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Preface

Our goal in writing this book was to make it routine to carry out the complex calculations neces-
sary for the full interpretation of regression models for categorical outcomes. The interpretation of
these models is made more complex because the models are nonlinear. Most software packages that
estimate these models do not provide options that make it simple to compute the quantities that are
useful for interpretation. In this book, we briefly describe the statistical issues involved in interpre-
tation, and then we show how Stata can be used to make these computations. In reading this book,
we strongly encourage you to be at your computer so that you can experiment with the commands as
you read. To facilitate this, we include two appendices. Appendix A summarizes each of the com-
mands that we have written for interpreting regression models. Appendix B provides information
on the datasets that we use as examples.

Many of the commands that we discuss are not part of official Stata, but instead they are com-
mands (in the form of ado-files) that we have written. To follow the examples in this book, you will
have to install these commands. Details on how to do this are given in Chapter 2. While the book
assumes that you are using Stata 7 or later, most commands will work in Stata 6, although some of
the output will appear differently. Details on issues related to using Stata 6 are given at

www.indiana.edu/˜jsl650/spost.htm

The screen shots that we present are from Stata 7 for Windows. If you are using a different operating
system, your screen might appear differently. See the StataCorp publication Getting Started with
Stata for your operating system for further details. All of the examples, however, should work on all
computing platforms that support Stata.

We use several conventions throughout the manuscript. Stata commands, variable names, file-
names, and output are all presented in a typewriter-style font, e.g., logit lfp age wc hc k5.
Italics are used to indicate that something should be substituted for the word in italics. For example,
logit variablelist indicates that the command logit is to be followed by a specific list of variables.
When output from Stata is shown, the command is preceded by a period (which is the Stata prompt).
For example,

. logit lfp age wc hc k5, nolog

Logit estimates Number of obs = 753
(output omitted )

If you want to reproduce the output, you do not type the period before the command. And, as
just illustrated, when we have deleted part of the output we indicate this with (output omitted).
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xvi Preface

Keystrokes are set in this font. For example, alt-f means that you are to hold down the alt key and
press f. The headings for sections that discuss advanced topics are tagged with an *. These sections
can be skipped without any loss of continuity with the rest of the book.

As we wrote this book and developed the accompanying software, many people provided their
suggestions and commented on early drafts. In particular, we would like to thank Simon Cheng,
Ruth Gassman, Claudia Geist, Lowell Hargens, and Patricia McManus. David Drukker at Stata-
Corp provided valuable advice throughout the process. Lisa Gilmore and Christi Pechacek, both at
StataCorp, typeset and proofread the book.

Finally, while we will do our best to provide technical support for the materials in this book, our
time is limited. If you have a problem, please read the conclusion of Chapter 8 and check our web
page before contacting us. Thanks.
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Part I

General Information

Our book is about using Stata for estimating and interpreting regression models with categorical
outcomes. The book is divided into two parts. Part I contains general information that applies to all
of the regression models that are considered in detail in Part II.

• Chapter 1 is a brief orienting discussion that also includes critical information on installing a
collection of Stata commands that we have written to facilitate the interpretation of regression
models. Without these commands, you will not be able to do many of the things we suggest
in the later chapters.

• Chapter 2 includes both an introduction to Stata for those who have not used the program
and more advanced suggestions for using Stata effectively for data analysis.

• Chapter 3 considers issues of estimation, testing, assessing fit, and interpretation that are
common to all of the models considered in later chapters. We discuss both the statistical
issues involved and the Stata commands that carry out these operations.

Chapters 4 through 7 of Part II are organized by the type of outcome being modeled. Chapter 8
deals primarily with complications on the right hand side of the model, such as including nominal
variables and allowing interactions. The material in the book is supplemented on our web site at
www.indiana.edu/~jsl650/spost.htm, which includes data files, examples, and a list of Fre-
quently Asked Questions (FAQs). While the book assumes that you are running Stata 7, most of the
information also applies to Stata 6; our web site includes special instructions for users of Stata 6.
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1 Introduction

1.1 What is this book about?

Our book shows you efficient and effective ways to use regression models for categorical and count
outcomes. It is a book about data analysis and is not a formal treatment of statistical models. To
be effective in analyzing data, you want to spend your time thinking about substantive issues, and
not laboring to get your software to generate the results of interest. Accordingly, good data analysis
requires good software and good technique.

While we believe that these points apply to all data analysis, they are particularly important for
the regression models that we examine. The reason is that these models are nonlinear and conse-
quently the simple interpretations that are possible in linear models are no longer appropriate. In
nonlinear models, the effect of each variable on the outcome depends on the level of all variables
in the model. As a consequence of this nonlinearity, which we discuss in more detail in Chapter 3,
there is no single method of interpretation that can fully explain the relationship among the inde-
pendent variables and the outcome. Rather, a series of post-estimation explorations are necessary to
uncover the most important aspects of the relationship. In general, if you limit your interpretations
to the standard output, that output constrains and can even distort the substantive understanding of
your results.

In the linear regression model, most of the work of interpretation is complete once the estimates
are obtained. You simply read off the coefficients, which can be interpreted as: for a unit increase
in xk, y is expected to increase by βk units, holding all other variables constant. In nonlinear mod-
els, such as logit or negative binomial regression, a substantial amount of additional computation is
necessary after the estimates are obtained. With few exceptions, the software that estimates regres-
sion models does not provide much help with these analyses. Consequently, the computations are
tedious, time-consuming, and error-prone. All in all, it is not fun work. In this book, we show how
post-estimation analysis can be accomplished easily using Stata and the set of new commands that
we have written. These commands make sophisticated, post-estimation analysis routine and even
enjoyable. With the tedium removed, the data analyst can focus on the substantive issues.
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4 Chapter 1. Introduction

1.2 Which models are considered?

Regression models analyze the relationship between an explanatory variable and an outcome vari-
able while controlling for the effects of other variables. The linear regression model (LRM) is
probably the most commonly used statistical method in the social sciences. As we have already
mentioned, a key advantage of the LRM is the simple interpretation of results. Unfortunately, the
application of this model is limited to cases in which the dependent variable is continuous.1 Using
the LRM when it is not appropriate produces coefficients that are biased and inconsistent, and there
is nothing advantageous about the simple interpretation of results that are incorrect.

Fortunately, a wide variety of appropriate models exists for categorical outcomes, and these
models are the focus of our book. We cover cross-sectional models for four kinds of dependent vari-
ables. Binary outcomes (a.k.a, dichotomous or dummy variables) have two values, such as whether
a citizen voted in the last election or not, whether a patient was cured after receiving some medical
treatment or not, or whether a respondent attended college or not. Ordinal or ordered outcomes
have more than two categories, and these categories are assumed to be ordered. For example, a
survey might ask if you would be “very likely”, “somewhat likely”, or “not at all likely” to take
a new subway to work, or if you agree with the President on “all issues”, “most issues”, “some
issues”, or “almost no issues”. Nominal outcomes also have more than two categories but are not
ordered. Examples include the mode of transportation a person takes to work (e.g., bus, car, train)
or an individual’s employment status (e.g., employed, unemployed, out of the labor force). Finally,
count variables count the number of times something has happened, such as the number of articles
written by a student upon receiving the Ph.D. or the number of patents a biotechnology company
has obtained. The specific cross-sectional models that we consider, along with the corresponding
Stata commands, are

Binary outcomes: binary logit (logit) and binary probit (probit).

Ordinal outcomes: ordered logit (ologit) and ordered probit (oprobit).

Nominal outcomes: multinomial logit (mlogit) and conditional logit (clogit).

Count outcomes: Poisson regression (poisson), negative binomial regression (nbreg), zero-
inflated Poisson regression (zip), and zero-inflated negative binomial regression (zinb).

While this book covers models for a variety of different types of outcomes, they are all models for
cross-sectional data. We do not consider models for survival or event history data,even though Stata
has a powerful set of commands for dealing with these data (see the entry for st in the Reference
Manual). Likewise, we do not consider any models for panel dataeven though Stata contains several
commands for estimating these models (see the entry for xt in the Reference Manual).

1The use of the LRM with a binary dependent variables leads to the linear probability model (LPM). We do not consider
the LPM further, given the advantages of models such as logit and probit. See Long (1997, 35–40) for details.
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1.3 Who is this book for? 5

1.3 Who is this book for?

We expect that readers of this book will vary considerably in both their knowledge of statistics
and their knowledge of Stata. With this in mind, we have tried to structure the book in a way
that best accommodates the diversity of our audience. Minimally, however, we assume that readers
have a solid familiarity with OLS regression for continuous dependent variables and that they are
comfortable using the basic features of the operating system of their computer. While we have
provided sufficient information about each model so that you can read each chapter without prior
exposure to the models discussed, we strongly recommend that you do not use this book as your
sole source of information on the models (Section 1.6 recommends additional readings). Our book
will be most useful if you have already studied the models considered or are studying these models
in conjunction with reading our book.

We assume that you have access to a computer that is running Stata 7 or later and that you
have access to the Internet to download commands, datasets, and sample programs that we have
written (see Section 1.5 for details on obtaining these). For information about obtaining Stata, see
the StataCorp web site at www.stata.com. While most of the commands in later chapters also work
in Stata 6, there are some differences. For details, check our web site at
www.indiana.edu/~jsl650/spost.htm.

1.4 How is the book organized?

Chapters 2 and 3 introduce materials that are necessary for working with the models we present in
the later chapters:

Chapter 2: Introduction to Stata reviews the basic features of Stata that are necessary to get
new or inexperienced users up and running with the program. This introduction is by no
means comprehensive, so we include information on how to get additional help. New users
should work through the brief tutorial that we provide in Section 2.17. Those who are already
skilled with Stata can skip this chapter, although even these readers might benefit from quickly
reading it.

Chapter 3: Estimation, Testing, Fit, and Interpretation provides a review of using Stata for
regression models. It includes details on how to estimate models, test hypotheses, compute
measures of model fit, and interpret the results. We focus on those issues that apply to all of
the models considered in Part II. We also provide detailed descriptions of the add-on com-
mands that we have written to make these tasks easier. Even if you are an advanced user, we
recommend that you look over this chapter before jumping ahead to the chapters on specific
models.

Chapters 4 through 7 each cover models for a different type of outcome:

Chapter 4: Binary Outcomes begins with an overview of how the binary logit and probit models
are derived and how they can be estimated. After the model has been estimated, we show
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6 Chapter 1. Introduction

how Stata can be used to test hypotheses, compute residuals and influence statistics, and cal-
culate scalar measures of model fit. Then, we describe post-estimation commands that assist
in interpretation using predicted probabilities, discrete and marginal change in the predicted
probabilities, and, for the logit model, odds ratios. Because binary models provide a founda-
tion on which some models for other kinds of outcomes are derived, and because Chapter 4
provides more detailed explanations of common tasks than later chapters do, we recommend
reading this chapter even if you are mainly interested in another type of outcome.

Chapter 5: Ordinal Outcomes introduces the ordered logit and ordered probit models. We show
how these models are estimated and how to test hypotheses about coefficients. We also con-
sider two tests of the parallel regression assumption. In interpreting results, we discuss similar
methods as in Chapter 4, as well as interpretation in terms of a latent dependent variable.

Chapter 6: Nominal Outcomes focuses on the multinomial logit model. We show how to test a
variety of hypotheses that involve multiple coefficients and discuss two tests of the assumption
of the independence of irrelevant alternatives. While the methods of interpretation are again
similar to those presented in Chapter 4, interpretation is often complicated due to the large
number of parameters in the model. To deal with this complexity, we present two graphical
methods of representing results. We conclude the chapter by introducing the conditional logit
model, which allows characteristics of both the alternatives and the individual to vary.

Chapter 7: Count Outcomes begins with the Poisson and negative binomial regression models,
including a test to determine which model is appropriate for your data. We also show how to
incorporate differences in exposure time into the estimation. Next we consider interpretation
both in terms of changes in the predicted rate and changes in the predicted probability of
observing a given count. The last half of the chapter considers estimation and interpretation
of zero-inflated count models, which are designed to account for the large number of zero
counts found in many count outcomes.

Chapter 8 returns to issues that affect all models:

Chapter 8: Additional Topics deals with several topics, but the primary concern is with compli-
cations among independent variables. We consider the use of ordinal and nominal indepen-
dent variables, nonlinearities among the independent variables, and interactions. The proper
interpretation of the effects of these types of variables requires special adjustments to the
commands considered in earlier chapters. We then comment briefly on how to modify our
commands to work with other estimation commands. Finally, we discuss several features in
Stata that we think make data analysis easier and more enjoyable.

1.5 What software do you need?

To get the most out of this book, you should read it while at a computer where you can experiment
with the commands as they are introduced. We assume that you are using Stata 7 or later. If you
are running Stata 6, most of the commands work, but some things must be done differently and the
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1.5 What software do you need? 7

output will look slightly different. For details, see www.indiana.edu/~jsl650/spost.htm. If
you are using Stata 5 or earlier, the commands that we have written will not work.

Advice to New Stata Users If you have never used Stata, you might find the instructions in this
section to be confusing. It might be easier if you only skim the material now and return to it
after you have read the introductory sections of Chapter 2.

1.5.1 Updating Stata 7

Before working through our examples in later chapters, we strongly recommend that you make
sure that you have the latest version of wstata.exe and the official Stata ado-files. You should do
this even if you have just installed Stata, since the CD that you received might not have the latest
changes to the program. If you are connected to the Internet and are in Stata, you can update Stata
by selecting Official Updates from the Help menu. Stata responds with the following screen:

This screen tells you the current dates of your files. By clicking on http://www.stata.com, you
can update your files to the latest versions. We suggest that you do this every few months. Or, if you
encounter something that you think is a bug in Stata or in our commands, it is a good idea to update
your copy of Stata and see if the problem is resolved.

1.5.2 Installing SPost

From our point of view, one of the best things about Stata is how easy it is to add your own com-
mands. This means that if Stata does not have a command you need or some command does not
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8 Chapter 1. Introduction

work the way you like, you can program the command yourself and it will work as if it were part
of official Stata. Indeed, we have created a suite of programs, referred to collectively as SPost
(for Stata Post-estimation Commands), for the post-estimation interpretation of regression models.
These commands must be installed before you can try the examples in later chapters.

What is an ado-file? Programs that add commands to Stata are contained in files that end in the
extension .ado (hence the name, ado-files). For example, the file prvalue.ado is the program
for the command prvalue. Hundreds of ado-files are included with the official Stata package,
but experienced users can write their own ado-files to add new commands. However, for Stata
to use a command implemented as an ado-file, the ado-file must be located in one of the
directories where Stata looks for ado-files. If you type the command sysdir, Stata lists the
directories that Stata searches for ado-files in the order that it searches them. However, if you
follow our instructions below, you should not have to worry about managing these directories.

Installing SPost using net search

Installation should be simple, although you must be connected to the Internet. In Stata 7 or later, type
net search spost. The net search command accesses an on-line database that StataCorp uses
to keep track of user-written additions to Stata. Typing net search spost brings up the names and
descriptions of several packages (a package is a collection of related files) in the Results Window.
One of these packages is labeled spostado from http://www.indiana.edu/~jsl650/stata.
The label is in blue, which means that it is a link that you can click on.2 After you click on the link,
a window opens in the Viewer (this is a new window that will appear on your screen) that provides
information about our commands and another link saying “click here to install.” If you click on this
link, Stata attempts to install the package. After a delay during which files are downloaded, Stata
responds with one of the following messages:

installation complete means that the package has been successfully installed and that you can
now use the commands. Just above the “installation complete” message, Stata tells you the
directory where the files were installed.

all files already exist and are up-to-date means that your system already has the latest
version of the package. You do not need to do anything further.

the following files exist and are different indicates that your system already has files
with the same names as those in the package being installed, and that these files differ from
those in the package. The names of those files are listed and you are given several options.
Assuming that the files listed are earlier versions of our programs, you should select the option
“Force installation replacing already-installed files”. This might sound ominous, but it is not.

2If you click on a link and immediately get a beep with an error message saying that Stata is busy, the problem is probably
that Stata is waiting for you to press a key. Most often this occurs when you are scrolling output that does not fit on one
screen.
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1.5 What software do you need? 9

Since the files on our web site are the latest versions, you want to replace your current files
with these new files. After you accept this option, Stata updates your files to newer versions.

cannot write in directory directory-name means that you do not have write privileges to the
directory where Stata wants to install the files. Usually, this occurs only when you are using
Stata on a network. In this case, we recommend that you contact your network administrator
and ask if our commands can be installed using the instructions given above. If you cannot
wait for a network administrator to install the commands or to give you the needed write ac-
cess, you can install the programs to any directory where you have write permission, including
a zip disk or your directory on a network. For example, suppose you want to install SPost
to your directory called d:\username (which can be any directory where you have write
access). You should use the following commands:

. cd d:\username
d:\username

. mkdir ado

. sysdir set PERSONAL "d:\username\ado"

. net set ado PERSONAL

. net search spost
(contacting http://www.stata.com)

Then, follow the installation instructions that we provided earlier for installing SPost. If you
get the error “could not create directory” after typing mkdir ado, then you probably do not
have write privileges to the directory.

If you install ado-files to your own directory, each time you begin a new session you must tell
Stata where these files are located. You do this by typing sysdir set PERSONAL directory,
where directory is the location of the ado-files you have installed. For example,

. sysdir set PERSONAL d:\username

Installing SPost using net install

Alternatively, you can install the commands entirely from the Command Window. (If you have
already installed SPost, you do not need to read this section.) While you are on-line, enter

. net from http://www.indiana.edu/~jsl650/stata/

The available packages will be listed. To install spostado, type

. net install spostado

net get can be used to download supplementary files (e.g., datasets, sample do-files) from our web
site. For example, to download the package spostst4, type

. net get spostst4

These files are placed in the current working directory (see Chapter 2 for a full discussion of the
working directory).
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10 Chapter 1. Introduction

1.5.3 What if commands do not work?

This section assumes that you have installed SPost, but some of the commands do not work. Here
are some things to consider:

1. If you get an error message unrecognized command, there are several possibilities.

(a) If the commands used to work, but do not work now, you might be working on a different
computer (e.g., a different station in a computing lab). Since user-written ado-files work
seamlessly in Stata, you might not realize that these programs need to be installed on
each machine you use. Following the directions above, install SPost on each computer
that you use.

(b) If you sent a do-file that contains SPost commands to another person and they cannot
get the commands to work, let them know that they need to install SPost.

(c) If you get the error message unrecognized command: strangename after typing one
of our commands, where strangename is not the name of the command that you typed,
it means that Stata cannot find an ancillary ado-file that the command needs. We recom-
mend that you install the SPost files again.

2. If you are getting an error message that you do not understand, click on the blue return code
beneath the error message for more information about the error (this only works in Stata 7 or
later).

3. You should make sure that Stata is properly installed and up-to-date. Typing verinst will
verify that Stata has been properly installed. Typing update query will tell you if the version
you are running is up-to-date and what you need to type to update it. If you are running Stata
over a network, your network administrator may need to do this for you.

4. Often, what appears to be a problem with one of our commands is actually a mistake you have
made (we know, because we make them too). For example, make sure that you are not using
= when you should be using ==.

5. Since our commands work after you have estimated a model, make sure that there were no
problems with the last model estimated. If Stata was not successful in estimating your model,
then our commands will not have the information needed to operate properly.

6. Irregular value labels can cause Stata programs to fail. We recommend using labels that are
less than 8 characters and contain no spaces or special characters other than ’s. If your
variables (especially your dependent variable) do not meet this standard, try changing your
value labels with the label command (details are given in Section 2.15).

7. Unusual values of the outcome categories can also cause problems. For ordinal or nominal
outcomes, some of our commands require that all of the outcome values are integers between
0 and 99. For these type of outcomes, we recommend using consecutive integers starting with
1.

In addition to this list, we recommend that you check our Frequently Asked Questions (FAQ) page at
www.indiana.edu/~jsl650/spost.htm. This page contains the latest information on problems
that users have encountered.
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1.6 Where can I learn more about the models? 11

1.5.4 Uninstalling SPost

Stata keeps track of the packages that it has installed, which makes it easy for you to uninstall them
in the future. If you want to uninstall our commands, simply type: ado uninstall spostado.

1.5.5 Additional files available on the web site

In addition to the SPost commands, we have provided other packages that you might find useful.
For example, the package called spostst4 contains the do-files and datasets needed to reproduce
the examples from this book. The package spostrm4 contains the do-files and datasets to repro-
duce the results from Long (1997). To obtain these packages, type net search spost and follow
the instructions you will be given. Important: if a package does not contain ado-files, Stata will
download the files to the current working directory. Consequently, you need to change your working
directory to wherever you want the files to go before you select “click here to get.” More information
about working directories and changing your working directory is provided in Section 2.5.

1.6 Where can I learn more about the models?

There are many valuable sources for learning more about the regression models that are covered in
this book. Not surprisingly, we recommend

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thou-
sand Oaks, CA: Sage Publications.

This book provides further details on all of the models discussed in the current book. In addition,
we recommend the following:

Cameron, A. C. and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: Cam-
bridge University Press. This is the definitive reference for count models.

Greene, W. C. 2000. Econometric Analysis. 4th ed. New York: Prentice Hall. While this book
focuses on models for continuous outcomes, several later chapters deal with models for cate-
gorical outcomes.

Hosmer, D. W., Jr., and S. Lemeshow. 2000. Applied Logistic Regression. 2d ed. New York:
John Wiley & Sons. This book, written primarily for biostatisticians and medical researchers,
provides a great deal of useful information on logit models for binary, ordinal, and nominal
outcomes. In many cases the authors discuss how their recommendations can be executed
using Stata.

Powers, D. A. and Y. Xie. 2000. Statistical Methods for Categorical Data Analysis. San Diego:
Academic Press. This book considers all of the models discussed in our book, with the ex-
ception of count models, and also includes loglinear models and models for event history
analysis.
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2 Introduction to Stata

This book is about estimating and interpreting regression models using Stata, and to earn our pay we
must get to these tasks quickly. With that in mind, this chapter is a relatively concise introduction
to Stata 7 for those with little or no familiarity with the package. Experienced Stata users can skip
this chapter, although a quick reading might be useful. We focus on teaching the reader what is
necessary to work the examples later in the book and to develop good working techniques for using
Stata for data analysis. By no means are the discussions exhaustive; in many cases, we show you
either our favorite approach or the approach that we think is simplest. One of the great things about
Stata is that there are usually several ways to accomplish the same thing. If you find a better way
than we have shown you, use it!

You cannot learn how to use Stata simply by reading. Accordingly, we strongly encourage you
to try the commands as we introduce them. We have also included a tutorial in Section 2.17 that
covers many of the basics of using Stata. Indeed, you might want to try the tutorial first and then
read our detailed discussions of the commands.

While people who are new to Stata should find this chapter sufficient for understanding the rest
of the book, if you want further instruction, look at the resources listed in Section 2.3. We also
assume that you know how to load Stata on the computer you are using and that you are familiar
with your computer’s operating system. By this, we mean that you should be comfortable copying
and renaming files, working with subdirectories, closing and resizing windows, selecting options
with menus and dialog boxes, and so on.

(Continued on next page)
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14 Chapter 2. Introduction to Stata

2.1 The Stata interface

Figure 2.1: Opening screen in Stata for Windows.

When you launch Stata, you will see a screen in which several smaller windows are located
within the larger Stata window, as shown in Figure 2.1. This screen shot is for Windows using the
default windowing preferences. If the defaults have been changed or you are running Stata under
Unix or the MacOS, your screen will look slightly different.1 Figure 2.2 shows what Stata looks like
after several commands have been entered and data have been loaded into memory. In both figures,
four windows are shown. These are

(Continued on next page)

1Our screen shots and descriptions are based on Stata for Windows. Please refer to the books Getting Started with Stata
for Macintosh or Getting Started with Stata for Unix for examples of the screens for those operating systems.
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2.1 The Stata interface 15

Figure 2.2: Example of Stata windows after several commands have been entered and data have
been loaded.

