample size, the narrower and taller will be the probability
density function of X̄. If n becomes really large, the probability density function
will be indistinguishable from a vertical line located at X̄ = µ. For such a sample
the random component of X̄ becomes very small indeed, and so X̄ is bound to
be very close to µ. This follows from the fact that the standard deviation of
X̄, σ/

√
n, becomes very small as n becomes large.

In the limit, as n tends to infinity, σ/
√

n tends to 0 and X̄ tends to µ exactly.
This may be written mathematically

lim
n→∞ X̄ = µ (R.32)

An equivalent and more common way of expressing it is to use the term
plim, where plim means ‘probability limit’ and emphasizes that the limit is being
reached in a probabilistic sense:

plim X̄ = µ (R.33)

when, for any arbitrarily small numbers ε and δ, the probability of X̄ being more
than ε different from µ is less than δ, provided that the sample is large enough.

Exercise

R.18∗ In general, the variance of the distribution of an estimator decreases when
the sample size is increased. Is it correct to describe the estimator as
becoming more efficient?
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Consistency

In general, if the plim of an estimator is equal to the true value of the population
characteristic, it is said to be consistent. To put it another way, a consistent
estimator is one that is bound to give an accurate estimate of the population
characteristic if the sample is large enough, regardless of the actual observa-
tions in the sample. In most of the contexts considered in this text, an unbiased
estimator will also be a consistent one.

It sometimes happens that an estimator that is biased for small samples may
be consistent (it is even possible for an estimator that does not have a finite
expected value for small samples to be consistent). Figure R.12 illustrates how the
probability distribution might look for different sample sizes. The distribution
is said to be asymptotically (meaning, in large samples) unbiased because it
becomes centered on the true value as the sample size becomes large. It is said
to be consistent because it finally collapses to a single point, the true value.

An estimator is described as inconsistent either if its distribution fails to col-
lapse as the sample size becomes large or if the distribution collapses at a point
other than the true value.

As we shall see later in this text, estimators of the type shown in Figure R.12
are quite important in regression analysis. Sometimes it is impossible to find an
estimator that is unbiased for small samples. If you can find one that is at least
consistent, that may be better than having no estimate at all, especially if you
are able to assess the direction of the bias in small samples. However, it should
be borne in mind that a consistent estimator could in principle perform worse
(for example, have a larger mean square error) than an inconsistent one in small
samples, so you must be on your guard. In the same way that you might prefer
a biased estimator to an unbiased one if its variance is smaller, you might prefer

probability density  
function

true value 

n = 1000

n = 250

n = 40

Figure R.12 Estimator that is consistent
despite being biased in finite samples
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a consistent, but biased, estimator to an unbiased one if its variance is smaller,
and an inconsistent one to either if its variance is smaller still.

Two useful rules

Sometimes one has an estimator calculated as the ratio of two quantities that
have random components, for example

Z = X/Y, (R.34)

where X and Y are quantities that have been calculated from a sample. Usually
it is difficult to analyze the expected value of Z. In general it is not equal to E(X)
divided by E(Y). If there is any finite probability that Y may be equal to 0, the
expected value of Z will not even be defined. However, if X and Y tend to finite
quantities plim X and plim Y in large samples, and plim Y is not equal to 0, the
limiting value of Z is given by

plim Z = plim X
plim Y

. (R.35)

Hence, even if we are not in a position to say anything definite about the small
sample properties of Z, we may be able to tell whether it is consistent.

For example, suppose that the population means of two random variables
X and Y are µX and µY , respectively, and that both are subject to random
influences, so that

X = µX + uX (R.36)

Y = µY + uY , (R.37)

where uX and uY are random components with 0 means. If we are trying to
estimate, the ratio µX/µY from sample data, the estimator Z = X̄/Ȳ will be
consistent, for

plimZ = plim X̄

plim Ȳ
= µX

µY
(R.38)

and we are able to say that Z will be an accurate estimator for large samples,
even though we may not be able to say anything about E(Z) for small samples.

There is a counterpart rule for the product of two random variables. Suppose

Z = XY. (R.39)

Except in the special case where X and Y are distributed independently, it is not
true that E(Z) is equal to the product of E(X) and E(Y). However, even if X and
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Y are not distributed independently, it is true that

plimZ = plimX × plimY, (R.40)

provided that plim X and plim Y exist.