The Command Window is where you enter commands that are executed when you press En-
ter. As you type commands, you can edit them at any time before pressing Enter. Press-
ing PageUp brings the most recently used command into the Command Window; pressing
PageUp again retrieves the command before that; and so on. Once a command has been
retrieved to the Command Window, you can edit it and press Enter to run the modified com-
mand.

The Results Window contains output from the commands entered in the Command Window. The
Results Window also echoes the command that generated the output, where the commands
are preceded by a “.” as shown in Figure 2.2. The scroll bar on the right lets you scroll back
through output that is no longer on the screen. Only the most recent output is available this
way; earlier lines are lost unless you have saved them to a log file (discussed below).

The Review Window lists the commands that have been entered from the Command Window. If
you click on a command in this window, it is pasted into the Command Window where you
can edit it before execution of the command. If you double-click on a command in the Review
Window, it is pasted into the Command Window and immediately executed.
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16 Chapter 2. Introduction to Stata

The Variables Window lists the names of variables that are in memory, including both those loaded
from disk files and those created with Stata commands. If you click on a name, it is pasted
into the Command Window.

The Command and Results Windows illustrate the important point that Stata is primarily com-
mand based. This means that you tell Stata what to do by typing commands that consist of a single
line of text followed by pressing Enter.2 This contrasts with programs where you primarily point-
and-click options from menus and dialog boxes. To the uninitiated, this austere approach can make
Stata seem less “slick” or “user friendly” than some of its competitors, but it affords many advan-
tages for data analysis. While it can take longer to learn Stata, once you learn it, you should find it
much faster to use. If you currently prefer using pull-down menus, stick with us and you will likely
change your mind.

There are also many things that you can do in Stata by pointing and clicking. The most important
of these are presented as icons on the toolbar at the top of the screen. While we on occasion mention
the use of these icons, for the most part we stick with text commands. Indeed, even if you do click
on an icon, Stata shows you how this could be done with a text command. For example, if you

click on the browse button , Stata opens a spreadsheet for examining your data. Meanwhile,
“. browse” is written to the Results Window. This means that instead of clicking the icon, you
could have typed browse. Overall, not only is the range of things you can do with menus limited,
but almost everything you can do with the mouse can also be done with commands, and often more
efficiently. It is for this reason, and also because it makes things much easier to automate later, that
we describe things mainly in terms of commands. Even so, readers are encouraged to explore the
tasks available through menus and the toolbar and to use them when preferred.

Changing the Scrollback Buffer Size

How far back you can scroll in the Results Window is controlled by the command

set scrollbufsize #

where 10,000 ≤ # ≤ 500,000. By default, the buffer size is 32,000.

Changing the Display of Variable Names in the Variable Window

The Variables Window displays both the names of variables in memory and their variable labels. By
default, 32 columns are reserved for the name of the variable. The maximum number of characters
to display for variable names is controlled by the command

set varlabelpos #

where 8 ≤ # ≤ 32. By default, the size is 32. In Figure 2.2, none of the variable labels are shown
since the 32 columns take up the entire width of the window. If you use short variable names, it is
useful to set varlabelspos to a smaller number so that you can see the variable labels.

2For now, we only consider entering one command at a time, but in Section 2.9 we show you how to run a series of
commands at once using “do-files”.
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2.2 Abbreviations 17

Tip: Changing Defaults We both prefer a larger scroll buffer and less space for variable names.
We could enter the commands: set scrollbufsize 150000 and set varlabelpos 14 at
the start of each Stata session, but it is easier to add the commands to profile.do, a file that
is automatically run each time Stata begins. We show you how to do this in Chapter 8.

2.2 Abbreviations

Commands and variable names can often be abbreviated. For variable names, the rule is easy: any
variable name can be abbreviated to the shortest string that uniquely identifies it. For example, if
there are no other variables in memory that begin with a, then the variable age can be abbreviated as
a or ag. If you have the variables income and income2 in your data, then neither of these variable
names can be abbreviated.

There is no general rule for abbreviating commands, but, as one would expect, it is typically the
most common and general commands whose names can be abbreviated. For example, four of the
most often used commands are summarize, tabulate, generate, and regress, and these can be
abbreviated as su, ta, g, and reg, respectively. From now on, when we introduce a Stata command
that can be abbreviated, we underline the shortest abbreviation (e.g., generate). But, while very
short abbreviations are easy to type, when you are getting started the short abbreviations can be
confusing. Accordingly, when we use abbreviations, we stick with at least three-letter abbreviations.

2.3 How to get help

2.3.1 On-line help

If you find our description of a command incomplete or if we use a command that is not explained,
you can use Stata’s on-line help to get further information. The help, search, and net search
commands, described below, can be typed in the Command Window with results displayed in the

Results Window. Or, you can open the Viewer by clicking on . At the top of the Viewer, there
is a line labeled Command where you can type commands such as help. The Viewer is particularly
useful for reading help files that are long. Here is further information on commands for getting help:

help lists a shortened version of the documentation in the manual for any command. You
can even type help help for help on using help. When using help for commands that can be
abbreviated, you must use the full name of the command (e.g., help generate, not help gen). The
output from help often makes reference to other commands, which are shown in blue. In Stata 7 or
later, anything in the Results Window that is in blue type is a link that you can click on. In this case,
clicking on a command name in blue type is the same as typing help for that command.
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18 Chapter 2. Introduction to Stata

search is handy when you do not know the specific name of the command that you need infor-
mation about. search word [word...] searches Stata’s on-line index and lists the entries that it finds.
For example, search gen lists information on generate, but also many related commands. Or,
if you want to run a truncated regression model but can not remember the name of the command,
you could try search truncated to get information on a variety of possible commands. These
commands are listed in blue, so you can click on the name and details appear in the Viewer. If you
keep your version of Stata updated on the Internet (see Section 1.5 for details), search also provides
current information from the Stata web site FAQ (i.e., Frequently Asked Questions) and articles in
the Stata Journal (often abbreviated as SJ).

net search is a command that searches a database at www.stata.com for information about
commands written by users (accordingly, you have to be on-line for this command to work). This is
the command to use if you want information about something that is not part of official Stata. For
example, when you installed the SPost commands, you used net search spost to find the links
for installation. To get a further idea of how net search works, try net search truncated and
compare the results to those from search truncated.

Tip: Help with error messages Error messages in Stata are terse and sometimes confusing. While
the error message is printed in red, errors also have a return code (e.g., r(199)) listed in blue.
Clicking on the return code provides a more detailed description of the error.

2.3.2 Manuals

The Stata manuals are extensive, and it is worth taking an hour to browse them to get an idea of
the many features in Stata. In general, we find that learning how to read the manuals (and use the
help system) is more efficient than asking someone else, and it allows you to save your questions
for the really hard stuff. For those new to Stata, we recommend the Getting Started manual (which
is specific to your platform) and the first part of the User’s Guide. As you become more acquainted
with Stata, the Reference Manual will become increasingly valuable for detailed information about
commands, including a discussion of the statistical theory related to the commands and references
for further reading.

2.3.3 Other resources

The User’s Guide also discusses additional sources of information about Stata. Most importantly,
the Stata web site (www.stata.com) contains many useful resources, including links to tutorials
and an extensive FAQ section that discusses both introductory and advanced topics. You can also get
information on the NetCourses offered by Stata, which are four- to seven-week courses offered over
the Internet. Another excellent set of on-line resources is provided by UCLA’s Academic Technology
Services at www.ats.ucla.edu/stat/stata/.
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2.4 The working directory 19

There is also a Statalist listserv that is independent of StataCorp, although many program-
mers/statisticians from StataCorp participate. This list is a wonderful resource for information on
Stata and statistics. You can submit questions and will usually receive answers very quickly. Moni-
toring the listserv is also a quick way to pick up insights from Stata veterans. For details on joining
the list, go to www.stata.com, follow the link to User Support, and click on the link to Statalist.

2.4 The working directory

The working directory is the default directory for any file operations such as using data, saving data,
or logging output. If you type cd in the Command Window, Stata displays the name of the current
working directory. To load a data file stored in the working directory, you just type use filename
(e.g., use binlfp2). If a file is not in the working directory, you must specify the full path (e.g.,
use d:\spostdata\examples\binlfp2).

At the beginning of each Stata session, we like to change our working directory to the directory
where we plan to work, since this is easier than repeatedly entering the path name for the direc-
tory. For example, typing cd d:\spostdata changes the working directory to d:\spostdata. If
the directory name includes spaces, you must put the path in quotation marks (e.g., cd "d:\my
work\").

You can list the files in your working directory by typing dir or ls, which are two names for
the same command. With this command you can use the * wildcard. For example, dir *.dta lists
all files with the extension .dta.

2.5 Stata file types

Stata uses and creates many types of files, which are distinguished by extensions at the end of the
filename. The extensions used by Stata are

.ado Programs that add commands to Stata, such as the SPost commands.

.do Batch files that execute a set of Stata commands.

.dta Data files in Stata’s format.

.gph Graphs saved in Stata’s proprietary format.

.hlp The text displayed when you use the help command. For example,
fitstat.hlp has help for fitstat.

.log Output saved as plain text by the log using command.

.smcl Output saved in the SMCL format by the log using command.

.wmf Graphs saved as Windows Metafiles.

The most important of these for a new user are the .smcl, .log, .dta, and .do files, which we now
discuss.
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20 Chapter 2. Introduction to Stata

2.6 Saving output to log files

Stata does not automatically save the output from your commands. To save your output to print or
examine later, you must open a log file. Once a log file is opened, both the commands and the output
they generate are saved. Since the commands are recorded, you can tell exactly how the results were
obtained. The syntax for the log command is

log using filename
[
, append replace

[
text | smcl

]]
By default, the log file is saved to your working directory. You can save it to a different directory by
typing the full path (e.g., log using d:\project\mylog, replace).

Options

replace indicates that you want to replace the log file if it already exists. For example, log using
mylog creates the file mylog.smcl. If this file already exists, Stata generates an error message.
So, you could use log using mylog, replace and the existing file would be overwritten by
the new output.

append means that if the file exists, new output should be added to the end of the existing file.

smcl is the default option that requests that the log is written using the Stata Markup and Control
Language (SMCL) with the file suffix .smcl. SMCL files contain special codes that add solid
horizontal and vertical lines, bold and italic typefaces, and hyperlinks to the Result Window.
The disadvantage of SMCL is that the special features can only be viewed within Stata. If you
open a SMCL file in a text editor, your results will appear amidst a jumble of special codes.

text specifies that the log should be saved as plain text (ASCII), which is the preferred format for
loading the log into a text editor for printing. Instead of adding the text option, such as log
using mywork, text, you can specify plain text by including the .log extension. For example,
log using mywork.log.

Tip: Plain text logs by default We both prefer plain text for output rather than SMCL. Typing set
logtype text at the beginning of a Stata session makes plain text the default for log files. In
Chapter 8, we discuss using the profile.do file to have Stata run certain commands every
time it launches. Both of us include set logtype text in our profile.do.

2.6.1 Closing a log file

To close a log file, type

. log close

Also, when you exit Stata, the log file closes automatically. Since you can only have one log file
open at a time, any open log file must be closed before you can open a new one.
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2.7 Using and saving datasets 21

2.6.2 Viewing a log file

Regardless of whether a log file is open or closed, a log file can be viewed by selecting File→Log→
View from the menu, and the log file will be displayed in the Viewer. When in the Viewer, you can

print the log by selecting File→Print Viewer... You can also view the log file by clicking on ,
which opens the log in the Viewer. If the Viewer window “gets lost” behind other windows, you can

click on to bring the Viewer to the front.

2.6.3 Converting from SMCL to plain text or PostScript

If you want to convert a log file in SMCL format to plain text, you can use the translate command.
For example,

. translate mylog.smcl mylog.log, replace
(file mylog.log written in .log format)

tells Stata convert the SMCL file mylog.smcl to a plain text file called mylog.log. Or, you can
convert a SMCL file to a PostScript file, which is useful if you are using TEX or LATEX or if you want
to convert your output into Adobe’s Portable Document Format. For example,

. translate mylog.smcl mylog.ps, replace
(file mylog.ps written in .ps format)

Converting can also be done via the menus by selecting File→Log→Translate.

2.7 Using and saving datasets

2.7.1 Data in Stata format

Stata uses its own data format with the extension .dta. The use command loads such data into
memory. Pretend we are working with the file nomocc2.dta in directory d:\spostdata. We can
load the data by typing

. use d:\spostdata\nomocc2, clear

where the .dta extension is assumed by Stata. The clear option erases all data currently in memory
and proceeds with loading the new data. Stata does not give an error if you include clear when
there is no data in memory. If d:\spostdata was our working directory, we could use the simpler
command

. use nomocc2, clear

If you have changed the data by deleting cases, merging in another file, or creating new variables,
you can save the file with the save command. For example,

. save d:\spostdata\nomocc3, replace
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22 Chapter 2. Introduction to Stata

where again we did not need to include the .dta extension. Also notice that we saved the file with a
different name so that we can use the original data later. The replace option indicates that if the file
nomocc3.dta already exists, Stata should overwrite it. If the file does not already exist, replace
is ignored. If d:\spostdata was our working directory, we could save the file with

. save nomocc3, replace

By default, save stores the data in a format that can only be read by Stata 7 or later. But, if you
add the option old, the data is written so that it can be read with Stata 6. However, if your data
contain variable names or value labels longer than 8 characters, features that only became available
in Stata 7, Stata refuses to save the file with the old option.

Tip: compress before saving Before saving a file, run the compress command. compress checks
each variable to determine if it can be saved in a more compact form. For instance, binary
variables fit into the byte type, which takes up only one-fourth of the space of the float
type. If you run compress, it might make your data file much more compact, and at worst it
will do no harm.

2.7.2 Data in other formats

To load data from another statistical package, such as SAS or SPSS, you need to convert it into
Stata’s format. The easiest way to do this is with a conversion program such as Stat/Transfer
(www.stattransfer.com) or DBMS/Copy (www.conceptual.com). We recommend obtaining
one of these programs if you are using more than one statistical package or if you often share data
with others who use different packages.

Alternatively, but less conveniently, most statistical packages allow you to save and load data in
ASCII format. You can load ASCII data with the infile or infix commands and export it with the
outfile command. The Reference Manual entry for infile contains an extensive discussion that
is particularly helpful for reading in ASCII data, or, you can type help infile.

2.7.3 Entering data by hand

Data can also be entered by hand using a spreadsheet-style editor. While we do not recommend
using the editor to change existing data (since it is too easy to make a mistake), we find that it is very

useful for entering small datasets. To enter the editor, click on or type edit on the command
line. The Getting Started manual has a tutorial for the editor, but most people who have used a
spreadsheet before will be immediately comfortable with the editor.

As you use the editor, every change that you make to the data is reported in the Results Window
and is captured by the log file if it is open. For example, if you change age for the fifth observation
to 32, Stata reports replace age = 32 in 5. This tells you that instead of using the editor, you could
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2.8 Size limitations on datasets∗ 23

have changed the data with a replace command. When you close the editor, you are asked if you
really want to keep the changes or revert to the unaltered data.

2.8 Size limitations on datasets∗

If you get the error message r(900): no room to add more observations when trying to load
a dataset or the message r(901): no room to add more variables when trying to add a new
variable, you may need to allocate more memory. Typing memory shows how much memory Stata
has allocated and how much it is using. You can increase the amount of memory by typing set
memory #k (for KB) or #m (for MB). For example, set memory 32000k or set memory 32m sets
the memory to 32MB.3 Note that if you have variables in memory, you must type clear before you
can set the memory.

If you get the error r(1000): system limit exceeded--see manual when you try to load
a dataset or add a variable, your dataset might have too many variables or the width of the dataset
might be too large. Stata is limited to a maximum of 2047 variables, and the dataset can be no
more than 8192 units wide (a binary variable has width 1, a double precision variable width 8, and a
string variable as much as width 80). File transfer programs such as Stat/Transfer and DBMS/Copy
can drop specified variables and optimize variable storage. You can use these programs to create
multiple datasets that each only contain the variables necessary for specific analyses.

2.9 do-files

You can execute commands in Stata by typing one command at a time into the Command Window
and pressing Enter, as we have been doing. This interactive mode is useful when you are learning
Stata, exploring your data, or experimenting with alternative specifications of your regression model.
Alternatively, you can create a text file that contains a series of commands and then tell Stata to
execute all of the commands in that file, one after the other. These files, which are known as do-files
because they use the extension .do, have the same function as “syntax files” in SPSS or “batch files”
in other statistics packages. For more serious or complex work, we always use do-files since they
make it easier to redo the analysis with small modifications later and because they provide an exact
record of what has been done.

To get an idea of how do-files work, consider the file example.do saved in the working direc-
tory:

log using example, replace text
use binlfp2, clear
tabulate hc wc, row nolabel
log close

3Stata can use virtual memory if you need to allocate memory beyond that physically available on a system, but we find
that virtual memory makes Stata unbearably slow. At the time this book was written, StataCorp was considering increasing
the dataset limits, so visit www.stata.com for the latest information.
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24 Chapter 2. Introduction to Stata

To execute a do-file, you execute the command

do dofilename

from the Command Window. For example, do example tells Stata to run each of the commands
in example.do. (Note: If the do-file is not in the working directory, you need to add the direc-
tory, such as do d:\spostdata\example.) Executing example.do begins by opening the log
example.log, then loads binlfp2.dta, and finally constructs a table with hc and wc. Here is
what the output looks like:

--------------------------------------------------------------------------------------------
log: f:\spostdata\example.log

log type: text
opened on: 11 Feb 2001, 16:27:54

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. tabulate hc wc, row nolabel

Husband | Wife College: 1=yes
College: | 0=no

1=yes 0=no | 0 1 | Total
-----------+----------------------+----------

0 | 417 41 | 458
| 91.05 8.95 | 100.00

-----------+----------------------+----------
1 | 124 171 | 295

| 42.03 57.97 | 100.00
-----------+----------------------+----------

Total | 541 212 | 753
| 71.85 28.15 | 100.00

. log close
log: f:\spostdata\example.log

log type: text
closed on: 11 Feb 2001, 16:27:54

--------------------------------------------------------------------------------------------

2.9.1 Adding comments

Stata treats lines that begin with an asterisk * or are located between a pair of /* and */ as com-
ments that are simply echoed to the output. For example, the following do-file executes the same
commands as the one above, but includes comments:

/*
==> short simple do-file
==> for didactic purposes
*/
log using example, replace /* this comment is ignored */
* next we load the data
use binlfp2, clear
* tabulate husband´s and wife´s education
tabulate hc wc, row nolabel
* close up
log close
* make sure there is a cr at the end!
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If you look at the do-files on our web site that reproduce the examples in this book, you will see that
we use many comments. They are extremely helpful if others will be using your do-files or log files
or if there is a chance that you will use them again at a later time.

2.9.2 Long lines

Sometimes you need to execute a command that is longer than the text that can fit onto a screen. If
you are entering the command interactively, the Command Window simply pushes the left part of
the command off the screen as space is needed. Before entering a long command line in a do-file,
however, you can use #delimit ; to tell Stata to interpret “;” as the end of a command. After the
long command is entered, you can enter #delimit cr to return to using the carriage return as the
end-of-line delimiter. For example,

#delimit ;
recode income91 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7500 8=9000
9=11250 10=13750 11=16250 12=18750 13=21250 14=23750 15=27500 16=32500
17=37500 18=45000 19=55000 20=67500 21=75000 *=. ;
#delimit cr

Tip: Long lines Instead of the #delimit command, we could have used /* */ to comment out the
carriage returns before the end of the command. Since Stata ignores everything between /*
*/, it ignores the carriage returns. For example,

recode income91 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7500 8=9000 /*
*/ 9=11250 10=13750 11=16250 12=18750 13=21250 14=23750 15=27500 16=32500 /*
*/ 17=37500 18=45000 19=55000 20=67500 21=75000 *=.

2.9.3 Stopping a do-file while it is running

If you are running a command or a do-file that you want to stop before it completes execution, click

on or press Ctrl-Break.

2.9.4 Creating do-files

Using Stata’s do-file editor

do-files can be created with Stata’s built-in do-file editor. To use the editor, enter the command
doedit to create a file to be named later or doedit filename to create or edit a file named file-

name.do. Alternatively, you can click on . The do-file editor is easy to use and works like most
text editors (see Getting Started for further details). After you finish your do-file, select Tools→Do

to execute the file or click on .

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



26 Chapter 2. Introduction to Stata

Using other editors to create do-files

Since do-files are plain text files, you can create do-files with any program that creates text files.
Specialized text editors work much better than word processors such as WordPerfect or Microsoft
Word. Among other things, with word processors it is easy to forget to save the file as plain text.
Our own preference for creating do-files is TextPad (www.textpad.com), which runs in Windows.
This program has many features that make it faster to create do-files. For example, you can create
a “clip library” that contains frequently entered material and you can obtain a syntax file from our
web site that provides color coding of reserved words for Stata. TextPad also allows you to have
several different files open at once, which is often handy for complex data analyses.

If you use an editor other than Stata’s built-in editor, you cannot run the do file by clicking on
an icon or selecting from a menu. Instead, you must switch from your editor and then enter the
command do filename.

Warning Stata executes commands when it encounters a carriage return (i.e., the Enter key). If
you do not include a carriage return after the last line in a do-file, that last line will not be
executed. TextPad has a feature to enter that final, pesky carriage return automatically. To set
this option in TextPad 4, select the option “Automatically terminate the last line of the file” in
the preferences for the editor.

2.9.5 A recommended structure for do-files

This is the basic structure that we recommend for do-files:

* including version number ensures compatibility with later Stata releases
version 7
* if a log file is open, close it
capture log close
* don´t pause when output scrolls off the page
set more off
* log results to file myfile.log
log using myfile, replace text
** myfile.do - written 19 jan 2001 to illustrate do-files
*
** your commands go here
*
* close the log file.
log close

While the comments (that you can remove) should explain most of the file, there are a few points
that we need to explain.

• The version 7 command indicates that the program was written for use in Stata 7. This
command tells any future version of Stata that you want the commands that follow to work
just as they did when you ran them in Stata 7. This prevents the problem of old do-files not
running correctly in newer releases of the program.
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• The command capture log close is very useful. Suppose you have a do-file that starts with
log using mylog, replace. You run the file and it “crashes” before reaching log close,
which means that the log file remains open. If you revise the do-file and run it again, an error
is generated when it tries to open the log file, because the file is already open. The prefix
capture tells Stata not to stop the do-file if the command that follows produces an error.
Accordingly, capture log close closes the log file if it is open. If it is not open, the error
generated by trying to close an already closed file is ignored.

Tip: The command cmdlog is very much like the log command, except that it creates a text file
with extension .txt that saves all subsequent commands that are entered in the Command
Window (it does not save commands that are executed within a do-file). This is handy because
it allows you to use Stata interactively and then make a do-file based on what you have done.
You simply load the cmdlog that you saved, rename it to newname.do, delete commands you
no longer want, and execute the new do-file. Your interactive session is now documented as
a do-file. The syntax for opening and closing cmdlog files is the same as the syntax for log
(i.e., cmdlog using to open and cmdlog close to close), and you can have log and cmdlog
files open simultaneously.

2.10 Using Stata for serious data analysis

Voltaire is said to have written Candide in three days. Creative work often rewards such inspired,
seat-of-the-pants, get-the-details-later activity. Data management does not. Instead, effective data
management rewards forethought, carefulness, double- and triple-checking of details, and meticu-
lous, albeit tedious, documentation. Errors in data management are astonishingly (and painfully)
easy to make. Moreover, tiny errors can have disastrous implications that can cost hours and even
weeks of work. The extra time it takes to conduct data management carefully is rewarded many
times over by the reduced risk of errors. Put another way, it helps prevent you from getting incorrect
results that you do not know are incorrect. With this in mind, we begin with some broad, perhaps
irritatingly practical, suggestions for doing data analysis efficiently and effectively.

1. Ensure replicability by using do-files and log files for everything. For data analysis to be
credible, you must be able to reproduce entirely and exactly the trail from the original data to
the tables in your paper. Thus, any permanent changes you make to the data should be made
by running do-files rather than in the interactive mode. If you work interactively, be sure that
the first thing you do is open a log or cmdlog file. Then when you are done, you can use these
files to create a do-file to reproduce your interactive results.

2. Document your do-files. The reasoning that is obvious today can be baffling in six months.
We use comments extensively in our do-files, which are invaluable for remembering what we
did and why we did it.
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3. Keep a research log. For serious work, you should keep a diary that includes a description
of every program you run, the research decisions that are being made (e.g., the reasons for
recoding a variable in a particular way), and the files that are created. A good research log
allows you to reproduce everything you have done starting only with the original data. We
cannot overemphasize how helpful such notes are when you return to a project that was put
on hold, when you are responding to reviewers, or when you moving on to the next stage of
your research.

4. Develop a system for naming files. Usually it makes the most sense to have each do-file
generate one log file with the same prefix (e.g., clean data.do, clean data.log). Names
are easiest to organize when brief, but they should be long enough and logically related enough
to make sense of the task the file does.4 Scott prefers to keep the names short and organized
by major task (e.g., recode01.do, recode02.do), while Jeremy likes longer names (e.g.,
make income vars.do, make educ variables.do). Either is fine as long as it works for
you.

5. Use new names for new variables and files. Never change a data set and save it with the
original name. If you drop three variables from pcoms1.dta and create two new variables,
call the new file pcoms2.dta. When you transform a variable, give it a new name rather than
simply replacing or recoding the old variable. For example, if you have a variable workmom
with a five-point attitude scale and you want to create a binary variable indicating positive and
negative attitudes, create a new variable called workmom2.

6. Use labels and notes. When you create a new variable, give it a variable label. If it is a
categorical variable, assign value labels. You can add a note about the new variable using the
notes command (described below). When you create a new dataset, you can also use notes
to document what it is.

7. Double-check every new variable. Cross-tabulating or graphing the old variable and the new
variable are often effective for verifying new variables. As we describe below, using list
with a subset of cases is similarly effective for checking transformations. At the very least,
be sure to look carefully at the frequency distributions and summary statistics of variables in
your analysis. You would not believe how many times puzzling regression results turn out to
involve miscodings of variables that would have been immediately apparent by looking at the
descriptive statistics.

8. Practice good archiving. If you want to retain hard copies of all your analyses, develop a
system of binders for doing so rather than a set of intermingling piles on one’s desk. Back up
everything. Make off-site backups and/or keep any on-site backups in a fireproof box. Should
cataclysm strike, you will have enough other things to worry about without also having lost
months or years of work.

4Students sometimes find it amusing to use names like dumbproject.do or joanieloveschachi.do. The fun ends when one
needs to reconstruct something but can no longer recall which file does what.
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2.11 The syntax of Stata commands

Think about the syntax of commands in everyday, spoken English. They usually begin with a verb
telling the other person what they are supposed to do. Sometimes the verb is the entire command:
“Help!” or “Stop!” Sometimes the verb needs to be followed by an object that indicates who or
what the verb is to be performed on: “Help Dave!” or “Stop the car!” In some cases, the verb is
followed by a qualifier that gives specific conditions under which the command should or should not
be performed: “Give me a piece of pizza if it doesn’t have mushrooms” or “Call me if you get home
before nine”. Verbs can also be followed by adverbs that specify that the action should be performed
in some way that is different from how it might normally be, such as when a teacher commands her
students to “Talk clearly” or “Walk single file”.

Stata follows an analogous logic, albeit with some additional wrinkles that we introduce later.
The basic syntax of a command has four parts:

1. Command: What action do you want performed?

2. Names of Variables, Files, or other Objects: On what things is the command to be performed?

3. Qualifier on Observations: On which observations should the command be performed?

4. Options: What special things should be done in executing the command?

All commands in Stata require the first of these parts, just as it is hard to issue spoken commands
without a verb. Each of the other three parts can be required, optional, or not allowed, depending on
the particular command and circumstances. Here is an example of a command that features all four
parts and uses binlfp2.dta that we loaded earlier:

. tabulate hc wc if age>40, row

Husband Wife College: 1=yes
College: 0=no

1=yes 0=no NoCol College Total

NoCol 263 23 286
91.96 8.04 100.00

College 58 91 149
38.93 61.07 100.00

Total 321 114 435
73.79 26.21 100.00

tabulate is a command for making one- or two-way tables of frequencies. In this example, we
want a two-way table of the frequencies of variables hc by wc. By putting hc first, we make this the
row variable and wc the column variable. By specifying if age>40, we specify that the frequencies
should only include observations for those older than 40. The option row indicates that row per-
centages should be printed as well as frequencies. These allow us to see that in 61% of the cases in
which the husband had attended college the wife had also done so, while wives had attended college
only in 8% of cases in which the husband had not. Notice the comma preceding row: whenever
options are specified, they are at the end of the command with a single comma to indicate where the
list of options begins. The precise ordering of multiple options after the comma is never important.

Next, we provide more information on each of the four components.
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2.11.1 Commands

Commands define the tasks that Stata is to perform. A great thing about Stata is that the set of
commands is deliciously open-ended. It expands not just with new releases of Stata, but also when
users add their own commands, such as our SPost commands. Each new command is stored in its
own file, ending with the extension .ado. Whenever Stata encounters a command that is not in its
built-in library, it searches various directories for the appropriate ado-file. The list of the directories
it searches (and the order that it searches them) can be obtained by typing adopath.

2.11.2 Variable lists

Variable names are case-sensitive. For example, you could have three different variables named
income, Income, and inCome. Of course, this is not a good idea since it leads to confusion. To keep
life simple, we stick exclusively to lowercase names. Starting with Stata 7, Stata allows variable
names up to 32 characters long, compared to the 8 character maximum imposed by earlier versions
of Stata and many other statistics packages. In practice, we try not to give variables names longer
than 8 characters, as this makes it easier to share data with people who use other packages. Ad-
ditionally, we recommend using short names because longer variable names become unwieldy to
type. (Although variable names can be abbreviated to whatever initial set of characters identifies
the variable uniquely, we worry that too much reliance on this feature might cause one to make
mistakes.)

If you do not list any variables, many commands assume that you want to perform the operation
on every variable in the dataset. For example, the summarize command provides summary statistics
on the listed variables:

. sum age inc k5

Variable Obs Mean Std. Dev. Min Max

age 753 42.53785 8.072574 30 60
inc 753 20.12897 11.6348 -.0290001 96
k5 753 .2377158 .523959 0 3

Alternatively, we could get summary statistics on every variable in our dataset by just typing

. sum

Variable Obs Mean Std. Dev. Min Max

lfp 753 .5683931 .4956295 0 1
k5 753 .2377158 .523959 0 3

k618 753 1.353254 1.319874 0 8
age 753 42.53785 8.072574 30 60
wc 753 .2815405 .4500494 0 1
hc 753 .3917663 .4884694 0 1

lwg 753 1.097115 .5875564 -2.054124 3.218876
inc 753 20.12897 11.6348 -.0290001 96

You can also select all variables that begin or end with the same letter(s) using the wildcard operator
*. For example,
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. sum k*

Variable Obs Mean Std. Dev. Min Max

k5 753 .2377158 .523959 0 3
k618 753 1.353254 1.319874 0 8

2.11.3 if and in qualifiers

Stata has two qualifiers that restrict the sample that is analyzed: if and in. in performs operations
on a range of consecutive observations. Typing sum in 20/100 gives summary statistics based only
on the 20th through 100th observations. in restrictions are dependent on the current sort order of
the data, meaning that if you resort your data, the 81 observations selected by the restriction sum in
20/100 might be different.5

In practice, if conditions are used much more often than in conditions. if restricts the obser-
vations to those that fulfill a specified condition. For example, sum if age<50 provides summary
statistics for only those observations where age is less than 50. Here is a list of the elements that
can be used to construct logical statements for selecting observations with if:

Operator Definition Example
== equal to if female==1
~= not equal to if female~=1
> greater than if age>20
>= greater than or equal to if age>=21
< less than if age<66
<= less than or equal to if age<=65
& and if age==21 & female==1
| or if age==21|educ>16

There are two important things to note about the if qualifier:

1. To specify a condition to test, you use a double equal sign (e.g., sum if female==1). When
assigning a value to something, such as when creating a new variable, you use a single equal
sign (e.g., gen newvar=1). Putting these examples together, results in gen newvar=1 if
female==1.

2. Stata treats missing cases as positive infinity when evaluating if expressions. In other
words, if you type sum ed if age>50, the summary statistics for ed are calculated on all
observations where age is greater than 50, including cases where the value of age is missing.
You must be careful of this when using if with> or>= expressions. If you type sum ed if
age~=., Stata gives summary statistics for cases where age is not missing (Note: . means
missing). Entering sum ed if age>50 & age~=. provides summary statistics for those
cases where age is greater than 50 and is not missing.

5In Stata 6 and earlier, some official Stata commands changed the sort order of the data, but fortunately this quirk was
removed in Stata 7. As of Stata 7, no properly written Stata command should change the sort order of the data, although
readers should beware that user-written programs may not always follow proper Stata programming practice.
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Examples of if qualifier

If we wanted summary statistics on income for only those respondents who were between the ages
of 25 and 65, we would type

. sum income if age>=25 & age<=65

If we wanted summary statistics on income for only female respondents who were between the ages
of 25 and 65, we would type

. sum income if age>=25 & age<=65 & female==1

If we wanted summary statistics on income for the remaining female respondents, that is, those who
are younger than 25 or older than 65, we would type

. sum income if (age<25 | age>65) & age~=. & female==1

Notice that we need to include & age~=. since Stata treats missing codes as positive infinity. The
condition (age<25 | age>65) would otherwise include those cases for which age is missing.

2.11.4 Options

Options are set off from the rest of the command by a comma. Options can often be abbreviated,
although whether and how they can be abbreviated varies across commands. In this book we rarely
cover all of the available options available for any given command, but you can check the manual or
use help for further options that might be useful for your analyses.

2.12 Managing data

2.12.1 Looking at your data

There are two easy ways to look at your data.

browse opens a spreadsheet in which you can scroll to look at the data, but you cannot change
the data. You can look and change data with the edit command, but this is risky. We much prefer
making changes to our data using do files, even when we are only changing the value of one variable

for one observation. The browser is also available by clicking on , while the data editor is

available by clicking on .

list creates a list of values of specified variables and observations. if and in qualifiers can be
used to look at just a portion of the data, which is sometimes useful for checking that transformations
of variables are correct. For example, if you want to confirm that the variable lninc has been
correctly constructed as the natural log of inc, typing list inc lninc in 1/20 lets you see the
values of inc and lninc for the first 20 observations.
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2.12.2 Getting information about variables

There are several methods for obtaining basic information about your variables. Here are five com-
mands that we find useful. Which one you use depends in large part on the kind and level of detail
you need.

describe provides information on the size of the dataset and the names, labels, and types of
variables. For example,

. describe

Contains data from binlfp2.dta
obs: 753 Data from 1976 PSID-T Mroz

vars: 8 15 Jan 2001 15:23
size: 13,554 (99.8% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

lfp byte %9.0g lfplbl Paid Labor Force: 1=yes 0=no
k5 byte %9.0g # kids < 6
k618 byte %9.0g # kids 6-18
age byte %9.0g Wife´s age in years
wc byte %9.0g collbl Wife College: 1=yes 0=no
hc byte %9.0g collbl Husband College: 1=yes 0=no
lwg float %9.0g Log of wife´s estimated wages
inc float %9.0g Family income excluding wife´s

Sorted by: lfp

summarize provides summary statistics. By default, summarize presents the number of non-
missing observations, the mean, the standard deviation, the minimum values, and the maximum.
Adding the detail option includes additional information. For example,

. sum age, detail

Wife´s age in years

Percentiles Smallest
1% 30 30
5% 30 30
10% 32 30 Obs 753
25% 36 30 Sum of Wgt. 753

50% 43 Mean 42.53785
Largest Std. Dev. 8.072574

75% 49 60
90% 54 60 Variance 65.16645
95% 56 60 Skewness .150879
99% 59 60 Kurtosis 1.981077

tabulate creates the frequency distribution for a variable. For example,

. tab hc

Husband
College:

1=yes 0=no Freq. Percent Cum.

NoCol 458 60.82 60.82
College 295 39.18 100.00

Total 753 100.00
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If you do not want the value labels included, type

. tab hc, nolabel

Husband
College:

1=yes 0=no Freq. Percent Cum.

0 458 60.82 60.82
1 295 39.18 100.00

Total 753 100.00

If you want a two-way table, type

. tab hc wc

Husband Wife College: 1=yes
College: 0=no

1=yes 0=no NoCol College Total

NoCol 417 41 458
College 124 171 295

Total 541 212 753

By default, tabulate does not tell you the number of missing values for either variable. Specifying
the missing option includes missing values. We recommend this option whenever generating a
frequency distribution to check that some transformation was done correctly. The options row, col,
and cell request row, column, and cell percentages along with the frequency counts. The option
chi2 reports the chi-square for a test that the rows and columns are independent.

tab1 presents univariate frequency distributions for each variable listed. For example,

. tab1 hc wc

-> tabulation of hc

Husband
College:

1=yes 0=no Freq. Percent Cum.

NoCol 458 60.82 60.82
College 295 39.18 100.00

Total 753 100.00

-> tabulation of wc

Wife
College:

1=yes 0=no Freq. Percent Cum.

NoCol 541 71.85 71.85
College 212 28.15 100.00

Total 753 100.00

dotplot generates a quick graphical summary of a variable, which is very useful for quickly
checking your data. For example, the command dotplot age leads to the following graph:
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This graph will appear in a new window called the Graph Window. Details on saving, printing, and
enhancing graphs are given in Section 2.16.

codebook summarizes a variable in a format designed for printing a codebook. For example,
codebook age produces

. codebook age

age Wife´s age in years
type: numeric (byte)

range: [30,60] units: 1
unique values: 31 coded missing: 0 / 753

mean: 42.5378
std. dev: 8.07257

percentiles: 10% 25% 50% 75% 90%
32 36 43 49 54

2.12.3 Selecting observations

As previously mentioned, you can select cases using with the if and in options. For example,
summarize age if wc==1 provides summary statistics on age for only those observations where
wc equals 1. In some cases it is simpler to remove the cases with either the drop or keep com-
mands. drop removes observations from memory (not from the .dta file) based on an if and/or in
specification. The syntax is

drop
[
in range

] [
if exp

]
Only observations that do not meet those conditions are left in memory. For example, drop if
wc==1 keeps only those cases where wc is not equal to 1, including observations with missing values
on wc.
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keep has the same syntax as drop and deletes all cases except those that meet the condition. For
example, keep if wc==1 only keeps those cases where wc is 1; all other observations, including
those with missing values for wc, are dropped from memory. After selecting the observations that
you want, you can save the remaining variables to a new dataset with the save command.

2.12.4 Selecting variables

You can also select which variables you want to keep. The syntax is

drop variable list

keep variable list

With drop, all variables are kept except those that are explicitly listed. With keep, only those
variables that are explicitly listed are kept. After selecting the variables that you want, you can save
the remaining variables to a new dataset with the save command.

2.13 Creating new variables

The variables that you analyze are often constructed differently than the variables in the original
dataset. In this section we consider basic methods for creating new variables. Our examples always
create a new variable from an old variable rather than transforming an existing variable. Even though
it is possible to simply transform an existing variable, we find that this leads to mistakes.

2.13.1 generate command

generate creates new variables. For example, to create age2 that is an exact copy of age, type

. generate age2 = age

. summarize age2 age

Variable Obs Mean Std. Dev. Min Max

age2 753 42.53785 8.072574 30 60
age 753 42.53785 8.072574 30 60

The results of summarize show that the two variables are identical. Note that we used a single equal
sign since we are making a variable equal to some value.

Observations excluded by if or in qualifiers in the generate command are coded as missing.
For example, to generate age3 that equals age for those over 40 but is otherwise missing, type

. gen age3 = age if age>40
(318 missing values generated)

. sum age3 age

Variable Obs Mean Std. Dev. Min Max

age3 435 48.3977 4.936509 41 60
age 753 42.53785 8.072574 30 60
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Whenever generate (or gen as it can be abbreviated) produces missing values, it tells you how
many cases are missing.

generate can also create variables that are mathematical functions of existing variables. For
example, we can create agesq that is the square of age and lnage that is the natural log of age:

. gen agesq = age^2

. gen lnage = ln(age)

For a complete list of the mathematical functions available in Stata, enter help functions. For
quick reference, here is list of particularly useful functions:

Function Definition Example
+ addition gen y = a+b
- subtraction gen y = a-b
/ division gen density = pop/area
* multiplication gen y = a*b
^ take to a power gen y = a^3
ln natural log gen lnwage = ln(wage)
exp exponential gen y = exp(a)
sqrt square root gen agesqrt = sqrt(age)

2.13.2 replace command

replace has the same syntax as generate, but is used to change values of a variable that already
exists. For example, say we want to make a new variable age4 that equals age if age is over 40, but
equals 40 for all persons aged 40 and under. First we create age4 equal to age. Then, we replace
those values we want to change:

. gen age4 = age

. replace age4 = 40 if age<40
(298 real changes made)

. sum age4 age

Variable Obs Mean Std. Dev. Min Max

age4 753 44.85126 5.593896 40 60
age 753 42.53785 8.072574 30 60

Note that replace reports how many values were changed. This is useful in verifying that the
command did what you intended. Also, summarize confirms that the minimum value of age is 30
and that age4 now has a minimum of 40 as intended.
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Warning Of course, we could have simply changed the original variable: replace age = 40 if
age<40. But, if we did this and saved the data, there would be no way to return to the original
values for age if we later needed them.

2.13.3 recode command

The values of existing variables can also be changed using the recode command. With recode you
specify a set of correspondences between old values and new ones. For example, you might want
old values of 1 and 2 to correspond to new values of 1, old values of 3 and 4 to correspond to new
values of 2, and so on. This is particularly useful for combining categories. To use this command,
we recommend that you start by making a copy of an existing variable. Then, recode the copy. Here
are some examples:

To change 1 to 2 and 3 to 4, but leave all other values unchanged, type

. gen myvar1 = origvar

. recode myvar1 1=2 3=4
(23 changes made)

To change 2 to 1 and change all other values (including missing) to 0, type

. gen myvar2 = origvar

. recode myvar2 2=1 *=0
(100 changes made)

where the asterisk indicates all values, including missing values, that have not been explicitly re-
coded.

To change 2 to 1 and change all other values except missing to 0, type

. gen myvar3 = origvar

. recode myvar3 2=1 *=0 if myvar3~=.
(89 changes made)

To change values from 1 to 4 inclusive to 2 and keep other values unchanged, type

. gen myvar4 = origvar

. recode myvar4 1/4=2
(40 changes made)

To change values 1, 3, 4 and 5 to 7 and keep other values unchanged, type

. gen myvar5 = origvar

. recode myvar5 1 3 4 5=7
(55 changes made)
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To change all values from the minimum through 5 to the minimum, type

. gen myvar6 = origvar

. recode myvar6 min/5=min
(56 changes made)

To change missing values to 9, type

. gen myvar7 = origvar

. recode myvar7 .=9
(11 changes made)

To change values of −999 to missing, type

. gen myvar8 = origvar

. recode myvar8 -999=.
(56 changes made)

2.13.4 Common transformations for RHS variables

For the models we discuss in later chapters, you can use many of the tricks you learned for coding
right-hand-side (i.e., independent) variables in the linear regression model. Here are some useful
examples. Details on how to interpret such variables in regression models are given in Chapter 8.

Breaking a categorical variable into a set of binary variables

To use a j-category nominal variable as an independent variable in a regression model, you need
to create a set of j − 1 binary variables, also known as dummy variables or indicator variables. To
illustrate how to do this, we use educational attainment (degree), which is coded as: 0=no diploma,
1=high school diploma, 2=associate’s degree, 3=bachelor’s degree, and 4=postgraduate degree, with
some missing data. We want to make four binary variables with the “no diploma” category serving
as our reference category. We also want observations that have missing values for degree to have
missing values in each of the dummy variables that we create. The simplest way to do this is to use
the generate option with tabulate:

. tab degree, gen(edlevel)

rs highest
degree Freq. Percent Cum.

lt high school 801 17.47 17.47
high school 2426 52.92 70.40

junior college 273 5.96 76.35
bachelor 750 16.36 92.71
graduate 334 7.29 100.00

Total 4584 100.00
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The generate(name) option creates a new binary variable for each category of the specified vari-
able. In our example, degree has 5 categories, so five new variables are created. These variables
all begin with edlevel, the root that we specified with the generate(edlevel) option. We can
check the five new variables by typing sum edlevel*:

. sum edlevel*

Variable Obs Mean Std. Dev. Min Max

edlevel1 4584 .1747382 .3797845 0 1
edlevel2 4584 .5292321 .4991992 0 1
edlevel3 4584 .059555 .2366863 0 1
edlevel4 4584 .1636126 .369964 0 1
edlevel5 4584 .0728621 .2599384 0 1

By cross-tabulating the new edlevel1 by the original degree, we can see that edlevel1 equals 1
for individuals with no high school diploma and equals 0 for everyone else except the 14 observa-
tions with missing values for degree:

. tab degree edlevel1, missing

rs highest degree==lt high school
degree 0 1 . Total

lt high school 0 801 0 801
high school 2426 0 0 2426

junior college 273 0 0 273
bachelor 750 0 0 750
graduate 334 0 0 334

. 0 0 14 14

Total 3783 801 14 4598

One limitation of using the generate(name) option of tab is that it only works when there
is a one-to-one correspondence between the original categories and the dummy variables that we
wish to create. So, let’s suppose that we want to combine high school graduates and those with
associate’s degrees when creating our new binary variables. Say also that we want to treat those
without high school diplomas as the omitted category. The following is one way to create the three
binary variables that we need:

. gen hsdeg = (degree==1 | degree==2) if degree~=.
(14 missing values generated)

. gen coldeg = (degree==3) if degree~=.
(14 missing values generated)

. gen graddeg = (degree==4) if degree~=.
(14 missing values generated)

. tab degree coldeg, missing

rs highest coldeg
degree 0 1 . Total

lt high school 801 0 0 801
high school 2426 0 0 2426

junior college 273 0 0 273
bachelor 0 750 0 750
graduate 334 0 0 334

. 0 0 14 14

Total 3834 750 14 4598
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To understand how this works, you need to know that when Stata is presented with an expression
(e.g., degree==3) where it expects a value, it evaluates the expression and assigns it a value of 1 if
true and 0 if false. Consequently, gen coldeg = (degree==3) creates the variable coldeg that
equals 1 whenever degree equals 3 and 0 otherwise. By adding if degree~=. to the end of the
command, we assign these values only to observations in which the value of degree is not missing.
If an observation has a missing value for degree, these cases are given a missing value.

More examples of creating binary variables

Binary variables are used so often in regression models that it is worth providing more examples of
generating them. In the dataset that we use in Chapter 5, the independent variable for respondent’s
education (ed) is measured in years. We can create a dummy variable that equals 1 if the respondent
has at least 12 years of education and 0 otherwise:

. gen ed12plus = (ed>=12) if ed~=.