Exercises

R.19 Is unbiasedness either a necessary or a sufficient condition for consis-
tency?

R.20 A random variable X can take the values 1 and 2 with equal probability.
For n equal to 2, demonstrate that E(Ȳ) is not equal to 1/E(X̄).

R.21∗ Repeat Exercise 20 supposing that X takes the values 0 and 1 with equal
probability.

AppendixR.1

� notation: A review

� notation provides a quick way of writing the sum of a series of similar terms.
Anyone reading this text ought to be familiar with it, but here is a brief review
for those who need a reminder.

We will begin with an example. Suppose that the output of a sawmill, mea-
sured in tons, in month i is qi, with q1 being the gross output in January, q2

being the gross output in February, etc. Let output for the year be denoted Z.
Then

Z = q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 + q12.

In words, one might summarize this by saying that Z is the sum of the qi,
beginning with q1 and ending with q12. Obviously there is no need to write
down all 12 terms when defining Z. Sometimes you will see it simplified to

Z = q1 + · · · + q12,

it being understood that the missing terms are included in the summation.
� notation allows you to write down this summary in a tidy symbolic form:

Z =
12∑
i=1

qi.

The expression to the right of the � sign tell us what kind of term is going to
be summed, in this case, terms of type qi. Underneath the � sign is written the
subscript that is going to alter in the summation, in this case i, and its starting
point, in this case 1. Hence we know that the first term will be q1. The = sign
reinforces the fact that i should be set equal to 1 for the first term.



Rev iew 25

Above the � sign is written the last value of i, in this case 12, so we know that
the last term is q12. It is automatically understood that all the terms between
q1 and q12 will also be included in the summation, and so we have effectively
rewritten the second definition of Z.

Suppose that the average price per ton of the output of the mill in month i is
pi. The value of output in month i will be piqi, and the total value during the
year will be V , where V is given by

V = p1q1 + · · · + p12q12.

We are now summing terms of type piqi with the subscript i running from 1 to
12, and using � notation this may be written as

V =
12∑
i=1

piqi.

If ci is the total cost of operating the mill in month i, profit in month i will be
(piqi − ci), and hence the total profit over the year, P, will be given by

P = (p1q1 − c1) + · · · + (p12q12 − c12),

which may be summarized as

P =
12∑
i=1

(piqi − ci).

Note that the profit expression could also have been written as total revenue
minus total costs:

P = (p1q1 + · · · + p12q12) − (c1 + · · · + c12),

and this can be summarized in � notation as

P =
12∑
i=1

piqi −
12∑
i=1

ci.

If the price of output is constant during the year at level p, the expression for
the value of annual output can be simplified:

V = pq1 + · · · + pq12 = p(q1 + · · · + q12)

= p
12∑
i=1

qi.

Hence
12∑
i=1

pqi = p
12∑
i=1

qi.
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If the output in each month is constant at level q, the expression for annual
output can also be simplified:

Z = q1 + · · · + q12 = q + · · · + q = 12q.

Hence, in this case,
12∑
i=1

qi = 12q.

We have illustrated three rules, which can be stated formally:

� Rule 1 (illustrated by the decomposition of profit into total revenue
minus total cost)

n∑
i=1

(xi + yi) =
n∑

i=1

xi +
n∑

i=1

yi.

� Rule 2 (illustrated by the expression for V when the price was constant)

n∑
i=1

axi = a
n∑

i=1

xi (if a is a constant).

� Rule 3 (illustrated by the expression for Z when quantity was constant)

n∑
i=1

a = na (if a is a constant).

Often it is obvious from the context what are the initial and final values of
the summation. In such cases

∑n
i=1 xi is often simplified to

∑
xi. Furthermore,

it is often equally obvious what subscript is being changed, and the expression
is simplified to just

∑
x.

AppendixR.2

Expected value and variance of a continuous random variable

The definition of the expected value of a continuous random variable is very
similar to that for a discrete random variable:

E(X) =
∫

xf (x) dx,

where f (x) is the probability density function of X, with the integration being
performed over the interval for which f (x) is defined.