Alternatively, we might want to create a set of variables that indicates whether an individual
has less than 12 years of education, between 13 and 16 years of education, or 17 or more years of
education. This is done as follows:

. gen edlt13 = (ed<=12) if ed~=.

. gen ed1316 = (ed>=13 & ed<=16) if ed~=.

. gen ed17plus = (ed>17) if ed~=.

Tip: Naming dummy variables Whenever possible, we name dummy variables so that 1 corre-
sponds to “yes” and 0 to “no”. With this convention, a dummy variable called female is
coded 1 for women (i.e., yes the person is female) and 0 for men. If the dummy variable was
named sex, there would be no immediate way to know what 0 and 1 mean.

The recode command can also be used to create binary variables. The variable warm contains
responses to the question of whether working women can be as good of mothers as women who
do not work: 1=strongly disagree, 2=disagree, 3=agree, and 4=strongly agree. To create a dummy
indicating agreement as opposed to disagreement, type

. gen wrmagree = warm

. recode wrmagree 1=0 2=0 3=1 4=1
(2293 changes made)

. tab wrmagree warm

Mother has warm relationship
wrmagree SD D A SA Total

0 297 723 0 0 1020
1 0 0 856 417 1273

Total 297 723 856 417 2293
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Nonlinear transformations

Nonlinear transformations of the independent variables are commonly used in regression models.
For example, researchers often include both age and age2 as explanatory variables to allow the
effect of a one-year increase in age to change as one gets older. We can create a squared term as

. gen agesq = age*age

Likewise, income is often logged so that the impact of each additional dollar decreases as income
increases. The new variable can be created as

. gen lnincome = ln(income)

We can use the minimum and maximum values reported by summarize as a check on our transfor-
mations:

. sum age agesq income lnincome

Variable Obs Mean Std. Dev. Min Max

age 4598 46.12375 17.33162 18 99
agesq 4598 2427.72 1798.477 324 9801
income 4103 34790.7 22387.45 1000 75000

lnincome 4103 10.16331 .8852605 6.907755 11.22524

Interaction terms

In regression models, you can include interactions by taking the product of two independent vari-
ables. For example, we might think that the effect of family income differs for men and women. If
gender is measured as the dummy variable female, we can construct an interaction term as follows:

. gen feminc = female * income
(495 missing values generated)

Tip: The xi command can be used to automatically create interaction variables. While this is a very
powerful command that can save time, it is also a command that can be confusing unless you
use the command frequently. Accordingly, we do not recommend it. Constructing interactions
with generate is a good way to make sure you understand what the interactions mean.

2.14 Labeling variables and values

Variable labels provide descriptive information about what a variable measures. For example, the
variable agesq might be given the label “age squared”, or warm could have the label “Mother has
a warm relationship”. Value labels provide descriptive information about the different values of
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a categorical variable. For example, value labels might indicate that the values 1–4 correspond
to survey responses of strongly agree, agree, disagree, and strongly disagree. Adding labels to
variables and values is not much fun, but in the long run it can save a great deal of time and prevent
misunderstandings. Also, many of the commands in SPost produce output that is more easily
understood if the dependent variable has value labels.

2.14.1 Variable labels

The label variable command attaches a label of up to 80 characters to a variable. For example,

. label variable agesq "Age squared"

. describe agesq

storage display value
variable name type format label variable label

agesq float %9.0g Age squared

If no label is specified, any existing variable label is removed. For example,

. label variable agesq

. describe agesq

storage display value
variable name type format label variable label

agesq float %9.0g

Tip: Use short labels While variable labels of up to 80 characters are allowed, output often does
not show all 80 characters. We find it works best to keep variable labels short, with the most
important information in the front of the label. That way, if the label is truncated, you will see
the critical information.

2.14.2 Value labels

Beginners often find value labels in Stata confusing. The key thing to keep in mind is that Stata
splits the process of labeling values into two steps: creating labels and then attaching the labels to
variables.

Step 1 defines a set of labels without reference to a variable. Here are some examples of value
labels:

. label define yesno 1 yes 0 no

. label define posneg4 1 veryN 2 negative 3 positive 4 veryP
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. label define agree4 1 StrongA 2 Agree 3 Disagree 4 StrongD

. label define agree5 1 StrongA 2 Agree 3 Neutral 4 Disagree 5 StrongD

Notice several things. First, each set of labels is given a unique name (e.g., yesno, agree4). Second,
individual labels are associated with a specific value. Third, none of our labels have spaces in them
(e.g., we use StrongA not Strong A). While you can have spaces if you place the label within
quotes, some commands crash when they encounter blanks in value labels. So, it is easier not to do
it. We have also found that the characters ., :, and { in value labels can cause similar problems.
Fourth, our labels are 8 letters or shorter in length. Since some programs have trouble with value
labels longer than 8 letters, we recommend keeping value labels short.

Step 2 assigns the value labels to variables. Let’s say that variables female, black, and
anykids all imply yes/no categories with 1 as yes and 0 as no. To assign labels to the values,
we would use the following commands:

. label values female yesno

. label values black yesno

. label values anykids yesno

. describe female black anykids

storage display value
variable name type format label variable label

female byte %9.0g yesno Female
black byte %9.0g yesno Black
anykids byte %9.0g yesno R have any children?

The output for describe shows which value labels were assigned to which variables. The new
value labels are reflected in the output from tabulate:

. tab anykids

R have any
children? Freq. Percent Cum.

no 1267 27.64 27.64
yes 3317 72.36 100.00

Total 4584 100.00

For the degree variable that we looked at earlier, we assign labels with

. label define degree 0 "no_hs" 1 "hs" 2 "jun_col" 3 "bachelor" 4 "graduate"

. label values degree degree

. tab degree

rs highest
degree Freq. Percent Cum.

no_hs 801 17.47 17.47
hs 2426 52.92 70.40

jun_col 273 5.96 76.35
bachelor 750 16.36 92.71
graduate 334 7.29 100.00

Total 4584 100.00

Notice that we used s (underscores) instead of spaces.
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2.14.3 notes command

The notes command allows you to add notes to the dataset as a whole or to specific variables.
Since the notes are saved in the dataset, the information is always available when you use the data.
In the following example, we add one note describing the dataset and two that describe the income
variable:

. notes: General Social Survey extract for Stata book

. notes income: self-reported family income, measured in dollars

. notes income: refusals coded as missing

We can review the notes by typing notes:

. notes

_dta:
1. General Social Survey extract for Stata book

income:
1. self-reported family income, measured in dollars
2. refusals coded as missing

If we save the dataset after adding notes, the notes become a permanent part of the dataset.

2.15 Global and local macros

While macros are most often used when writing ado-files, they are also very useful in do-files. Later
in the book, and especially in Chapter 8, we use macros extensively. Accordingly, we discuss them
briefly here. Readers with less familiarity with Stata might want to skip this section for now and
read it later when macros are used in our examples.

In Stata, you can assign values or strings to macros. Whenever Stata encounters the macro
name, it automatically substitutes the contents of the macro. For example, pretend that you want to
generate a series of two-by-two tables where you want cell percentages requiring the cell option,
missing values requiring the missing option, values printed instead of value labels requiring the
nolabel option, and the chi-squared test statistic requiring the chi2 option. Even if you use the
shortest abbreviations, this would require typing “, ce m nol ch” at the end of each tab com-
mand. Alternatively, you could use the following command to define a global macro called myopt:

. global myopt = ", cell miss nolabel chi2"

Then, whenever you type $myopt (the $ tells Stata that myopt is a global macro), Stata substitutes
, cell miss nolabel chi2. If you type

. tab lfp wc $myopt

Stata interprets this as if you had typed

. tab lfp wc , cell miss nolabel chi2
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Global macros are “global” because once defined, you can use them for the rest of your Stata
session. In do- (or ado-) files, you can also define “local” macros, which work only within the do-file.
That is, as soon as the do-file is done running, the macro disappears. We prefer using local macros
whenever possible because you do not have to worry about conflicts with other programs or do-files
that try to use the same macro name for a different purpose. Local macros are defined using the
local command, and they are referenced by placing the name of the local macro in single quotes
such as `myopt´. Notice that the two single quote marks use different symbols. If the operations we
just performed were in a do-file, we could have produced the same output with the following lines:

. local opt = ", cell miss nolabel chi2"

. tab lfp wc `opt´
(output omitted )

You can also define macros to equal the result of computations. After entering global four
= 2+2, the value 4 will be substituted for $four. In addition, Stata contains many macro functions
in which items retrieved from memory are assigned to macros. For example, to display the variable
label that you have assigned to the variable wc, you can type

. global wclabel : variable label wc

. display "$wclabel"

Wife College: 1=yes 0=no

We have only scratched the surface of the potential of macros. Macros are immensely flexible
and are indispensable for a variety of advanced tasks that Stata can perform. Perhaps most impor-
tantly, macros are essential for doing any meaningful Stata programming. If you look at the ado-files
for the commands we have written for this book, you will see many instances of macros, and even
of macros within macros. For users interested in advanced applications, the macro entry in the
Programming Manual should be read closely.

2.16 Graphics

Stata comes with an entire manual dedicated to graphics and is capable of making many more kinds
of graphs than those used in this book. In this section, we provide only a brief introduction to
graphics in Stata, focusing on the type of graph that we use most often in later chapters. Namely, we
consider a plot of one or more outcomes against an independent variable using the command graph.
In its simplest form, graph produces a simple scatterplot, but with options it becomes a line graph.
While we do not consider other graph commands (e.g., dotplot), many of the options we present
here can be used with other commands. For additional information on graphs, type help graph or
see the Graphics Manual.6

Graphs that you create in Stata are drawn in their own window that should appear on top of the
four windows we discussed above. If the Graph Window is hidden, you can bring it to the front by

clicking on . You can make the Graph Window larger or smaller by clicking and dragging the
borders.

6StataCorp also maintains a web site with resources for developing graphs using the new graphics engine that was intro-
duced with Stata 7. See developer.stata.com/graphics/ (with no www in the front) for details.
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2.16.1 The graph command

The type of graph that we use most often shows how the predicted probability of observing a given
outcome changes as a continuous variable changes over a specified range. For example, in Chap-
ter 4 we show you how to compute the predicted probability of a woman being in the labor force
according to the number of children she has and the family income. In later chapters we show
you how to compute these predictions, but for now you can simply load them with the command
use lfpgraph2, clear. The variable income is family income measured in thousands of dollars,
while the next three variables show the predicted probabilities of working for a woman who has no
children under six (kid0p1), one child under six (kid1p1), or two children under six (kid2p1).
Since there are only eleven values, we can easily list them:

. use lfpgraph, clear
(Sample predictions to plot.)

. list income kid0p1 kid1p1 kid2p1

income kid0p1 kid1p1 kid2p1
1. 10 .7330963 .3887608 .1283713
2. 18 .6758616 .3256128 .1005609
3. 26 .6128353 .2682211 .0782345
4. 34 .54579 .2176799 .0605315
5. 42 .477042 .1743927 .0466316
6. 50 .409153 .1381929 .035802
7. 58 .3445598 .1085196 .027415
8. 66 .285241 .0845925 .0209501
9. 74 .2325117 .065553 .0159847

10. 82 .18698 .0505621 .0121815
11. 90 .1486378 .0388569 .0092747

We see that as annual income increases the predicted probability of being in the labor force de-
creases. Also, by looking across any row, we see that for a given level of income the probability of
being in the labor force decreases as the number of young children increases. We want to display
these patterns graphically.

graph can be used to draw a scatterplot in which the values of one or more y-variable are plotted
against values of an x-variable. In our case, income is the x-variable and the predicted probabilities
kid0p1, kid1p1, and kid2p1 are the y-variables. Thus, for each value of x we have three values of
y. In making scatterplots with graph, the y-variables are listed first and the x-variable is listed last.
If we type,

. graph kid0p1 kid1p1 kid2p1 income

we obtain the following graph:

(Continued on next page)
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Income

 No young children  One young child
 Two young children

10 90

.009275

.733096

Our simple scatterplot shows the pattern of decreasing probabilities as income or number of children
increases. Even so, there is much we can do to make this a more effective graph. These additions
are made using some of the many options that are available for graph (see the Graphics Manual for
others). The syntax for the options is

graph
[
varlist

]
,
[
symbol(s...s) connect(c...c) xlabel(#,...,#) ylabel(#,...,#)

xtick(#,...,#) ytick(#,...,#) t1title(text) t2title(text) b1title(text)

b2title(text) l1title(text) l2title(text) r1title(text) r2title(text)

saving(filename
[
, replace

]
)
]

Each of these options is now considered.

Choosing symbols In our graph, the probabilities for women with no, one, and two young children
are differentiated by using different symbols. The symbols in our first graph are the defaults chosen
by Stata, but we can specify the symbols we want with the symbol(s...s) option. The codes for
specifying symbols are

O Large circle o Small circle i Invisible
T Large triangle p Small plus sign . Dot
S Large square d Small diamond

Since we are graphing three y-variables, we need to specify 3 symbols. If we use s(OTp), kid0p1
is plotted with a large circle, kid0p2 with a large triangle, and kid0p3 with a small plus sign.

Connecting points with lines connect(c...c) allows us to connect the points for each y-variable
in the graph. For each y-variable, you specify how the points are to be connected. Connecting
type option l (which is a lowercase L, not the number 1) connects points with straight lines; type s
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connects the points using a smooth curve (which works well for the graphs we use); and . specifies
that you do not want to connect points. For example, c(.ls) would not connect the first set of
points (.), would connect the second set with straight lines (l), and would connect the third with a
smoothed curve (s). We almost always use the s option in our graphs; c(sss) tells Stata to connect
all three sets of points with smoothed lines.

Choosing line styles We can also use line styles to distinguish the y-variables. For example, one
variable could be plotted using a solid line, another using a dashed line, and the third using a line
with alternative long and short dashes. This is done (beginning with Stata 7) using the same c()
option that we used to specify how to connect the points. For each line, we indicate in brackets the
patterns of line style we want after the letter that indicates how we wish to connect the points (e.g.,
c(l[-])). The following codes are used:

A long dash (underscore) . A short dash (almost a dot)
- A medium dash # A space (e.g., -#)

If nothing is specified, a solid line is drawn. In our example, c(ll[-]l[ .]) would tell Stata to
use a solid line to connect the points for kid0p1, a line with medium dashes to connect the points
for kid0p2, and a line with alternating dashes and dots to connect the points for kid0p3.

Labeling the values on the x- and y-axes By default, graph labels only the minimum and maxi-
mum values on each axis. Usually, you will want more axis values to be labeled. xlabel(#,...,#)
and ylabel(#,...,#) specify which values to display along each axis, where the values can exceed
the minimum and maximum if desired. If we use ylabel(0,.2,.4,.6,.8,1), the y-axis is scaled
from 0 to 1 with labels at increments of .2. We can even abbreviate this to ylabel(0 .2 to 1).
xlabel(10,30,50,70,90) specifies values on the x-axis ranging from 10 to 90 by increments of
20.

Tick marks Tick marks are placed wherever values are labeled. If you want additional tick marks,
use xtick(#,...,#) or ytick(#,...,#). Typing xtick(20,40,60,80) adds tick marks between
the values that we just labeled using xlabel.

Adding titles graph allows as many as two titles on each of the four sides of the graph using the
options t1title(), t2title(), l1title(), l2title(), b1title(), b2title(), r1title(),
r2title(). Note that t stands for top, b for bottom, l for left, and r for right. The easiest way to
see what these commands do is to create a plot using these different options,

. graph kid0p1 kid1p1 kid2p1 income, l1title("l1title") l2title("l2title") /*
> */ t1title("t1title") t2title("t2title") b1title("b1title") /*
> */ b2title("b2title") r1title("r1title") r2title("r2title")

which yields
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t1title
t2title
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There are several points to note:

1. b1title is printed in a larger font and is meant to be a title for the graph as a whole.

2. If you do not specify b2title(), Stata uses the variable label from the x-variable.

3. With a single y-variable, the variable label for y is printed as l2title. With more than one
y-variable, a legend is printed at the top that uses the variable labels for up to four y-variables.
Variable names are used if no labels have been assigned. If you specify either t1title() or
t2title(), the legend for the y-variables is not printed.

4. To add a single label to the y-axis, use l2title. For example, l2title("Probability")
adds Probability to the left side of the graph.

5. Often the default placement of titles on the left sides of graphs is too far away. The gap()
option allows you to specify this distance. We find that gap(4) often works well.

Controlling the size of labels This is not an option to graph, but is a separate command. The
size of the labels in the graph is controlled by the command

set textsize #

where # indicates how much smaller or larger you want the labels. For example, set textsize
125 makes the letters 25 percent larger. We find that graphs that look fine on the screen need to have
larger letters when printed, so we routinely set the textsize to 125.

Saving graphs Specifying saving(filename, replace) saves the graph in Stata’s proprietary
format (indicated by the suffix .gph) to the working directory. Including replace tells Stata to
overwrite a file with that name if it exists. Saving graphs in .gph format is necessary when you
want to combine graphs for display, as discussed below.
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2.16 Graphics 51

Tip: Exporting graphs to other programs If you are using Windows and want to export graphs
to another program, such as a word processor, we find that it works best to save them as a
Windows Metafile, which has the .wmf extension. This can be done using the translate
command. If the graph is currently in the graph window, you can save it in .wmf format with
the command: translate @Graph filename.wmf (note the capital “G”). If the file is already
saved in .gph format, you can translate it to .wmf format with the command: translate
filename.gph filename.wmf. The replace option can be used with translate to automat-
ically overwrite a graph of the same name, which is useful in do-files.

Putting everything together

We can now put together several of the options discussed above and make a new graph by using the
following command:

. set textsize 125

. #delimit ;
delimiter now ;
. graph kid0p1 kid1p1 kid2p1 income, s(OTp) c(lll) xlabel(10 30 to 90)
> xtick (20 40 60 80) ylabel (0 .2 to 1) l2title("Probability") gap(3)
> saving(mygraph, replace);

. #delimit cr

We have used the #delimit command from Section 2.9.2 since the graph command was very long.
The graph command we have just entered produces the following:
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This graph is much more effective in illustrating that the probability of a woman being in the labor
force declines as family income increases, and that the differences in predicted probabilities between
women with no young children and those with one or two young children are greatest at the lowest
levels of income.
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2.16.2 Printing graphs

When a graph is in the Graph Window, you may print it by selecting File→Print Graph from the

menus or by clicking on . You can also print a graph in the Graph Window with the command
print @Graph. You can print a saved graph with the command print filename.gph.

2.16.3 Combining graphs

Multiple graphs that have been saved in .gph format can be combined into a single graph. This is
useful, for example, when you want to place two graphs side-by-side or one-above-the-other. In our
example above, we created a graph that we saved as mygraph.gph. Now, we create a second graph
that illustrates the use of line styles, and then use the graph using command to display the two
graphs side by side:

. #delimit ;
delimiter now ;
. graph kid0p1 kid1p1 kid2p1 income, s(...) c(ll[-]l[-..]) xlabel(10 30 to 90)
> xtick (20 40 60 80) ylabel (0 .2 to 1) l2title("Probability") gap(3)
> saving(mygraph2, replace);
(note: file mygraph2.gph not found)

. #delimit cr
delimiter now cr

. graph using mygraph mygraph2, saving(mygraphsbs, replace)

This leads to
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Combining graphs to print one-over-the-other is a bit more difficult. The trick is to understand
that when multiple graphs are combined, Stata divides the Graphics Window into a square array.
When you combine from 2 to 4 graphs, Stata arranges them into a 2×2 array; if you combine 5 to
9 graphs, Stata arranges them into a 3×3 array; and so on. The graphs are arranged in the order in
which the filenames are listed in the graph using command, with any leftover space left blank.
When we displayed two graphs side-by-side, these were placed in the upper-left and the upper-right
corners of the Graph Window, respectively. The bottom half of the window is empty since we did
not specify a third or fourth graph to be combined.

To display two graphs one-over-the-other, we want these graphs to be placed in the upper-left
and lower-left corners of the Graph Window, which means that we want to place an empty graph in
the upper-right corner. The command graph using, saving(null, replace) creates an empty
graph called null.gph, which we include as the second of three graphs we wish to combine:

. graph using, saving(null, replace)

. graph using mygraph null mygraph2, saving(mygraphvert, replace)

. translate mygraphvert.gph 02graphvert.wmf, replace
(file d:\spostdata\02graphvert.wmf written in Windows Metafile format)

This leads to
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As we described earlier, translate can be used to save the graph as a Windows MetaFile that
can be imported to a word processor or other program. More details on combining graphs can be
found in the Stata Graphics Manual.
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Warning Do not use the saving, replace option to save a combined graph with the same name
as one of the graphs that you are combining. Usually Stata catches this error, but sometimes
it does not and the original graph is lost.

2.17 A brief tutorial

This tutorial uses the science2.dta data that is available from the book’s web site. You can use
your own dataset as you work through this tutorial, but you will need to change some of the com-
mands to correspond to the variables in your data. In addition to our tutorial, StataCorp has useful
tutorials that are described in the User’s Guide and can be accessed by typing tutorial within
Stata.

Open a log The first step is to open a log file for recording your results. Remember that all
commands are case sensitive. The commands are listed with a period in front, but you do not type
the period:

. capture log close

. log using tutorial, text

log: d:\spostdata\tutorial.smcl
log type: text
opened on: 9 Feb 2001, 21:18:15

Load the data We assume that science2.dta is in your working directory. clear tells Stata to
“clear out” any existing data from memory before loading the new dataset:

. use science2, clear
(Note that some of the variables have been artificially constructed.)

The message after loading the data reflects that this dataset was created for teaching. While most of
the variables contain real information, some variables have been artificially constructed.

Examine the dataset describe gives information about the dataset.

. describe

Contains data from science2.dta
obs: 308 Note that some of the variables

have been artificially
constructed.

vars: 35 9 Feb 2001 21:15
size: 17,556 (99.8% of memory free) (_dta has notes)
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storage display value
variable name type format label variable label

id float %9.0g ID Number.
cit1 int %9.0g Citations: PhD yr -1 to 1.
cit3 int %9.0g Citations: PhD yr 1 to 3.
cit6 int %9.0g Citations: PhD yr 4 to 6.
cit9 int %9.0g Citations: PhD yr 7 to 9.
enrol byte %9.0g Years from BA to PhD.
fel float %9.0g Fellow or PhD prestige.
felclass byte %9.0g prstlb * Fellow or PhD prestige class.
fellow byte %9.0g fellbl Postdoctoral fellow: 1=y,0=n.
female byte %9.0g femlbl Female: 1=female,0=male.
job float %9.0g Prestige of 1st univ job.
jobclass byte %9.0g prstlb * Prestige class of 1st job.
mcit3 int %9.0g Mentor’s 3 yr citation.
mcitt int %9.0g Mentor’s total citations.
mmale byte %9.0g malelb Mentor male: 1=male,0=female.
mnas byte %9.0g naslb Mentor NAS: 1=yes,0=no.
mpub3 byte %9.0g Mentor’s 3 year publications.
nopub1 byte %9.0g nopublb 1=No pubs PhD yr -1 to 1.
nopub3 byte %9.0g nopublb 1=No pubs PhD yr 1 to 3.
nopub6 byte %9.0g nopublb 1=No pubs PhD yr 4 to 6.
nopub9 byte %9.0g nopublb 1=No pubs PhD yr 7 to 9.
phd float %9.0g Prestige of Ph.D. department.
phdclass byte %9.0g prstlb * Prestige class of Ph.D. dept.
pub1 byte %9.0g Publications: PhD yr -1 to 1.
pub3 byte %9.0g Publications: PhD yr 1 to 3.
pub6 byte %9.0g Publications: PhD yr 4 to 6.
pub9 byte %9.0g Publications: PhD yr 7 to 9.
work byte %9.0g worklbl Type of first job.
workadmn byte %9.0g wadmnlb Admin: 1=yes; 0=no.
worktch byte %9.0g wtchlb * Teaching: 1=yes; 0=no.
workuniv byte %9.0g wunivlb * Univ Work: 1=yes; 0=no.
wt byte %9.0g
faculty byte %9.0g faclbl 1=Faculty in University
jobrank byte %9.0g joblbl Rankings of University Job.
totpub byte %9.0g Total Pubs in 9 Yrs post-Ph.D.

* indicated variables have notes

Sorted by:

Examine individual variables A series of commands gives us information about individual vari-
ables. You can use whichever command you prefer, or all of them.

. sum work

Variable Obs Mean Std. Dev. Min Max

work 302 2.062914 1.37829 1 5

. tab work, missing

Type of
first job. Freq. Percent Cum.

FacUniv 160 52.98 52.98
ResUniv 53 17.55 70.53
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ColTch 26 8.61 79.14
IndRes 36 11.92 91.06
Admin 27 8.94 100.00

Total 302 100.00

. codebook work

work
Type of first job.

type: numeric (byte)
label: worklbl

range: [1,5] units: 1
unique values: 5 coded missing: 6 / 308

tabulation: Freq. Numeric Label
160 1 FacUniv
53 2 ResUniv
26 3 ColTch
36 4 IndRes
27 5 Admin

Graphing variables Graphs are also useful for examining data. The command

. dotplot work

creates the following graph:
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Saving graphs To save the graph we have just made as a Windows Metafile, type

. translate @Graph myname.wmf, replace
(file d:\spostdata\myname.wmf written in Windows Metafile format)
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Adding comments To add comments to your output, which allows you to document your com-
mand files, type * at the beginning of each comment line. The comments are listed in the log file:

. * saved graph as work.wmf

Creating a dummy variable Now, let’s make a dummy variable with faculty in universities coded
1 and all others coded 0. The command gen isfac = (work==1) if work~=. generates isfac
as a dummy variable where isfac equals 1 if work is 1, else 0. The statement if work~=. makes
sure that missing values are kept as missing in the new variable.

. gen isfac = (work==1) if work~=.
(6 missing values generated)

Six missing values were generated since work contained six missing observations.

Checking transformations One way to check a transformations is with a table. In general, it is
best to look at the missing values, which requires the missing option:

. tab isfac work, missing

Type of first job.
isfac FacUniv ResUniv ColTch IndRes Admin Total

0 0 53 26 36 27 142
1 160 0 0 0 0 160
. 0 0 0 0 0 6

Total 160 53 26 36 27 308

Type of
first job.

isfac . Total

0 0 142
1 0 160
. 6 6

Total 6 308

You can also graph the two variables. Since many cases have the same values of both variables, we
need to add some noise to each observation. jitter(2) adds noise to the graph, where the larger
the number, the more noise. The range of this number is from 0 to 30:

. graph work isfac, jitter(2)

This creates the following graph:
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Labeling variables and values For many of the regression commands, value labels for the de-
pendent variable are essential. We start by creating a variable label, then create faclbl to store the
value labels, and finally assign the value labels to the variable isfac:

. label variable isfac "1=Faculty in University"

. label define isfac 0 "NotFac" 1 "Faculty"

. label values isfac isfac

Then, we can get labeled output:

. tab isfac

1=Faculty
in

University Freq. Percent Cum.

NotFac 142 47.02 47.02
Faculty 160 52.98 100.00

Total 302 100.00

Creating an ordinal variable The prestige of graduate programs is often referred to using the
categories of adequate, good, strong, and distinguished. Here we create such an ordinal variable
from the continuous variable for the prestige of the first job. missing tells Stata to show cases with
missing values.

. tab job, missing

Prestige of
1st univ

job. Freq. Percent Cum.

1.01 1 0.32 0.32
1.2 1 0.32 0.65
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1.22 1 0.32 0.97
1.32 1 0.32 1.30
1.37 1 0.32 1.62

(output omitted )
3.97 6 1.95 48.38
4.18 2 0.65 49.03
4.42 1 0.32 49.35
4.5 6 1.95 51.30
4.69 5 1.62 52.92

. 145 47.08 100.00

Total 308 100.00

The recode command makes it easy to group the categories from job. Of course, we then label the
variable:

. gen jobprst = job
(145 missing values generated)

. recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/5=4
(162 changes made)

. label variable jobprst "Rankings of University Job"

. label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong" 4 "Dist"

. label values jobprst prstlbl

Here is the new variable (note that we use the missing option so that missing values are included
in the tabulation):

. tab jobprst, missing

Rankings of
University

Job. Freq. Percent Cum.

Adeq 31 10.06 10.06
Good 47 15.26 25.32

Strong 71 23.05 48.38
Dist 14 4.55 52.92

. 145 47.08 100.00

Total 308 100.00

Combining variables Now we create a new variable by summing existing variables. If we add
pub3, pub6, and pub9, we can obtain the scientist’s total number of publications over the nine years
following receipt of the Ph.D.

. gen pubsum = pub3+pub6+pub9

. label variable pubsum "Total Pubs in 9 Yrs post-Ph.D."

. sum pub3 pub6 pub9 pubsum

Variable Obs Mean Std. Dev. Min Max

pub3 308 3.185065 3.908752 0 31
pub6 308 4.165584 4.780714 0 29
pub9 308 4.512987 5.315134 0 33

pubsum 308 11.86364 12.77623 0 84
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A scatterplot matrix graph can be used to simultaneously plot all pairs of variables. This is done
with the command

. graph pubsum pub3 pub6 pub9, matrix half

which leads to

Total Pubs in 9
Yrs post-Ph.D.

0

31

0 84
0

33

Publications:
PhD yr 1 to 3.

Publications:
PhD yr 4 to 6.

0 29

Publications:
PhD yr 7 to 9.

Saving the new data After you make changes to your dataset, it is a good idea to save the data
with a new filename:

. save sciwork, replace
file sciwork.dta saved

Close the log file Last, we need to close the log file so that we can refer to it in the future.

. log close
log: d:\spostdata\tutorial.smcl
log type: smcl
closed on: 17 Jan 2001, 9:55:13

A batch version

If you have read Section 2.9, you know that a better idea is to create a batch (do) file, perhaps called
tutorial.do:7

7If you download this file from our web site, it is called st4ch2tutorial.do.
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version 7
capture log close
set more off
log using tutorial, replace
* load and describe the data
use science2, clear
describe
* check variable work
sum work
tab work, missing
codebook work
dotplot work
* saved graph as work.wmf
translate @Graph myname.wmf, replace
* dummy variable indicating faculty
gen isfac = (work==1) if work~=.
tab isfac work, missing
graph work isfac, jitter(2)
label variable isfac "1=Faculty in University"
label define isfac 0 "NotFac" 1 "Faculty"
label values isfac isfac
tab isfac
* clean and recode job variable
tab job, missing
gen jobprst=job
recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/5=4
label variable jobprst "Rankings of University Job"
label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong" 4 "Dist"
label values jobprst prstlbl
tab jobprst, missing
* create total publications variable
gen pubsum=pub3+pub6+pub9
label variable pubsum "Total Pubs in 9 Yrs post-Ph.D."
sum pub3 pub6 pub9 pubsum
graph pubsum pub3 pub6 pub9, matrix half
* save the new data
save sciwork, replace
* close the log
log close

Then type do tutorial in the Command Window or select File→Do... from the menu.
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3 Estimation, Testing, Fit, and
Interpretation

Our book deals with what we think are the most fundamental and useful cross-sectional regression
models for categorical and count outcomes: binary logit and probit, ordinal logit and probit, multi-
nomial and conditional logit, Poisson regression, negative binomial regression, and zero-inflated
models for counts.1 While these models differ in many respects, they share common features:

1. Each model is estimated by maximum likelihood.

2. The estimates can be tested with Wald and LR tests.

3. Measures of fit can be computed.

4. Models can be interpreted by examining predicted values of the outcome.

As a consequence of these similarities, the same principles and commands can be applied to each
model. Coefficients can be listed with listcoef. Wald and likelihood-ratio tests can be computed
with test and lrtest. Measures of fit can be computed with fitstat, and our SPost suite of
post-estimation commands for interpretation can be used to interpret the predictions.

Building on the overview that this chapter provides, later chapters focus on the application of
these principles and commands to exploit the unique features of each model. Additionally, this
chapter serves as a reference for the syntax and options for the SPost commands that we introduce
here. Accordingly, we encourage you to read this chapter before proceeding to the chapter that
covers the models of greatest interest to you.

3.1 Estimation

Each of the models that we consider is estimated by maximum likelihood (ML).2 ML estimates
are the values of the parameters that have the greatest likelihood (i.e., the maximum likelihood)

1While many of the principles and procedures discussed in this book apply to panel models, such as estimated by Stata’s
xt commands, or the multiple equation systems, such as biprobit or treatreg, these models are not considered here.

2In many situations there are convincing reasons for using Bayesian or exact methods for the estimation of these models.
However, these methods are not generally available and hence are not considered here.
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64 Chapter 3. Estimation, Testing, Fit, and Interpretation

of generating the observed sample of data if the assumptions of the model are true. To obtain
the maximum likelihood estimates, a likelihood function calculates how likely it is that we would
observe the data we actually observed if a given set of parameter estimates were the true parameters.
For example, in linear regression with a single independent variable, we need to estimate both the
slope β and the intercept α (for simplicity, we are ignoring the parameter σ2). For any combination
of possible values for α and β, the likelihood function tells us how likely it is that we would have
observed the data that we did observe if these values were the true population parameters. If we
imagine a surface in which the range of possible values of α comprises one axis and the range of β
comprises another axis, the resulting graph of the likelihood function would look like a hill, and the
ML estimates would be the parameter values corresponding to the top of this hill. The variance of
the estimates corresponds roughly to how quickly the slope is changing near the top of the hill.

For all but the simplest models, the only way to find the maximum of the likelihood function is
by numerical methods. Numerical methods are the mathematical equivalent of how you would find
the top of a hill if you were blindfolded and only knew the slope of the hill at the spot where you
are standing and how the slope at that spot is changing (which you could figure out by poking your
foot in each direction). The search begins with start values corresponding to your location as you
start your climb. From the start position, the slope of the likelihood function and the rate of change
in the slope determine the next guess for the parameters. The process continues to iterate until
the maximum of the likelihood function is found, called convergence, and the resulting estimates
are reported. Advances in numerical methods and computing hardware have made estimation by
numerical methods routine.

3.1.1 Stata’s output for ML estimation

The process of iteration is reflected in the initial lines of Stata’s output. Consider the first lines of
the output from the logit model of labor force participation that we use as an example in Chapter 4:

. logit lfp k5 k618 age wc hc lwg inc

Iteration 0: log likelihood = -514.8732

Iteration 1: log likelihood = -454.32339

Iteration 2: log likelihood = -452.64187

Iteration 3: log likelihood = -452.63296

Iteration 4: log likelihood = -452.63296

Logit estimates Number of obs = 753

(output omitted )

The output begins with the iteration log, where the first line reports the value of the log likelihood
at the start values, reported as iteration 0. While earlier we talked about maximizing the likelihood
equation, in practice, programs maximize the log of the likelihood, which simplifies the computa-
tions and yields the same ultimate result. For the probability models considered in this book, the
log likelihood is always negative, because the likelihood itself is always between 0 and 1. In our
example, the log likelihood at the start values is −514.8732. The next four lines in this example
show the progress in maximizing the log likelihood, converging to the value of −452.63296. The
rest of the output is discussed later in this section.
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3.1.2 ML and sample size

Under the usual assumptions (see Cramer 1986 or Eliason 1993 for specific details), the ML esti-
mator is consistent, efficient, and asymptotically normal. These properties hold as the sample size
approaches infinity. While ML estimators are not necessarily bad estimators in small samples, the
small sample behavior of ML estimators for the models we consider is largely unknown. With the ex-
ception of the logit and Poisson regression, which can be estimated using exact permutation methods
with LogXact (Cytel Corporation 2000), alternative estimators with known small sample properties
are generally not available. With this in mind, Long (1997, 54) proposed the following guidelines
for the use of ML in small samples:

It is risky to use ML with samples smaller than 100, while samples over 500 seem
adequate. These values should be raised depending on characteristics of the model and
the data. First, if there are many parameters, more observations are needed. . . . A rule
of at least 10 observations per parameter seems reasonable. . . . This does not imply
that a minimum of 100 is not needed if you have only two parameters. Second, if the
data are ill-conditioned (e.g., independent variables are highly collinear) or if there is
little variation in the dependent variable (e.g., nearly all of the outcomes are 1), a larger
sample is required. Third, some models seem to require more observations [such as the
ordinal regression model or the zero-inflated count models].

3.1.3 Problems in obtaining ML estimates

While the numerical methods used by Stata to compute ML estimates are highly refined and gen-
erally work extremely well, you can encounter problems. If your sample size is adequate, but you
cannot get a solution or appear to get the wrong solution (i.e., the estimates do not make substantive
sense), our experience suggests that the most common cause is that the data have not been properly
“cleaned”. In addition to mistakes in constructing variables and selecting observations, the scaling
of variables can cause problems. The larger the ratio between the largest standard deviation among
variables in the model and the smallest standard deviation, the more problems you are likely to en-
counter with numerical methods due to rounding. For example, if income is measured in units of $1,
income is likely to have a very large standard deviation relative to other variables. Recoding income
to units of $1,000 can solve the problem.

Overall, however, numerical methods for ML estimation work well when your model is appro-
priate for your data. Still, Cramer’s (1986, 10) advice about the need for care in estimation should
be taken very seriously:

Check the data, check their transfer into the computer, check the actual computations
(preferably by repeating at least a sample by a rival program), and always remain sus-
picious of the results, regardless of the appeal.
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3.1.4 The syntax of estimation commands

All single-equation estimation commands have the same syntax:3

command depvar
[
indepvars

][
weight

] [
if exp

] [
in range

] [
, option(s)

]
Elements in [ ]’s are optional. Here are a few examples for a logit model with lfp as the dependent
variable:

. logit lfp k5 k618 age wc lwg

(output omitted )

. logit lfp k5 k618 age wc lwg if hc == 1

(output omitted )

. logit lfp k5 k618 age wc lwg [pweight=wgtvar]

(output omitted )

. logit lfp k5 k618 age wc lwg if hc == 1, level(90)

(output omitted )

You can review the output from the last estimation by simply typing the command name again.
For example, if the most recent model that you estimated was a logit model, you could have Stata
replay the results by simply typing logit.

Variable lists

depvar is the dependent variable. indepvars is a list of the independent variables. If no independent
variables are given, a model with only the intercept(s) is estimated. Stata automatically corrects
some mistakes in specifying independent variables. For example, if you include wc as an indepen-
dent variable when the sample is restricted based on wc (e.g., logit lfp wc k5 k618 age hc if
wc==1), Stata drops wc from the list of variables. Or, suppose you recode a k-category variable into
a set of k dummy variables. Recall that one of the dummy variables must be excluded to avoid per-
fect collinearity. If you included all k dummy variables in indepvars, Stata automatically excludes
one of them.

Specifying the estimation sample

if and in restrictions can be used to define the estimation sample (i.e., the sample used to estimate
the model), where the syntax for if and in conditions follows the guidelines in Chapter 2. For
example, if you want to estimate a logit model for only women who went to college, you could
specify logit lfp k5 k618 age hc lwg if wc==1.

3mlogit is a multiple-equation estimation command, but the syntax is the same as single-equation commands because
the independent variables included in the model are the same for all equations. The zero-inflated count models zip and zinb

are the only multiple-equation commands considered in our book where different sets of independent variables can be used
in each equation. Details on the syntax for these models are given in Chapter 7.
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Missing data Estimation commands use listwise deletion to exclude cases in which there are miss-
ing values for any of the variables in the model. Accordingly, if two models are estimated using the
same dataset but have different sets of independent variables, it is possible to have different samples.
The easiest way to understand this is with a simple example.4 Suppose that among the 753 cases
in the sample, 23 have missing data for at least one variable. If we estimated a model using all
variables, we would get

. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 730
(output omitted )

Suppose that 7 of the missing cases were missing only for k618 and that we estimate a second model
that excludes this variable:

. logit lfp k5 age wc hc lwg inc, nolog

Logit estimates Number of obs = 737
(output omitted )

The estimation sample for the second model has increased by 7 cases. Importantly, this means that
you cannot compute a likelihood-ratio test comparing the two models (see Section 3.3) and that any
changes in the estimates could be due either to changes in the model specification or to the use of
different samples to estimate the models. When you compare coefficients across models, you want
the samples to be exactly the same. If they are not, you cannot compute likelihood-ratio tests, and
any interpretations of why the coefficients have changed must take into account differences between
the samples.

While Stata uses listwise deletion when estimating models, this does not mean that this is the
only or the best way to handle missing data. While the complex issues related to missing data are
beyond the scope of our discussion (see Little and Rubin 1987; Schafer 1997; Allison forthcoming),
we recommend that you make explicit decisions about which cases to include in your analyses,
rather than let cases be dropped implicitly. Personally, we wish that Stata would issue an error rather
than automatically dropping cases.

mark and markout commands make it simple to explicitly exclude missing data. mark markvar
generates a new variable markvar that equals 1 for all cases. markout markvar varlist changes the
values of markvar from 1 to 0 for any cases in which values of any of the variables in varlist are
missing. The following example illustrates how this works (missing data were artificially created):

. mark nomiss

. markout nomiss lfp k5 k618 age wc hc lwg inc

. tab nomiss

nomiss Freq. Percent Cum.

0 23 3.05 3.05
1 730 96.95 100.00

Total 753 100.00

4This example uses binlfp2.dta, which does not have any missing data. We have artificially created missing data. Re-
member that all of our examples are available from www.indiana.edu/~jsl650/spost.htm or can be obtained by with
net search spost.
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. logit lfp k5 k618 age wc hc lwg inc if nomiss==1, nolog

Logit estimates Number of obs = 730
(output omitted )

. logit lfp k5 age wc hc lwg inc if nomiss==1, nolog

Logit estimates Number of obs = 730
(output omitted )

Since the if condition excludes the same cases from both equations, the sample size is the same for
both models. Alternatively, after using mark and markout, we could have used drop if nomiss==0
to delete observations with missing values.

Post-estimation commands and the estimation sample Excepting predict, the post-estimation
commands for testing, assessing fit, and making predictions that are discussed below use only ob-
servations from the estimation sample, unless you specify otherwise. Accordingly, you do not need
to worry about if and in conditions or cases deleted due to missing data when you use these com-
mands. Further details are given below.

Weights Weights indicate that some observations should be given more weight than others when
computing estimates. The syntax for specifying weights is [type=varname], where the [ ]’s are
part of the command, type is the abbreviation for the type of weight to be used, and varname is the
weighting variable. Stata recognizes four types of weights:

1. fweights or frequency weights indicate that an observation represents multiple observations
with identical values. For example, if an observation has an fweight of 5, this is equivalent to
having 5 identical, duplicate observations. In very large datasets, fweights can substantially
reduce the size of the data file. If you do not include a weight option in your estimation
command, this is equivalent to specifying fweight=1.

2. pweights or sampling weights denote the inverse of the probability that the observation is
included due to the sampling design. For example, if a case has a pweight of 1200, that case
represents 1200 observations in the population.

3. aweights or analytic weights are inversely proportional to the variance of an observation.
The variance of the jth observation is assumed to be σ2/wj , where wj is the analytic weight.
Analytic weights are used most often when observations are averages and the weights are the
number of elements that gave rise to the average. For example, if each observation is the cell
mean from a larger, unobserved dataset, the data are heteroskedastic. For some estimation
problems, analytic weights can be used to transform the data to reinstate the homoskedasticity
assumption.

4. iweights or importance weights have no formal statistical definition. They are used by pro-
grammers to facilitate certain types of computations under specific conditions.

The use of weights is a complex topic, and it is easy to apply weights incorrectly. If you
need to use weights, we encourage you to read the detailed discussion in the Stata User’s Guide
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([U] 14.1.6 weight; [U] 23.13 Weighted estimation). Winship and Radbill (1994) also provide a
useful introduction to weights in the linear regression model.

svy Commands For more complex sampling designs that include sampling weights, strata, and
PSU identifier variables, Stata provides a set of svy commands. For example, svylogit
estimates a binary logit model with corrections for a complex sampling design. While the
interpretation of the estimated coefficients is the same for these commands as their non-svy
counterparts, we do not consider these commands further here. For further details, type help
svy, see Hosmer and Lemeshow (2000, Chapter 6), or [R] svy estimators; [U] 30 Overview
of survey estimators.

Options

The following options apply to most regression models. Unique options for specific models are
considered in later chapters.

noconstant constrains the intercept(s) to equal 0. For example, in a linear regression the command
regress y x1 x2, noconstant would estimate the model y = β1x1 + β2x2 + ε.

nolog suppresses the iteration history. While this option shortens the output, the iteration history
might contain information that indicates problems with your model. If you use this option and
you have problems in obtaining estimates, it is a good idea to re-estimate the model without this
option and with the trace option.

trace lets you see the values of the parameters for each step of the iteration. This can be useful for
determining which variables may be causing a problem if your model has difficulty converging.

level(#) specifies the level of the confidence interval. By default, Stata provides 95% confidence
intervals for estimated coefficients, meaning that the interval around the estimated β̂ would cap-
ture the true value of β 95 percent of the time if repeated samples were drawn. level allows
you to specify other intervals. For example, level(90) specifies a 90% interval. You can also
change the default level with the command set level 90 (for 90% confidence intervals).

cluster(varname) specifies that the observations are independent across the clusters that are de-
fined by unique values of varname, but are not necessarily independent within clusters. Specify-
ing this options lead to robust standard errors, as discussed below, with an additional correction
for the effects of clustered data. See Hosmer and Lemeshow (2000, Section 8.3) for a detailed
discussion of logit models with clustered data.

In some cases, observations share similarities that violate the assumption of independent obser-
vations. For example, the same person might provide information at more than one point in time.
Or, several members of the same family might be in the sample, again violating independence.
In these examples, it is reasonable to assume that the observations within the groups, which
are known as clusters, are not independent. With clustering, the usual standard errors will be
incorrect.
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robust replaces the traditional standard errors with robust standard errors, which are also known as
Huber, White, or sandwich standard errors. These estimates are considered robust in the sense
that they provide correct standard errors in the presence of violations of the assumptions of the
model. For example, if the correct model is a binary logit model and a binary probit model is
used, the model has been misspecified. The estimates obtained by fitting a logit model cannot
be maximum likelihood estimates since an incorrect likelihood function is being used (i.e., a
logistic probability density is used instead of the correct normal density). In this situation, the
estimator is referred to by White (1982) as a minimum ignorance estimator since the estimators
provide the best possible approximation to the true probability density function. When a model
is misspecified in this way, the usual standard errors are incorrect. Arminger (1995) makes
a compelling case for why robust standard errors should be used. He writes (where we have
ellipsed some technical details): “If one keeps in mind that most researchers misspecify the
model..., it is obvious that their estimated parameters can usually be interpreted only as minimum
ignorance estimators and that the standard errors and test statistics may be far away from the
correct asymptotic values, depending on the discrepancy between the assumed density and the
actual density that generated the data.” However, we have not seen any information on the small
sample properties of robust standard errors for nonlinear models (i.e., how well these standard
errors work in finite samples). Long and Ervin (2000) consider this problem in the context of the
linear regression model, where they found that two small sample versions of the robust standard
error work quite well, while the asymptotic version often does worse than the usual standard
errors.5

Robust estimators are automatically used with svy commands and with the cluster() option.
See the User’s Guide ([U] 23.11 Obtaining robust variance estimates) and Gould and Sribney
(1999, 1.3.4 Robust variance estimator) for a detailed discussion of how robust standard errors
are computed in Stata; see Arminger (1995, 111–113) for a more mathematical treatment.