In both cases the different possible values of X are weighted by the probability
attached to them. In the case of the discrete random variable, the summation
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Discrete Continuous

E(X) =
n∑

i=1
xipi E(X) = ∫

xf (x)dx

(Summation overall (Integration over the range
all possible values) for which f (x) is defined)

is done on a packet-by-packet basis over all the possible values of X. In the
continuous case, it is of course done on a continuous basis, integrating replacing
summation, and the probability density function f (x) replacing the packets of
probability pi. However, the principle is the same.

In the section on discrete random variables, it was shown how to calculate
the expected value of a function of X, g(X). You make a list of all the different
values that g(X) can take, weight each of them by the corresponding probability,
and sum.

The process is exactly the same for a continuous random variable, except that
it is done on a continuous basis, which means summation by integration instead
of � summation. In the case of the discrete random variable, E[g(X)] is equal
to

∑n
i=1 g(xi)pi with the summation taken over all possible values of X. In the

continuous case, it is defined by

E[g(X)] =
∫

g(x)f (x) dx,

with the integration taken over the whole range for which f (x) is defined.
As in the case of discrete random variables, there is only one function in which

we have an interest, the population variance, defined as the expected value of
(X − µ2), where µ = E(X) is the population mean. To calculate the variance,
you have to sum (X − µ)2, weighted by the appropriate probability, over all the
possible values of X. In the case of a continuous random variable, this means
that you have to evaluate

σ 2
X = E[(X − µ)2] =

∫
(x − µ)2f (x) dx.

It is instructive to compare this with equation (R.8), the parallel expression for
a discrete random variable:

σ 2
X = E[(X − µ)2] =

n∑
i=1

(xi − µ)2pi.

As before, when you have evaluated the population variance, you can calculate
the population standard deviation, σ , by taking its square root.
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AppendixR.3

Proof that s2 is an unbiased estimator of the population variance

It was asserted in Table R.5 that an unbiased estimator of σ 2 is given by s2,
where

s2 = 1
n − 1

n∑
i=1

(xi − X̄)2.

We will begin the proof by rewriting (xi − X̄)2 in a more complicated, but
helpful, way:

(xi − X̄)2 = [(xi − µ) − (X̄ − µ)]2 (the µ terms cancel if you expand)

= (xi − µ)2 − 2(xi − µ)(X̄ − µ) + (X̄ − µ)2.

Hence

n∑
i=1

(xi − X̄)2 =
n∑

i=1

(xi − µ)2 − 2(X̄ − µ)
n∑

i=1

(xi − µ) + n(X̄ − µ)2.

The first term is the sum of the first terms of the previous equation using �

notation. Similarly the second term is the sum of the second terms of the previous
equation using � notation and the fact that (X̄ − µ) is a common factor. When
we come to sum the third terms of the previous equation they are all equal to
(X̄ − µ)2, so their sum is simply n(X̄ − µ)2, with no need for � notation.

The second component may be rewritten −2n(X̄ − µ)2 since

n∑
i=1

(xi − µ) =
n∑

i=1

xi − nµ = nX̄ − nµ = n(X̄ − µ),

and we have

n∑
i=1

(xi − X̄)2 =
n∑

i=1

(xi − µ)2 − 2n(X̄ − µ)2 + n(X̄ − µ)2

=
n∑

i=1

(xi − µ)2 − n(X̄ − µ)2.
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Applying expectations to this equation, we have

E

[
n∑

i=1

(xi − X̄)2

]
= E

[
n∑

i=1

(xi − µ)2

]
− nE[(X̄ − µ)2]

= E[(x1 − µ)2] + · · · + E[(xn − µ)2] − nE[(X̄ − µ)2]

= nσ 2 − nσ 2
X̄

= nσ 2 − n(σ 2/n) = (n − 1)σ 2.

using the fact that the population variance of X̄ is equal to σ 2/n. This is proved
in Section 1.7. Hence

E(s2) = E

[
1

n − 1

n∑
i=1

(xi − X̄)2

]
= 1

n − 1
E

[
n∑

i=1

(xi − X̄)2

]

= 1
n − 1

(n − 1)σ 2 = σ 2.

Thus s2 is an unbiased estimator of σ 2.