3.1.5 Reading the output

We have already discussed the iteration log, so in the following example we suppress it with the
nolog option. Here we consider other parts of the output from estimation commands. While the
sample output is from logit, our discussion generally applies to other regression models.

(Continued on next page)

5These versions can be computed by using the hc2 or hc3 options for regress. Long and Ervin (2000) recommend
using hc3.
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. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753
LR chi2(7) = 124.48
Prob > chi2 = 0.0000

Log likelihood = -452.63296 Pseudo R2 = 0.1209

lfp Coef. Std. Err. z P>|z| [95% Conf. Interval]

k5 -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799
k618 -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085
age -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162
wc .8072738 .2299799 3.51 0.000 .3565215 1.258026
hc .1117336 .2060397 0.54 0.588 -.2920969 .515564
lwg .6046931 .1508176 4.01 0.000 .3090961 .9002901
inc -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583

_cons 3.18214 .6443751 4.94 0.000 1.919188 4.445092

Header

1. Log likelihood = -452.63296 corresponds to the value of the log likelihood at conver-
gence.

2. Number of obs is the number of observations, excluding those with missing values and after
any if or in conditions have been applied.

3. LR chi2(7) is the value of a likelihood-ratio chi-squared for the test of the null hypothesis
that all of the coefficients associated with independent variables are simultaneously equal to
zero. The p-value is indicated by Prob > chi2, where the number in parentheses is the
number of coefficients being tested.

4. Pseudo R2 is the measure of fit also known as McFadden’s R2. Details on how this measure
is computed are given below, along with a discussion of alternative measures of fit.

Estimates and standard errors

1. The left column lists the variables in the model, with the dependent variable listed at the top.
The independent variables are always listed in the same order as entered on the command line.
The constant, labeled cons, is last.

2. Column Coef. contains the ML estimates.

3. Column Std. Err. is the standard error of the estimates.

4. The resulting z-test, equal to the estimate divided by its standard error, is labeled z with the
two-tailed significance level listed as P > | z |. A significance level listed as 0.000 means
that P < .0005 (for example, .0006 is rounded to .001, while .00049 is rounded to .000).

5. The start and end points for the confidence interval for each estimate are listed under [95%
Conf. Interval].
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3.1.6 Reformatting output with outreg

outreg is a user-written command (Gallup 2001). To install outreg, type net search outreg
and follow the links. outreg can be used to reformat the output from an estimation command to
look more like the tables that are seen in articles that use regression models. outreg also makes
it easier to move estimation results into a word processor or spreadsheet to make a presentation-
quality table there. We strongly recommend using outreg or some other automated procedure
rather than copying the numbers into a spreadsheet by hand. Not only is it much less tedious, but it
also diminishes the possibility of errors. The syntax of outreg is

outreg
[
varlist

]
using filename

[
, options

]
where varlist contains the names of the independent variables in the order you want them presented
in the table and where filename is the name of the file to contain the reformatted results. When you
run outreg, the results are not posted in the Results Window, but are only written to this file.

After estimating the logit model that we presented above, we could run outreg as follows:

. logit lfp k5 k618 age wc hc lwg
(output omitted )

. outreg using model1, replace

File model1.out is saved to the working directory. We needed to tinker with this file in a text editor
to get the spacing just right, but our end result looks like this:

Dependent variable: In paid labor force.
----------------------------------------
# kids <= 5. -1.439

(7.44)**
# kids 6-18. -0.087

(1.31)
Wife’s age in years. -0.069

(5.49)**
Wife College: 1=yes,0=no 0.693

(3.10)**
Husband College: 1=yes,0=no -0.142

(0.73)
Log of wife´s estimated wages 0.561

(3.77)**
Constant 2.939

(4.67)**
-----------------------------------------
Observations 753
Absolute value of z-statistics in parentheses
* significant at 5%; ** significant at 1%

outreg is a very flexible command, with too many options to consider all of them here. Some
of the most commonly used options are

replace specifies that filename.out should be overwritten if it already exists.

append indicates that the estimation output should be appended to that of an existing file. This
allows you to construct tables with the results from several regressions, as we illustrate in Chap-
ter 4.

se reports standard errors instead of t/z statistics.
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pvalue reports p-values instead of t/z statistics.

title(text) is a title to be printed at the top of the output.

addnote(text) is a note to be printed at the bottom of the output.

nolabel specifies that variable names rather than variable labels should be printed in the output.

A full list of options and further information about using the command can be obtained by typing
help outreg.

3.1.7 Alternative output with listcoef

The interpretation of regression models often involves transformations of the usually estimated pa-
rameters. For some official Stata estimation commands, there are options to list transformations of
the parameters, such as the or option to list odds ratios in logit or the beta option to list standard-
ized coefficients for regress. While Stata is commendably clear in explaining the meaning of the
estimated parameters, in practice it is easy to be confused about proper interpretations. For example,
the zip model (discussed in Chapter 8) simultaneously estimates a binary and count model, and it
is easy to be confused regarding the direction of the effects.

For the estimation commands considered in this book (plus some not considered here), our com-
mand listcoef lists estimated coefficients in ways that facilitate interpretation. You can list coef-
ficients selected by name or significance level, list transformations of the coefficients, and request
help on proper interpretation. In fact, in many cases you won’t even need the normal output from
the estimation. You could suppress this output with the prefix quietly (e.g., quietly logit lfp
k5 wc hc) and then use the listcoef command. The syntax is

listcoef
[
varlist

] [
, pvalue(#) { factor | percent } std constant help

]
where varlist indicates that coefficients for only these variables are to be listed. If no varlist is given,
coefficients for all variables are listed.

Options for types of coefficients

Depending on the model estimated and the specified options, listcoef computes standardized co-
efficients, factor changes in the odds or expected counts, or percent changes in the odds or expected
counts. More information on these different types of coefficients is provided below, as well as in
the chapters that deal with specific types of outcomes. The table below lists which options (details
on these options are given below) are available for each estimation command. If an option is the
default, it does not need to be specified.

Option
std factor percent

Type 1: regress, probit, cloglog, oprobit, Default No No
tobit, cnreg, intreg

Type 2: logit, logistic ologit Yes Default Yes
Type 3: clogit, mlogit, poisson, nbreg, zip, zinb No Default Yes
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factor requests factor change coefficients.

percent requests percent change coefficients instead of factor change coefficients.

std indicates that coefficients are to be standardized to a unit variance for the independent and/or
dependent variables. For models with a latent dependent variable, the variance of the latent
outcome is estimated.

Other options

pvalue(#) specifies that only coefficients significant at the # significance level or smaller will be
printed. For example, pvalue(.05) specifies that only coefficient significant at the .05 level of
less should be listed. If pvalue is not given, all coefficients are listed.

constant includes the constant(s) in the output. By default, they are not listed.

help gives details for interpreting each coefficient.

Standardized coefficients

std requests coefficients after some or all of the variables have been standardized to a unit variance.
Standardized coefficients are computed as follows:

x-standardized coefficients The linear regression model can be expressed as

y = β0 + β1x1 + β2x2 + ε (3.1)

The independent variables can be standardized with simple algebra. Let σk be the standard deviation
of xk. Then, dividing each xk by σk and multiplying the corresponding βk by σk

y = β0 + (σ1β1)
x1

σ1
+ (σ2β2)

x2

σ2
+ ε

βSx

k =σkβk is an x-standardized coefficient. For a continuous variable, βSx

k can be interpreted as

For a standard deviation increase in xk, y is expected to change by βSx

k units, holding
all other variables constant.

The same method of standardization can be used in all of the other models we consider in this book.

y and y∗-standardized coefficients To standardize for the dependent variable, let σy be the stan-
dard deviation of y. We can standardize y by dividing Equation 3.1 by σy:

y

σy
=
β0

σy
+
β1

σy
x1 +

β2

σy
x2 +

ε

σy

Then βSy

k =βk/σy is a y-standardized coefficient that can be interpreted as
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For a unit increase in xk, y is expected to change by βSy

k standard deviations, holding
all other variables constant.

For a dummy variable,

Having characteristic xk (as opposed to not having the characteristic) results in an ex-
pected change in y of βSy

k standard deviations, holding all other variables constant.

In models with a latent dependent variable, the equation y∗ = β0 +β1x1 +β2x2 + ε can be divided
by σ̂y∗ . To estimate the variance of the latent variable, the quadratic form is used:

V̂ar(y∗) = β̂′V̂ar(x) β̂ + Var(ε)

where β̂ is a vector of estimated coefficients and V̂ar(x) is the covariance matrix for the x’s computed
from the observed data. By assumption, Var(ε) = 1 in probit models and Var(ε) = π2/3 in logit
models.

Fully standardized coefficients In the linear regression model it is possible to standardize both y
and the x’s:

y

σy
=
β0

σy
+
(
σ1β1

σy

)
x1

σ1
+
(
σ2β2

σy

)
x2

σ2
+

ε

σy

Then, βS
k =(σkβk)/σy is a fully standardized coefficient that can be interpreted as follows:

For a standard deviation increase in xk, y is expected to change by βS
k standard devia-

tions, holding all other variables constant.

The same approach can be used in models with a latent dependent variable y∗.

Example of listcoef for standardized coefficients Here we illustrate the computation of standard-
ized coefficients for the regression model. Examples for other models are given in later chapters.
The standard output from regress is

. use science2, clear

. regress job female phd mcit3 fellow pub1 cit1

Source SS df MS Number of obs = 161
F( 6, 154) = 7.74

Model 28.8930452 6 4.81550754 Prob > F = 0.0000
Residual 95.7559074 154 .621791607 R-squared = 0.2318

Adj R-squared = 0.2019
Total 124.648953 160 .779055954 Root MSE = .78854

job Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.1243218 .1573559 -0.79 0.431 -.4351765 .1865329
phd .2898888 .0732633 3.96 0.000 .145158 .4346196

mcit3 .0021852 .0023485 0.93 0.354 -.0024542 .0068247
fellow .1839757 .133502 1.38 0.170 -.0797559 .4477073

pub1 -.0068635 .0255761 -0.27 0.789 -.0573889 .0436618
cit1 .0080916 .0041173 1.97 0.051 -.0000421 .0162253
_cons 1.763224 .2361352 7.47 0.000 1.296741 2.229706
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Now, we use listcoef:

. listcoef female cit1, help

regress (N=161): Unstandardized and Standardized Estimates

Observed SD: .88264146
SD of Error: .78853764

job b t P>|t| bStdX bStdY bStdXY SDofX

female -0.12432 -0.790 0.431 -0.0534 -0.1409 -0.0605 0.4298
cit1 0.00809 1.965 0.051 0.1719 0.0092 0.1947 21.2422

b = raw coefficient
t = t-score for test of b=0

P>|t| = p-value for t-test
bStdX = x-standardized coefficient
bStdY = y-standardized coefficient

bStdXY = fully standardized coefficient
SDofX = standard deviation of X

By default for regress, listcoef lists the standardized coefficients. Notice that we only requested
information on two of the variables.

Factor and percent change

In logit-based models and models for counts, coefficients can be expressed either as: (1) a factor
or multiplicative change in the odds or the expected count (requested in listcoef by the factor
option); or (2) the percent change in the odds or expected count (requested with the percent option).
While these can be computed with options to some estimation commands, listcoef provides a
single method to compute these. Details on these coefficients are given in later chapters for each
specific model.

3.2 Post-estimation analysis

There are three types of post-estimation analysis that we consider in the remainder of this chapter.
The first is statistical testing that goes beyond routine tests of a single coefficient. This is done with
Stata’s powerful test and lrtest commands. In later chapters, we present other tests of interest for
a given model (e.g., tests of the parallel regression assumption for ordered regression models). The
second post-estimation task is assessing the fit of a model using scalar measures computed by our
command fitstat. Examining outliers and residuals for binary models is considered in Chapter 4.
The third task, and the focus of much of this book, is interpreting the predictions from nonlinear
models. We begin by discussing general issues that apply to all nonlinear models. We then discuss
our SPost commands that implement these methods of interpretation.
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3.3 Testing

Coefficients estimated by ML can be tested with Wald tests using test and likelihood-ratio (LR)
tests using lrtest. For both types of tests there is a null hypothesis H0 that implies constraints on
the model’s parameters. For example, H0: βwc = βhc = 0 hypothesizes that two of the parameters
are zero in the population.

The Wald test assesses H0 by considering two pieces of information. First, all else being equal,
the greater the distance between the estimated coefficients and the hypothesized values, the less
support we have for H0. Second, the greater the curvature of the log-likelihood function, the more
certainty we have about our estimates. This means that smaller differences between the estimates
and hypothesized values are required to reject H0. The LR test assesses a hypothesis by comparing
the log likelihood from the full model (i.e., the model that does not include the constraints implied
byH0) and a restricted model that imposes the constraints. If the constraints significantly reduce the
log likelihood, thenH0 is rejected. Thus, the LR test requires estimation of two models. Even though
the LR and Wald tests are asymptotically equivalent, in finite samples they give different answers,
particularly for small samples. In general, it is unclear which test is to be preferred. Rothenberg
(1984) and Greene (2000) suggest that neither test is uniformly superior, although many statisticians
prefer the LR.

3.3.1 Wald tests

test computes Wald tests for linear hypotheses about parameters from the last model estimated.
Here we consider the most useful features of this command for regression models. Information on
features for multiple equation models, such as mlogit, zip, and zinb, are discussed in Chapters 6
and 7. Use help test for additional features and help testnl for testing nonlinear hypotheses.

The first syntax for test allows you to specify that one or more coefficients from the last esti-
mation are simultaneously equal to 0

test varlist
[
, accumulate

]
where varlist contains names of one or more independent variable from the last estimation. The
accumulate option will be discussed shortly.

Some examples should make this first syntax clear. With a single variable listed, k5 in this case,
we are testing H0: βk5 = 0.

. logit lfp k5 k618 age wc hc lwg inc
(output omitted )

. test k5

( 1) k5 = 0.0

chi2( 1) = 55.14
Prob > chi2 = 0.0000

The resulting chi-squared test with 1 degree of freedom equals the square of the z-test in the output
from the estimation command, and we can reject the null hypothesis.
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With two variables listed, we are testing H0: βk5 = βk618 = 0:

. test k5 k618

( 1) k5 = 0.0
( 2) k618 = 0.0

chi2( 2) = 55.16
Prob > chi2 = 0.0000

We can reject the hypothesis that the effects of young and older children are simultaneously zero.

In our last example, we include all of the independent variables.

. test k5 k618 age wc hc lwg inc

( 1) k5 = 0.0
( 2) k618 = 0.0
( 3) age = 0.0
( 4) wc = 0.0
( 5) hc = 0.0
( 6) lwg = 0.0
( 7) inc = 0.0

chi2( 7) = 94.98
Prob > chi2 = 0.0000

This is a test of the hypothesis that all of the coefficients except the intercept are simultaneously
equal to zero. As noted above, a likelihood-ratio test of this same hypothesis is part of the standard
output of estimation commands (e.g., LR chi2(7)=124.48 from the earlier logit output).

The second syntax for test allows you to test hypotheses about linear combinations of coeffi-
cients:

test
[
exp=exp

] [
, accumulate

]
For example, to test that two coefficients are equal, for example H0: βk5 = βk618:

. test k5=k618

( 1) k5 - k618 = 0.0

chi2( 1) = 49.48
Prob > chi2 = 0.0000

Because the test statistic is significant, we can reject the null hypothesis that the effect of young
children on labor force participation is equal to the effect of having older children.

The accumulate option

The accumulate option allows you to build more complex hypotheses based on the prior use of the
test command. For example, you might begin with a test of H0: βk5 = βk618:

. test k5=k618

( 1) k5 - k618 = 0.0

chi2( 1) = 49.48
Prob > chi2 = 0.0000
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Then, add the constraint that βwc = βhc:

. test wc=hc, accumulate

( 1) k5 - k618 = 0.0
( 2) wc - hc = 0.0

chi2( 2) = 52.16
Prob > chi2 = 0.0000

This results in a test of H0: βk5 = βk618, βwc = βhc.

3.3.2 LR tests

lrtest compares nested models using an LR test. The syntax is

lrtest
[
, saving(name recent) using(name full) model(name nested)

]
The first step is to save information from the last model that was estimated. For example,

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. lrtest, saving(0)

where we are using the name 0 to save information on the estimated model. While any name up
to four characters (e.g., mod1) can be used, it is standard Stata practice to use 0 to name the first
model. After you save the results, you estimate a model that is nested in the full model. A nested
model is one that can be created by imposing constraints on the coefficients in the prior model. Most
commonly, one excludes some of the variables that were included in the first model, which in effect
constrains the coefficients of the these variables to be zero. For example, if we drop k5 and k618
from the last model

. logit lfp age wc hc lwg inc, nolog
(output omitted )

. lrtest

Logit: likelihood-ratio test chi2(2) = 66.49
Prob > chi2 = 0.0000

The result is an LR test of the hypothesis H0: βk5 = βk618 = 0. The significant chi-squared statistic
means that we reject the null hypothesis that these two coefficients are simultaneously equal to zero.

There are two complications that are useful to know about. First, if you save the results of the
full model with a name other than 0, say lrtest, saving(mod1), you must indicate the name of
the full model with using(). For example,

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. lrtest, saving(mod1)

. logit lfp age wc hc lwg inc, nolog
(output omitted )

. lrtest, using(mod1)
Logit: likelihood-ratio test chi2(2) = 66.49

Prob > chi2 = 0.0000
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Second, if you estimate the nested model first, you need to save the results from both models and
then use model() to specify the nested model. For example,

. * estimate nested model

. logit lfp age wc hc lwg inc, nolog
(output omitted )

. lrtest, saving(0)

. * estimate full model

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. lrtest, saving(1)

. lrtest, using(1) model(0)
Logit: likelihood-ratio test chi2(2) = 66.49

Prob > chi2 = 0.0000

Avoiding invalid LR tests

lrtest does not prevent you from computing an invalid test. There are two things that you must
check. First, the two models must be nested. Second, the two models must be estimated on exactly
the same sample. If either of these conditions are violated, the results of lrtest are meaningless.
For details on ensuring the same sample size, see our discussion of mark and markout in Section
3.1.4.

3.4 Measures of fit

Assessing fit involves both the analysis of the fit of individual observations and the evaluation of
scalar measures of fit for the model as a whole. Regarding the former, Pregibon (1981) extended
methods of residual and outlier analysis from the linear regression model to the case of binary logit
and probit (see also Cook and Weisberg 1999, Part IV). These measures are considered in Chapter 4.
Measures for many count models are also available (Cameron and Trivedi 1998) . Unfortunately,
similar methods for ordinal and nominal outcomes are not available. Many scalar measures have
been developed to summarize the overall goodness of fit for regression models of continuous, count,
or categorical dependent variables. A scalar measure can be useful in comparing competing models
and ultimately in selecting a final model. Within a substantive area, measures of fit can provide a
rough index of whether a model is adequate. However, there is no convincing evidence that selecting
a model that maximizes the value of a given measure results in a model that is optimal in any sense
other than the model having a larger (or, in some instances, smaller) value of that measure. While
measures of fit provide some information, it is only partial information that must be assessed within
the context of the theory motivating the analysis, past research, and the estimated parameters of the
model being considered.
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3.4 Measures of fit 81

Syntax of fitstat

Our command fitstat calculates a large number of fit statistics for the estimation commands
we consider in this book. With its saving() and using() options, the command also allows the
comparison of fit measures across two models. While fitstat duplicates some measures computed
by other commands (e.g., the pseudo-R2 in standard Stata output or lfit), fitstat adds many
more measures and makes it convenient to compare measures across models. The syntax is

fitstat
[
, saving(name) using(name) save dif bic force

]
While many of the calculated measures are based on values returned by the estimation command,
for some measures it is necessary to compute additional statistics from the estimation sample. This
is automatically done using the estimation sample from the last estimation command. fitstat
can also be used when models are estimated with weighted data, with two limitations. First, some
measures cannot be computed with some types of weights. Second, with pweights, we use the
“pseudo-likelihoods” rather than the likelihood to compute our measures of fit. Given the heuris-
tic nature of the various measures of fit, we see no reason why the resulting measures would be
inappropriate.

fitstat terminates with an error if the last estimation command does not return a value for the
log likelihood equation with only an intercept (i.e., if e(ll 0)=.). This occurs, for example, if the
noconstant option is used to estimate a model.

Options

saving(name) saves the computed measures in a matrix for subsequent comparisons. name must
be four characters or shorter.

using(name) compares the fit measures for the current model with those of the model saved as
name. name cannot be longer than four characters.

save and dif are equivalent to saving(0) and using(0).

bic presents only BIC and other information measures. When comparing two models, fitstat
reports Raftery’s (1996) guidelines for assessing the strength of one model over another.

force is required to compare two models when the number of observations or the estimation method
varies between the two models.

Models and measures

Details on the measures of fit are given below. Here we only summarize which measures are com-
puted for which models. � indicates a measure is computed, and � indicates the measure is not
computed.

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



82 Chapter 3. Estimation, Testing, Fit, and Interpretation

gologit

nbreg

cnreg poisson

logit ologit clogit intreg zinb

regress probit cloglog oprobit mlogit tobit zip

Log likelihood � � �1 � � � �2

Deviance & LR chi-squared � � � � � � �
AIC, AIC*n, BIC, BIC′ � � � � � � �
R2 & Adjusted R2 � � � � � � �
Efron’s R2 � � � � � � �
McFadden’s, ML, C&U’s R2 � � � � � � �
Count & Adjusted Count R2 � � � � �3 � �
Var(e), Var(y*) and M&Z’s R2 � � � � � � �

1: For cloglog the log likelihood for the intercept-only model does not correspond to the first step in the iterations.

2: For zip and zinb, the log likelihood for the intercepts-only model is calculated by estimating zip | zinb depvar,

inf( cons).

3: The adjusted count R2 is not defined for clogit.

Example of fitstat

To compute fit statistics for a single model, we first estimate the model and then run fitstat:

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. fitstat

Measures of Fit for logit of lfp

Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -452.633
D(745): 905.266 LR(7): 124.480

Prob > LR: 0.000
McFadden´s R2: 0.121 McFadden´s Adj R2: 0.105
Maximum Likelihood R2: 0.152 Cragg & Uhler´s R2: 0.204
McKelvey and Zavoina´s R2: 0.217 Efron´s R2: 0.155
Variance of y*: 4.203 Variance of error: 3.290
Count R2: 0.693 Adj Count R2: 0.289
AIC: 1.223 AIC*n: 921.266
BIC: -4029.663 BIC´: -78.112

fitstat is particularly useful for comparing two models. To do this, you begin by estimating a
model and then save the results from fitstat. Here, we use quietly to suppress the output from
fitstat since we list those results in the next step:

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. quietly fitstat, saving(mod1)

Next, we generate agesq which is the square of age. The new model adds agesq and drops k618,
hc, and lwg. To compare the saved model to the current model, type

. generate agesq = age*age

. logit lfp k5 age agesq wc inc, nolog
(output omitted )
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. fitstat, using(mod1)

Measures of Fit for logit of lfp

Current Saved Difference
Model: logit logit
N: 753 753 0
Log-Lik Intercept Only: -514.873 -514.873 0.000
Log-Lik Full Model: -461.653 -452.633 -9.020
D: 923.306(747) 905.266(745) 18.040(2)
LR: 106.441(5) 124.480(7) 18.040(2)
Prob > LR: 0.000 0.000 0.000
McFadden´s R2: 0.103 0.121 -0.018
McFadden´s Adj R2: 0.092 0.105 -0.014
Maximum Likelihood R2: 0.132 0.152 -0.021
Cragg & Uhler’s R2: 0.177 0.204 -0.028
McKelvey and Zavoina´s R2: 0.182 0.217 -0.035
Efron´s R2: 0.135 0.155 -0.020
Variance of y*: 4.023 4.203 -0.180
Variance of error: 3.290 3.290 0.000
Count R2: 0.677 0.693 -0.016
Adj Count R2: 0.252 0.289 -0.037
AIC: 1.242 1.223 0.019
AIC*n: 935.306 921.266 14.040
BIC: -4024.871 -4029.663 4.791
BIC´: -73.321 -78.112 4.791

Difference of 4.791 in BIC´ provides positive support for saved model.

Note: p-value for difference in LR is only valid if models are nested.

Methods and formulas for fitstat

This section provides brief descriptions of each measure computed by fitstat. Full details along
with citations to original sources are found in Long (1997). The measures are listed in the same
order as the output above.

Log likelihood based measures Stata begins maximum likelihood iterations by computing the
log likelihood of the model with all parameters but the intercept(s) constrained to zero, referred to
as L (MIntercept). The log likelihood upon convergence, referred to asMFull, is also listed. This infor-
mation is usually presented as the first step of the iteration log and in the header for the estimation
results.6

Chi-squared test of all coefficients An LR test of the hypothesis that all coefficients except
the intercept(s) are zero can be computed by comparing the log likelihoods: LR= 2 lnL(MFull) −
2 lnL(MIntercept). This statistic is sometimes designated as G2. LR is reported by Stata as LR
chi2(7) = 124.48, where the degrees of freedom, (7), are the number of constrained parameters.
fitstat reports this statistic as LR(7): 124.48. For zip and zinb, LR tests that the coefficients
in the count portion (not the binary portion) of the model are zero.

6In cloglog, the value at iteration 0 is not the log likelihood with only the intercept. For zip and zinb, the “intercept-
only” model can be defined in different ways. These commands return as e(ll 0), the value of the log likelihood with the
binary portion of the model unrestricted while only the intercept is free for the Poisson or negative binomial portion of the
model. fitstat returns the value of the log likelihood from the model with only an intercept in both the binary and count
portion of the model.
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84 Chapter 3. Estimation, Testing, Fit, and Interpretation

Deviance The deviance compares a given model to a model that has one parameter for each
observation so that the model reproduces perfectly the observed data. The deviance is defined as
D = −2 lnL(MFull), where the degrees of freedom equals N minus the number of parameters.
Note that D does not have a chi-squared distribution.

R2 in the LRM For regress, fitstat reports the standard coefficient of determination which
can be defined variously as

R2 = 1 −
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − y)2
=

V̂ar(ŷ)

V̂ar(ŷ) + V̂ar(ε̂)
= 1 −

[
L(MIntercept)
L(MFull)

]2/N

(3.2)

The adjusted R2 is defined as

R
2

=
(
R2 − K

N − 1

)(
N − 1

N −K − 1

)
where K is the number of independent variables.

Pseudo-R2’s While each of the definitions of R2 in equation 3.2 give the same numeric value in
the LRM, they give different answers and thus provide different measures of fit when applied to the
other models evaluated by fitstat.

McFadden’s R2 McFadden’s R2, also known as the “likelihood-ratio index”, compares a
model with just the intercept to a model with all parameters. It is defined as

R2
McF = 1 − ln L̂(MFull)

ln L̂(MIntercept)

If model MIntercept = MFull, R2
McF equals 0, but R2

McF can never exactly equal one. This measure,
which is computed by Stata as Pseudo R2 = 0.1209, is listed in fitstat as: McFadden’s R2:
0.121 Since R2

McF always increases as new variables are added, an adjusted version is also avail-
able:

R
2

McF = 1 − ln L̂(MFull) −K∗

ln L̂(MIntercept)

where K∗ is the number of parameters (not independent variables).

Maximum likelihood R2 Another analogy to R2 in the LRM was suggested by Maddala:

R2
ML = 1 −

[
L(MIntercept)
L(MFull)

]2/N

= 1 − exp(−G2/N)
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Cragg & Uhler’s R2 Since R2
ML only reaches a maximum of 1−L(MIntercept)

2/N , Cragg and
Uhler suggested a normed measure:

R2
C&U =

R2
ML

maxR2
ML

=
1 − [L(MIntercept) /L(MFull) ]2/N

1 − L(MIntercept)
2/N

Efron’s R2 For binary outcomes, Efron’s pseudo-R2 defines ŷ = π̂ = P̂r(y = 1 | x) and
equals

R2
Efron = 1 −

∑N
i=1 (yi − π̂i)

2∑N
i=1 (yi − y)2

V (y∗), V (ε) and McKelvey and Zavoina’s R2 Some models can be defined in terms of a
latent variable y∗. This includes the models for binary or ordinal outcomes: logit, probit, ologit
and oprobit, as well as some models with censoring: tobit, cnreg, and intreg. Each model is
defined in terms of a regression on a latent variable y∗:

y∗ = xβ + ε

Using V̂ar(ŷ∗) = β̂′V̂ar(x) β̂, McKelvey and Zavoina proposed

R2
M&Z =

V̂ar(ŷ∗)

V̂ar(y∗)
=

V̂ar(ŷ∗)

V̂ar(ŷ∗) + Var(ε)

In models for categorical outcomes, Var(ε) is assumed to identify the model.

Count and adjusted count R2 Observed and predicted values can be used in models with
categorical outcomes to compute what is known as the count R2. Consider the binary case where
the observed y is 0 or 1 and πi = P̂r(y = 1 | xi). Define the expected outcome as

ŷi =
{

0 if π̂i ≤ 0.5
1 if π̂i > 0.5

This allows us to construct a table of observed and predicted values, such as that produced for the
logit model by the Stata command lstat:

. lstat

Logistic model for lfp

True
Classified D ~D Total

+ 342 145 487
- 86 180 266

Total 428 325 753

Classified + if predicted Pr(D) >= .5
True D defined as lfp \~= 0
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From this output, we can see that positive responses were predicted for 487 observations, of
which 342 of these were correctly classified because the observed response was positive (y = 1),
while the other 145 were incorrectly classified because the observed response was negative (y = 0).
Likewise, of the 266 observations for which a negative response was predicted, 180 were correctly
classified, and 86 were incorrectly classified.

A seemingly appealing measure is the proportion of correct predictions, referred to as the count
R2,

R2
Count =

1
N

∑
j

njj

where the njj’s are the number of correct predictions for outcome j. The count R2 can give the
faulty impression that the model is predicting very well. In a binary model without knowledge
about the independent variables, it is possible to correctly predict at least 50 percent of the cases
by choosing the outcome category with the largest percentage of observed cases. To adjust for the
largest row marginal,

R2
AdjCount =

∑
j njj − max

r
(nr+)

N − max
r

(nr+)

where nr+ is the marginal for row r. The adjusted count R2 is the proportion of correct guesses
beyond the number that would be correctly guessed by choosing the largest marginal.

Information measures This class of measures can be used to compare models across different
samples or to compare non-nested models.

AIC Akaike’s (1973) information criteria is defined as AIC=
−2 ln L̂(Mk) + 2P

N
, where

L̂(Mk) is the likelihood of the model and P is the number of parameters in the model (e.g., K+1 in
the binary regression model where K is the number of regressors). All else being equal, the model
with the smaller AIC is considered the better fitting model. Some authors define AIC as being N
times the value we report (see, e.g., the mlfit add-on command by Tobias and Campbell). We
report this quantity as AIC*n.

BIC and BIC′ The Bayesian information criterion has been proposed by Raftery (1996 and the
literature cited therein) as a measure of overall fit and a means to compare nested and non-nested
models. Consider the model Mk with deviance D(Mk) . BIC is defined as

BICk = D(Mk) − df k lnN

where df k is the degrees of freedom associated with the deviance. The more negative the BICk, the
better the fit. A second version of BIC is based on the LR chi-square with df ′k equal to the number
of regressors (not parameters) in the model. Then,

BIC′
k = −G2(Mk) + df ′k lnN
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The more negative the BIC′
k the better the fit. The difference in the BICs from two models indicates

which model is more likely to have generated the observed data. Since BIC1−BIC2 =BIC′
1−BIC′

2,
the choice of which BIC measure to use is a matter of convenience. If BIC1−BIC2 <0, then the first
model is preferred. If BIC1−BIC2 >0, then the second model is preferred. Raftery (1996) suggested
guidelines for the strength of evidence favoringM2 againstM1 based on a difference in BIC or BIC′:

Absolute
Difference Evidence

0-2 Weak
2-6 Positive

6-10 Strong
>10 Very Strong

3.5 Interpretation

Models for categorical outcomes are nonlinear. Understanding the implications of nonlinearity is
fundamental to the proper interpretation of these models. In this section we begin with a heuristic
discussion of the idea of nonlinearity and the implications of nonlinearity for the proper interpre-
tation of these models. We then introduce a set of commands that facilitate proper interpretation.
Later chapters contain the details for specific models.

Figure 3.1: A simple linear model.
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Linear models Figure 3.1 shows a simple, linear regression model, where y is the dependent
variable, x is a continuous independent variable, and d is a binary independent variable. The model
being estimated is

y = α+ βx+ δd

where for simplicity we assume that there is no error term. The solid line plots y as x changes
holding d = 0; that is, y=α+ βx. The dashed line plots y as x changes when d = 1, which has the
effect of changing the intercept: y = α+ βx+ δ1 = (α+ δ) + βx.

The effect of x on y can be computed as the partial derivative or slope of the line relating x to y,
often called the marginal effect or marginal change:

∂y

∂x
=
∂ (α+ βx+ δd)

∂x
= β

This equation is the ratio of the change in y to the change in x, when the change in x is infinitely
small, holding d constant. In a linear model, the marginal is the same at all values of x and d.
Consequently, when x increases by one unit, y increases by β units regardless of the current values
for x and d. This is shown by the four small triangles with bases of length one and heights of β.

The effect of d cannot be computed with a partial derivative since d is discrete. Instead, we
measure the discrete change in y as d changes from 0 to 1, holding x constant:

∆y
∆d

= (α+ βx+ δ 1) − (α+ βx+ δ 0) = δ

When d changes from 0 to 1, y changes by δ units regardless of the level of x. This is shown by
the two arrows marking the distance between the solid and dashed lines. As a consequence of the
linearity of the model, the discrete change equals the partial change in linear models.

The distinguishing feature of interpretation in the LRM is that the effect of a given change in an
independent variable is the same regardless of the value of that variable at the start of its change
and regardless of the level of the other variables in the model. That is, interpretation only needs
to specify which variable is changing, by how much, and that all other variables are being held
constant.

Given the simple structure of linear models, such as regress, most interpretations only require
reporting the estimates. In some cases, it is useful to standardize the coefficients, which can be
obtained with listcoef as discussed earlier.

(Graph on next page)
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Figure 3.2: A simple nonlinear model.

Nonlinear models Figure 3.2 plots a logit model where y = 1 if the outcome event occurs, say, if
a person is in the labor force, else y = 0. The curves are from the logit equation:7

Pr (y = 1) =
exp (α+ βx+ δd)

1 + exp (α+ βx+ δd)
(3.3)

Once again, x is continuous and d is binary.

The nonlinearity of the model makes it more difficult to interpret the effects of x and d on the
probability of an event occurring. For example, neither the marginal nor the discrete change with
respect to x are constant:

∂ Pr (y = 1)
∂x

�= β

∆ Pr (y = 1)
∆d

�= δ

This is illustrated by the triangles. Since the solid curve for d = 0 and the dashed curve for d = 1
are not parallel, ∆1 �= ∆4. And, the effect of a unit change in x differs according to the level of both
d and x: ∆2 �= ∆3 �= ∆5 �= ∆6. In nonlinear models the effect of a change in a variable depends
on the values of all variables in the model and is no longer simply equal to one of the parameters of
the model.

7The α, β, and δ parameters in this equation are unrelated to those in Figure 3.1.
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3.5.1 Approaches to interpretation

There are several general approaches for interpreting nonlinear models.

1. Predictions can be computed for each observation in the sample using predict.

2. The marginal or discrete change in the outcome can be computed at a representative value of
the independent variables using prchange.

3. Predicted values for substantively meaningful “profiles” of the independent variables can be
compared using prvalue, prtab, or prgen.

4. The nonlinear model can be transformed to a model linear in some other outcome. As we
discuss in Chapter 4, the logit model in Equation 3.3 can be written as

ln
(

Pr (y = 1)
1 − Pr (y = 1)

)
= α+ βx+ δd

which can then be interpreted with methods for linear model or the exponential of the coeffi-
cients can be interpreted in terms of factor changes in the odds.

The first three of these methods are now considered. Details on using these approaches for specific
models are given in later chapters.

3.5.2 Predictions using predict

predict can be used to compute predicted values for each observation in the current dataset. While
predict is a powerful command with many options, we consider only the simplest form of the
command that provides all of the details that we need. For additional options, you can enter help
predict. The simplest syntax for predict is

predict newvarname

where newvarname is the name or names of the new variables that are being generated. The quan-
tity computed for newvarname depends on the model that was estimated, and the number of new
variables created depends on the model. The defaults are listed in the following table.

Estimation Quantity
Command Computed
regress Predicted value ŷ = xβ̂.
logit, logistic, probit, cloglog, Predicted probabilities P̂r (y = k) .
ologit, oprobit, clogit, mlogit

poisson, nbreg, zip, zinb Predicted count or rate.

In the following example, we generate predicted probabilities for a logit model of women’s labor
force participation. The values of pr1 generated by predict are the probabilities of a woman being
in the labor force for each of the observations in the dataset:
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. logit lfp k5 k618 age wc hc lwg inc
(output omitted )

. predict pr1
(option p assumed; Pr(lfp))

. sum pr1

Variable Obs Mean Std. Dev. Min Max

pr1 753 .5683931 .1944213 .0139875 .9621198

The summary statistics show that the predicted probabilities in the sample range from .013 to .962,
with an average probability of .568. Further discussion of predicted probabilities for the logit model
is provided in Chapter 4.

For models for ordinal or nominal categories, predict computes the predicted probability of
an observation falling into each of the outcome categories. So, instead of specifying one variable
for predictions, you specify as many names as there are categories. For example, after estimating a
model for a nominal dependent variable with four categories, you can type predict pr1 pr2 pr3
pr4. These new variables contain the predicted probabilities of being in the first, second, third, and
fourth categories, as ordered from the lowest value of the dependent variable to the highest.

For count models, predict computes predicted counts for each observation. Our command
prcounts computes the predicted probabilities of observing specific counts (e.g., Pr (y = 3)) and
the cumulative probabilities (e.g., Pr (y ≤ 3)). Further details are given in Chapter 7.

3.5.3 Overview of prvalue, prchange, prtab, and prgen

We have written the post-estimation commands prvalue, prchange, prtab, and prgen to make it
simple to compute specific predictions that are useful for the interpretation of models for categorical
and count outcomes. Details on installing these programs are given in Chapter 1.

prvalue computes predicted values of the outcomes for specified values of the independent vari-
ables, and can compute differences in predictions for two sets of values. prvalue is the most
basic command. Indeed, it can be used to compute all of the quantities except marginal change
from the next three commands.

prtab creates a table of predicted outcomes for a cross-classification of up to four categorical
independent variables, while other independent variables are held at specified values.

prchange computes discrete and marginal changes in the predicted outcomes.

prgen computes predicted outcomes as a single independent variable changes over a specified
range, holding other variables constant. New variables containing these values are gener-
ated which can then be plotted. prgen is limited in that it cannot handle complex model
specifications in which a change in the value of the key independent variable implies a change
in another independent variable, such as in models that include terms for both age and age
squared. For these models, we have created the more general, but more complex, command
praccum, which we describe in Chapter 8.
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92 Chapter 3. Estimation, Testing, Fit, and Interpretation

The most effective interpretation involves using all of these commands in order to discover the most
convincing way to convey the predictions from the model. This section is intended to give you an
overview of the syntax and options for these commands. Many of the specific details might only be
clear after reading the more detailed discussions in later chapters.

Specifying the levels of variables

Each command computes predicted values for the last regression model that was estimated. To com-
pute predicted values, you must specify values for all of the independent variables in the regression.
By default, all variables are set to their means in the estimation sample.8 Using the x() and rest()
options, variables can be assigned to specific values or to a sample statistic computed from the data
in memory.

x(variable1=value1 [...]) assigns variable1 to value1, variable2 to value2, and so on. While
equal signs are optional, they make the commands easier to read. You can assign values to as
many or as few variables as you want. The assigned value is either a specific number (e.g.,
female=1) or a mnemonic specifying the descriptive statistic (e.g., phd=mean to set variable
phd to the mean; pub3=max to assign pub3 to the maximum value). Details on the mnemonics
that can be used are given below.

rest(stat) sets the values of all variables not specified in x() to the sample statistic indicated by
stat. For example, rest(mean) sets all variables to their mean. If x() is not specified, all
variables are set to stat. The value of stat can be calculated for the whole sample or can be
conditional based on the values specified by x(). For example, if x(female=1) is specified,
rest(grmean) specifies that all other variables should equal their mean in the sample defined
by female=1. This is referred to as a group statistic (i.e., statistics that begin with gr). If you
specify a group statistic for rest(), only numeric values can be used for x(). For example,
x(female=mean) rest(grmean) is not allowed. If rest() is not specified, it is assumed
to be rest(mean).

The statistics that can be used with x() and rest() are

mean, median, min, and max specify the unconditional mean, median, minimum, and maximum.
By default, the estimation sample is used to compute these statistics. If the option all is
specified, all cases in memory are used for computing descriptive statistics, regardless of
whether they were used in the estimation. if or in conditions can also be used. For example,
adding if female==1 to any of these commands restricts the computations of descriptive
statistics to only women, even if the estimation sample included men and women.

previous sets values to what they were the last time the command was called; this can only be
used if the set of independent variables is the same in both cases. This can be useful if you
want only to change the value of one variable from the last time the command was used.

8The estimation sample includes only those cases that were used in estimating a model. Cases that were dropped due to
missing values and/or if and in conditions are not part of the estimation sample.
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upper and lower set values to those that yield the maximum or minimum predicted values, re-
spectively. These options can only be used for binary models.

grmean, grmedian, grmin, and grmax computes statistics that are conditional on the group spec-
ified in x(). For example, x(female=0) rest(grmean) sets female to 0 and all other
variables to the means of the subsample in which female is 0 (i.e., the means of these other
variables for male respondents).

Options controlling output

nobase suppresses printing of the base values of the independent variables.

brief provides only minimal output.

3.5.4 Syntax for prchange

prchange computes marginal and discrete change coefficients. The syntax is

prchange
[
varlist

] [
if exp

] [
in range

] [
, x(variable1=value1

[
...

]
) rest(stat)

all help fromto outcome(#) delta(#) uncentered nobase nolabel brief
]

varlist specifies that changes are to be listed only for these variables. By default, changes are listed
for all variables.

Options

help provides information explaining the output.

fromto specifies that the starting and ending probabilities from which the discrete change is calcu-
lated for prchange should also be displayed.

outcome(#) specifies that changes will be printed only for the outcome indicated. For example, if
ologit was run with outcome categories 1, 2, and 3, outcome(1) requests that only changes
in the probability of outcome 1 should be listed. For ologit, oprobit and mlogit, the default
is to provide results for all outcomes. For the count models, the default is to present results
with respect to the predicted rate; specifying an outcome number will provide changes in the
probability of that outcome.

delta(#) specifies the amount of the discrete change in the independent variable. The default is a
1 unit change (i.e., delta(1)).

uncentered specifies that the uncentered discrete change rather than the centered discrete change is
to be computed. By default, the change in an independent variable is centered around its value.

nolabel uses values rather than value labels in the output.
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94 Chapter 3. Estimation, Testing, Fit, and Interpretation

3.5.5 Syntax for prgen

prgen computes a variable containing predicted values as one variable changes over a range of
values, which is useful for constructing plots. The syntax is

prgen varname
[
if exp

] [
in range

]
, generate(prefix)

[
from(#) to(#)

ncases(#) x(variable1=value1
[
...

]
) rest(stat) maxcnt(#) brief all

]

Options

varname is the name of the variable that changes while all other variables are held at specified values.

generate(prefix) sets the prefix for the new variables created by prgen. Choosing a prefix that
is different than the beginning letters of any of the variables in your dataset makes it easier to
examine the results. For example, if you choose the prefix abcd then you can use the command
sum abcd* to examine all newly created variables.

from(#) and to(#) are the start and end values for varname. The default is for varname to range
from the observed minimum to the observed maximum of varname.

ncases(#) specifies the number of predicted values prgen computes as varname varies from the
start value to the end value. The default is 11.

maxcnt(#) is the maximum count value for which a predicted probability is computed for count
models. The default is 9.

Variables generated

prgen constructs variables that can be graphed. The observations contain predicted values and/or
probabilities for a range of values for the variable varname, holding the other variables at the spec-
ified values. n observations are created, where n is 11 by default or specified by ncases(). The
new variables all start with the prefix specified by gen(). The variables created are

For which models Name Content
All models prefixx The values of varname from from(#) to to(#).
logit, probit prefixp0 Predicted probability Pr(y = 0).

prefixp1 Predicted probability Pr(y = 1).
ologit, oprobit prefixpk Predicted probability Pr(y = k) for all outcomes.

prefixsk Cumulative probability Pr(y ≤ k) for all outcomes.
mlogit prefixpk Predicted probability Pr(y = k) for all outcomes.
poisson, nbreg, zip, zinb prefixmu Predicted rate µ.

prefixpk Predicted probability Pr(y = k), for 0 ≤ k ≤ maxcnt().
prefixsk Cumulative probability Pr(y ≤ k), for 0 ≤ k ≤ maxcnt().

zip, zinb prefixinf Predicted probability Pr(Always 0= 1) = Pr (inflate) .
regress, tobit, cnreg, intreg prefixxb Predicted value of y.
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3.5.6 Syntax for prtab

prtab constructs a table of predicted values for all combinations of up to three variables. The syntax
is

prtab rowvar
[
colvar

[
supercolvar

]] [
if exp

] [
in range

] [
, by(superrowvar)

x(variable1=value1
[
...

]
) rest(stat) outcome(#) base novarlbl novallbl

brief
]

Options

rowvar, colvar, supercolvar, and superrowvar are independent variables from the previously esti-
mated model. These define the table that is constructed.

outcome(#) specifies that changes are printed only for the outcome indicated. The default for
ologit, oprobit, and mlogit is to provide results for all outcomes. For the count models,
the default is to present results with respect to the predicted rate; specifying an outcome number
provides changes in the probability of that outcome.

by(superrowvar) specifies the categorical independent variable that is to be used to form the super-
rows of the table.

novarlbl uses a variable’s name rather than the variable label in the output. Sometimes this is more
readable.

novallbl uses a variable’s numerical values rather than value labels in the output. Sometimes this
is more readable.

3.5.7 Syntax for prvalue

prvalue computes the predicted outcome for a single set of values of the independent variables.
The syntax is

prvalue
[
if exp

] [
in range

] [
, x(variable1=value1

[
...

]
) rest(stat)

level(#) maxcnt(#) save dif all nobase nolabel brief
]

Options

level(#) specifies the level or percent for confidence intervals. The default is level(95) or as set
by the Stata command set level.

maxcnt(#) is the maximum count value for which a predicted probability is computed for count
models. The default is 9.

save preserves predicted values computed by prvalue for subsequent comparison.

dif compares predicted values computed by prvalue to those previously preserved with the save
option.
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96 Chapter 3. Estimation, Testing, Fit, and Interpretation

3.5.8 Computing marginal effects using mfx compute

Stata 7 introduced the mfx command for calculating marginal effects. Recall from above that the
marginal effect is the partial derivative of y with respect to xk. For the nonlinear models, the value
of the marginal depends on the specific values of all of the independent variables. After estimat-
ing a model, mfx compute will compute the marginal effects for all of the independent variables,
evaluated at values that are specified using the at() option. at() is similar to the x() and rest()
syntax used in our commands. To compute the marginal effects while holding age at 40 and female
at 0, the command is mfx compute, at(age=40 female=0). As with our commands for working
with predicted values, unspecified independent variables are held at their mean by default.

mfx has several features that make it worth exploring. For one, it works after many different
estimation commands. For dummy independent variables, mfx computes the discrete change rather
than the marginal effect. Of particular interest for economists, the command optionally computes
elasticities instead of marginal effects. And, mfx also computes standard errors for the effects. The
derivatives are calculated numerically, which means that the command can take a very long time
to execute when there are many independent variables and observations, especially when used with
mlogit. While we do not provide further discussion of mfx in this book, readers who are interested
in learning more about this command are encouraged to examine its entry in the Reference Manual.

3.6 Next steps

This concludes our discussion of the basic commands and options that are used for the estimation,
testing, assessing fit, and interpretation of regression models. In the next four chapters we illustrate
how each of the commands can be applied for models relevant to one particular type of outcome.
While Chapter 4 has somewhat more detail than later chapters, readers should be able to proceed
from here to any of the chapters that follow.
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Part II

Models for Specific Kinds of Outcomes

In Part II, we provide information on the models appropriate for different kinds of dependent
outcomes.

• Chapter 4 considers binary outcomes. Models for binary outcomes are the most basic type
that we consider and, to some extent, they provide a foundation for the models in later chap-
ters. For this reason, Chapter 4 has more detailed explanations and we recommend that all
readers review this chapter even if they are mainly interested other types of outcomes. We
show how to estimate the binary regression model, how to test hypotheses, how to compute
residuals and influence statistics, and how to calculate scalar measures of model fit. Follow-
ing this, we focus on interpretation, describing how these models can be interpreted using
predicted probabilities, discrete and marginal change in these probabilities, and odds ratios.

Chapters 5, 6, and 7 can be read in any combination or order, depending on the reader’s interests.
Each chapter provides information on estimating the relevant models, testing hypotheses about the
coefficients, and interpretation in terms of predicted probabilities. In addition,

• Chapter 5 on ordered outcomes describes the parallel regression assumption that is made by
the ordered logit and probit models and shows how this assumption can be tested. We also
discuss interpretation in terms of the underlying latent variable and odds ratios.

• Chapter 6 on nominal outcomes introduces the multinomial logit model. We show how to
test the assumption of the independence of irrelevant alternatives and present two graphical
methods of interpretation. We conclude by introducing the conditional logit model.

• Chapter 7 on count outcomes presents the Poisson and negative binomial regression models.
We show how to test the Poisson model’s assumption of equidispersion and how to incorporate
differences in exposure time into the models. We also describe versions of these models for
data with a high frequency of zero counts.

• Chapter 8 covers additional topics that extend material presented earlier. We discuss the use
and interpretation of categorical independent variables, interactions, and nonlinear terms. We
also provide tips on how to use Stata more efficiently and effectively.
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4 Models for Binary Outcomes

Regression models for binary outcomes are the foundation from which more complex models for
ordinal, nominal, and count models can be derived. Ordinal and nominal regression models are
equivalent to the simultaneous estimation of a series of binary outcomes. While the link is less
direct in count models, the Poisson distribution can be derived as the outcome of a large number
of binary trials. More importantly for our purposes, the zero-inflated count models that we discuss
in Chapter 7 merge a binary logit or probit with a standard Poisson or negative binomial model.
Consequently, the principles of estimation, testing, and interpretation for binary models provide
tools that can be readily adapted to models in later chapters. Thus, while each chapter is largely
self-contained, this chapter provides somewhat more detailed explanations than later chapters. As
a result, even if your interests are in models for ordinal, nominal, or count outcomes, we think that
you will benefit from reading this chapter.

Binary dependent variables have two values, typically coded as 0 for a negative outcome (i.e.,
the event did not occur) and 1 as a positive outcome (i.e., the event did occur). Binary outcomes are
ubiquitous and examples come easily to mind. Did a person vote? Is a manufacturing firm union-
ized? Does a person identify as a feminist or non-feminist? Did a start-up company go bankrupt?
Five years after a person was diagnosed with cancer, is he or she still alive? Was a purchased item
returned to the store or kept?

Regression models for binary outcomes allow a researcher to explore how each explanatory
variable affects the probability of the event occurring. We focus on the two most frequently used
models, the binary logit and binary probit models, referred to jointly as the binary regression model
(BRM). Since the model is nonlinear, the magnitude of the change in the outcome probability that is
associated with a given change in one of the independent variables depends on the levels of all of
the independent variables. The challenge of interpretation is to find a summary of the way in which
changes in the independent variables are associated with changes in the outcome that best reflect the
key substantive processes without overwhelming yourself or your readers with distracting detail.

The chapter begins by reviewing the mathematical structure of binary models. We then examine
statistical testing and fit, and finally, methods of interpretation. These discussions are intended as a
review for those who are familiar with the models. For a complete discussion, see Long (1997). You
can obtain sample do-files and data files that reproduce the examples in this chapter by downloading
the spostst4 package (see Chapter 1 for details).
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100 Chapter 4. Models for Binary Outcomes

4.1 The statistical model

There are three ways to derive the BRM, with each method leading to the same mathematical model.
First, an unobserved or latent variable can be hypothesized along with a measurement model relating
the latent variable to the observed, binary outcome. Second, the model can be constructed as a
probability model. Third, the model can be generated as random utility or discrete choice model.
This last approach is not considered in our review; see Long (1997, 155–156) for an introduction or
Pudney (1989) for a detailed discussion.

4.1.1 A latent variable model

Assume a latent or unobserved variable y∗ ranging from −∞ to ∞ that is related to the observed
independent variables by the structural equation,

y∗i = xiβ + εi

where i indicates the observation and ε is a random error. For a single independent variable, we can
simplify the notation to

y∗i = α+ βxi + εi

These equations are identical to those for the linear regression model with the important difference
that the dependent variable is unobserved.

The link between the observed binary y and the latent y∗ is made with a simple measurement
equation:

yi =
{

1 if y∗i > 0
0 if y∗i ≤ 0

Cases with positive values of y∗ are observed as y= 1, while cases with negative or zero values of
y∗ are observed as y=0.

Imagine a survey item that asks respondents if they agree or disagree with the proposition that “a
working mother can establish just as warm and secure a relationship with her children as a mother
who does not work”. Obviously, respondents vary greatly in their opinions on this issue. Some
people very adamantly agree with the proposition, some very adamantly disagree, and still others
have only weak opinions one way or the other. We can imagine an underlying continuum of possible
responses to this item, with every respondent having some value on this continuum (i.e., some value
of y∗). Those respondents whose value of y∗ is positive answer “agree” to the survey question
(y = 1), and those whose value of y∗ is 0 or negative answer “disagree” (y = 0). A shift in a
respondent’s opinion might move them from agreeing strongly with the position to agreeing weakly
with the position, which would not change the response we observe. Or, the respondent might move
from weakly agreeing to weakly disagreeing, in which case we would observe a change from y = 1
to y = 0.

Consider a second example, which we use throughout this chapter. Let y = 1 if a woman is in
the paid labor force and y = 0 if she is not. The independent variables include variables such as
number of children, education, and expected wages. Not all women in the labor force (y = 1) are
there with the same certainty. One woman might be close to leaving the labor force, while another
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4.1 The statistical model 101

woman could be firm in her decision to work. In both cases, we observe y=1. The idea of a latent
y∗ is that an underlying propensity to work generates the observed state. Again, while we cannot
directly observe the propensity, at some point a change in y∗ results in a change in what we observe,
namely, whether the woman is in the labor force.

Figure 4.1: Relationship between latent variable y∗ and Pr(y = 1) for the BRM.

The latent variable model for binary outcomes is illustrated in Figure 4.1 for a single independent
variable. For a given value of x, we see that

Pr(y = 1 | x) = Pr(y∗ > 0 | x)

Substituting the structural model and rearranging terms,

Pr(y = 1 | x) = Pr(ε > − [α+ βx] | x) (4.1)

This equation shows that the probability depends on the distribution of the error ε.

Two distributions of ε are commonly assumed, both with an assumed mean of 0. First, ε is
assumed to be distributed normally with Var(ε) = 1. This leads to the binary probit model, in which
Equation 4.1 becomes

Pr(y = 1 | x) =
∫ α+βx

−∞

1√
2π

exp
(
− t

2

2

)
dt

Alternatively, ε is assumed to be distributed logistically with Var(ε) = π2/3, leading to the binary
logit model with the simpler equation

Pr(y = 1 | x) =
exp (α+ βx)

1 + exp (α+ βx)
(4.2)
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102 Chapter 4. Models for Binary Outcomes

The peculiar value assumed for Var(ε) in the logit model illustrates a basic point about the iden-
tification of models with latent outcomes. In the LRM, Var(ε) can be estimated since y is observed.
For the BRM, the value of Var(ε) must be assumed since the dependent variable is unobserved. The
model is unidentified unless an assumption is made about the variance of the errors. For probit, we
assume Var(ε) = 1 since this leads to a simple form of the model. If a different value was assumed,
this would simply change the values of the structural coefficients in a uniform way. In the logit
model, the variance is set to π2/3 since this leads to the very simple form in Equation 4.2. While
the value assumed for Var(ε) is arbitrary, the value chosen does not affect the computed value of the
probability (see Long 1997, 49–50 for a simple proof). In effect, changing the assumed variance
affects the spread of the distribution, but not the proportion of the distribution above or below the
threshold.

Figure 4.2: Relationship between the linear model y∗ = α + βx + ε and the nonlinear probability
model Pr(y = 1 | x) = F (α+ βx).

For both models, the probability of the event occurring is the cumulative density function (cdf)
of ε evaluated at given values of the independent variables:

Pr(y = 1 | x) = F (xβ) (4.3)

where F is the normal cdf Φ for the probit model and the logistic cdf Λ for the logit model. The
relationship between the linear latent variable model and the resulting nonlinear probability model
is shown in Figure 4.2 for a model with a single independent variable. Panel A shows the error dis-
tribution for nine values of x, which we have labeled 1, 2,. . . , 9. The area where y∗ > 0 corresponds
to Pr(y = 1 | x) and has been shaded. Panel B plots Pr (y = 1 | x) corresponding to the shaded

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



4.2 Estimation using logit and probit 103

regions in Panel A. As we move from 1 to 2, only a portion of the thin tail crosses the threshold
in Panel A, resulting in a small change in Pr (y = 1 | x) in Panel B. As we move from 2 to 3 to 4,
thicker regions of the error distribution slide over the threshold and the increase in Pr (y = 1 | x)
becomes larger. The resulting curve is the well-known S-curve associated with the BRM.

4.1.2 A nonlinear probability model

Can all binary dependent variables be conceptualized as observed manifestations of some underly-
ing latent propensity? While philosophically interesting, perhaps, the question is of little practical
importance, as the BRM can also be derived without appealing to a latent variable. This is done by
specifying a nonlinear model relating the x’s to the probability of an event. Following Theil (1970),
the logit model can be derived by constructing a model in which the predicted Pr (y = 1 | x) is
forced to be within the range 0 to 1. For example, in the linear probability model,

Pr (y = 1 | x) = xβ + ε

the predicted probabilities can be greater than 1 and less than 0. To constrain the predictions to the
range 0 to 1, first transform the probability into the odds,

Ω(x) =
Pr (y = 1 | x)
Pr (y = 0 | x)

=
Pr (y = 1 | x)

1 − Pr (y = 1 | x)

which indicate how often something happens (y = 1) relative to how often it does not happen
(y = 0), and range from 0 when Pr (y = 1 | x) = 0 to ∞ when Pr (y = 1 | x) = 1. The log of the
odds, or logit, ranges from −∞ to ∞. This suggests a model that is linear in the logit:

ln Ω (x) = xβ

This equation can be shown to be equivalent to the logit model from Equation 4.2. Interpretation of
this form of the logit model often focuses on factor changes in the odds, which is discussed below.

Other binary regression models are created by choosing functions of xβ that range from 0 to 1.
Cumulative distribution functions have this property and readily provide a number of examples. For
example, the cdf for the standard normal distribution results in the probit model.

4.2 Estimation using logit and probit

Logit and probit can be estimated with the commands:

logit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, nolog or level(#)

noconstant cluster(varname) robust
]

probit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, nolog or level(#)

noconstant cluster(varname) robust
]

We have never had a problem with either of these models converging, even with small samples and
data with wide variation in scaling.
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104 Chapter 4. Models for Binary Outcomes

Variable lists

depvar is the dependent variable. indepvars is a list of independent variables. If indepvars is not
included, Stata estimates a model with only an intercept.

Warning For binary models, Stata defines observations in which depvar=0 as negative outcomes
and observations in which depvar equals any other non-missing value (including negative
values) as positive outcomes. To avoid possible confusion, we urge you to explicitly create a
0/1 variable for use as depvar.

Specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if you want to
estimate a logit model for only women who went to college (as indicated by the variable wc), you
could specify: logit lfp k5 k618 age hc lwg if wc==1.

Listwise deletion Stata excludes cases in which there are missing values for any of the variables
in the model. Accordingly, if two models are estimated using the same dataset but have different
sets of independent variables, it is possible to have different samples. We recommend that you use
mark and markout (discussed in Chapter 3) to explicitly remove cases with missing data.

Weights

Both logit and probit can be used with fweights, pweights, and iweights. In Chapter 3, we
provide a brief discussion of the different types of weights and how weighting variables are specified.

Options

nolog suppresses the iteration history.

or reports the “odds ratios” defined as exp
(
β̂
)

. Standard errors and confidence intervals are simi-

larly transformed. Alternatively, our listcoef command can be used.

level(#) specifies the level of the confidence interval. By default, Stata provides 95% confidence
intervals for estimated coefficients. You can also change the default level, say to a 90% interval,
with the command set level 90.

noconstant specifies that the model should not have a constant term. This would rarely be used
for these models.

cluster(varname) specifies that the observations are independent across the groups specified by
unique values of varname but not necessarily within the groups.
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4.2 Estimation using logit and probit 105

robust indicates that robust variance estimates are to be used. When cluster() is specified, robust
standard errors are automatically used. We provide a brief general discussion of these options in
Chapter 3.

Example

Our example is from Mroz’s (1987) study of the labor force participation of women, using data from
the 1976 Panel Study of Income Dynamics.1 The sample consists of 753 white, married women
between the ages of 30 and 60. The dependent variable lfp equals 1 if a woman is employed and
else equals 0. Since we have assigned variable labels, a complete description of the data can be
obtained using describe and summarize:

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. desc lfp k5 k618 age wc hc lwg inc

storage display value
variable name type format label variable label

lfp byte %9.0g lfplbl 1=in paid labor force; 0 not
k5 byte %9.0g # kids < 6
k618 byte %9.0g # kids 6-18
age byte %9.0g Wife´s age in years
wc byte %9.0g collbl Wife College: 1=yes,0=no
hc byte %9.0g collbl Husband College: 1=yes,0=no
lwg float %9.0g Log of wife´s estimated wages
inc float %9.0g Family income excluding wife´s

. summarize lfp k5 k618 age wc hc lwg inc

Variable Obs Mean Std. Dev. Min Max

lfp 753 .5683931 .4956295 0 1
k5 753 .2377158 .523959 0 3

k618 753 1.353254 1.319874 0 8
age 753 42.53785 8.072574 30 60
wc 753 .2815405 .4500494 0 1
hc 753 .3917663 .4884694 0 1
lwg 753 1.097115 .5875564 -2.054124 3.218876
inc 753 20.12897 11.6348 -.0290001 96

Using these data, we estimated the model

Pr (lfp = 1) = F (β0 + βk5k5 + βk618k618 + βageage

+ βwcwc + βhchc + βlwglwg + βincinc)

with both the logit and probit commands, and then we created a table of results with outreg:2

1These data were generously made available by Thomas Mroz.
2outreg is an user-written command Gallup (2001) that must be added to Stata before it can be used. To install a copy

of the command, type net search outreg while on-line and then follow the prompts.
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. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753
LR chi2(7) = 124.48
Prob > chi2 = 0.0000

Log likelihood = -452.63296 Pseudo R2 = 0.1209

lfp Coef. Std. Err. z P>|z| [95% Conf. Interval]

k5 -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799
k618 -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085
age -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162
wc .8072738 .2299799 3.51 0.000 .3565215 1.258026
hc .1117336 .2060397 0.54 0.588 -.2920969 .515564

lwg .6046931 .1508176 4.01 0.000 .3090961 .9002901
inc -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583

_cons 3.18214 .6443751 4.94 0.000 1.919188 4.445092

. outreg using 04lgtpbt, replace

. probit lfp k5 k618 age wc hc lwg inc, nolog

Probit estimates Number of obs = 753
LR chi2(7) = 124.36
Prob > chi2 = 0.0000

Log likelihood = -452.69496 Pseudo R2 = 0.1208

lfp Coef. Std. Err. z P>|z| [95% Conf. Interval]

k5 -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411
k618 -.0385945 .0404893 -0.95 0.340 -.117952 .0407631
age -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095
wc .4883144 .1354873 3.60 0.000 .2227642 .7538645
hc .0571704 .1240052 0.46 0.645 -.1858754 .3002161

lwg .3656287 .0877792 4.17 0.000 .1935847 .5376727
inc -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626

_cons 1.918422 .3806536 5.04 0.000 1.172355 2.66449

. outreg using 04lgtpbt, append

While the iteration log was suppressed by the nolog option, the value of the log likelihood at
convergence is listed as Log likelihood. The information in the header and table of coefficients
is in the same form as discussed in Chapter 3.

By using the append option the second time we call outreg, the combined results for the logit
and probit models are put in the file 04lgtpbt.out. After making a few edits to the file, we get

(Continued on next page)
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Logit Probit
---------------------------------------------------
# kids <= 5. -1.463 -0.875

(7.43) (7.70)
# kids 6-18. -0.065 -0.039

(0.95) (0.95)
Wife´s age in years. -0.063 -0.038

(4.92) (4.97)
Wife College: 1=yes,0=no. 0.807 0.488

(3.51) (3.60)
Husband College: 1=yes,0=no. 0.112 0.057

(0.54) (0.46)
Log of wife´s estimated wages. 0.605 0.366

(4.01) (4.17)
Family income excluding wife´s -0.034 -0.021

(4.20) (4.30)
---------------------------------------------------
Observations 753 753
Absolute value of z-statistics in parentheses

The estimated coefficients differ from logit to probit by a factor of about 1.7. For example, the
ratio of the logit to probit coefficient for k5 is 1.67 and for inc is 1.68. This illustrates how the
magnitudes of the coefficients are affected by the assumed Var(ε). The exception to the ratio of 1.7
is the coefficient for hc. This estimate has a great deal of sampling variability (i.e., a large standard
error), and in such cases, the 1.7 rule often does not hold. Values of the z-tests are quite similar since
they are not affected by the assumed Var(ε). The z-test statistics are not exactly the same because
the two models assume different distributions of the errors.

4.2.1 Observations predicted perfectly

ML estimation is not possible when the dependent variable does not vary within one of the cate-
gories of an independent variable. For example, say that you are estimating a logit model predicting
whether a person voted in the last election, vote, and that one of the independent variables is whether
you are enrolled in college, college. If you had a small number of college students in your sample,
it is possible that none of them voted in the last election. That is, vote==0 every time college==1.
The model cannot be estimated since the coefficient for college is effectively negative infinity.
Stata’s solution is to drop the variable college along with all observations where college==1.
For example,

. logit vote college phd, nolog

Note: college~=0 predicts failure perfectly
college dropped and 4 obs not used

Logit estimates Number of obs = 299
(output omitted )

4.3 Hypothesis testing with test and lrtest

Hypothesis tests of regression coefficients can be conducted with the z-statistics in the estimation
output, with test for Wald tests of simple and complex hypotheses, and with lrtest for the cor-
responding likelihood-ratio tests. We consider the use of each of these to test hypotheses involving
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108 Chapter 4. Models for Binary Outcomes

only one coefficient, and then we show you how both test and lrtest can be used to test hypothe-
ses involving multiple coefficients.

4.3.1 Testing individual coefficients

If the assumptions of the model hold, the ML estimators (e.g., the estimates produced by logit or
probit) are distributed asymptotically normally:

β̂k
a∼ N

(
βk, σ

2
β̂k

)
The hypothesis H0:βk =β∗ can be tested with the z-statistic:

z =
β̂k − β∗

σ̂β̂k

z is included in the output from logit and probit. Under the assumptions justifying ML, if H0

is true, then z is distributed approximately normally with a mean of zero and a variance of one for
large samples. This is shown in the following figure, where the shading shows the rejection region
for a two-tailed test at the .05 level:

For example, consider the results for variable k5 from the logit output generated in Section 4.2:

lfp Coef. Std. Err. z P>|z| [95% Conf. Interval]

k5 -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799

(output omitted )

We conclude that

Having young children has a significant effect on the probability of working (z =
−7.43, p < 0.01 for a two-tailed test).
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One and two-tailed tests

The probability levels in the output for estimation commands are for two-tailed tests. That is, the
result corresponds to the area of the curve that is either greater than |z| or less than −|z|. When
past research or theory suggests the sign of the coefficient, a one-tailed test can be used, and H0

is only rejected when z is in the expected tail. For example, assume that my theory proposes that
having children can only have a negative effect on labor force participation. For k618, z = −0.950
and P > | z | is .342. This is the proportion of the sampling distribution for z that is less than
−0.950 or greater than 0.950. Since we want a one-tailed test and the coefficient is in the expected
direction, we only want the proportion of the distribution less than −0.950, which is .342/2 = .171.
We conclude that

Having older children does not significantly affect a woman’s probability of working
(z = −0.95, p = .17 for a one-tailed test).

You should only divide P > | z | by 2 when the estimated coefficient is in the expected direc-
tion. For example, suppose I am testing a theory that having a husband who went to college has a
negative effect on labor force participation, but the estimated coefficient is positive with z = 0.542
and P > | z | is .588. The one-tailed significance level would be the percent of the distribu-
tion less than .542 (not the percent less than −.542), which is equal to 1 − (.588/2) = .706, not
.588/2 = .294. We conclude that

Having a husband who attends college does not significantly affect a woman’s proba-
bility of working (z = 0.542, p = .71 for a one-tailed test).

Testing single coefficients using test

The z-test included in the output of estimation commands is a Wald test, which can also be computed
using test. For example, to test H0:βk5 = 0,

. test k5

( 1) k5 = 0.0

chi2( 1) = 55.14
Prob > chi2 = 0.0000

We can conclude that

The effect of having young children on the probability of entering the labor force is
significant at the .01 level (X2 = 55.14, df = 1, p < .01)

The value of a chi-squared test with 1 degree of freedom is identical to the square of the correspond-
ing z-test. For example, using Stata’s display as a calculator

. display sqrt(55.14)
7.4256313

This corresponds to −7.426 from the logit output. Some packages, such as SAS, present chi-
squared tests rather than the corresponding z-test.
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Testing single coefficients using lrtest

An LR test is computed by comparing the log likelihood from a full model to that of a restricted
model. To test a single coefficient, we begin by estimating the full model:

. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753
LR chi2(7) = 124.48
Prob > chi2 = 0.0000

Log likelihood = -452.63296 Pseudo R2 = 0.1209
(output omitted )

. lrtest, saving(0)

Then we estimate the model without k5:
. logit lfp k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753
LR chi2(6) = 58.00
Prob > chi2 = 0.0000

Log likelihood = -485.87503 Pseudo R2 = 0.0563
(output omitted )

. lrtest
Logit: likelihood-ratio test chi2(1) = 66.48

Prob > chi2 = 0.0000

The resulting LR test can be interpreted as

The effect of having young children is significant at the .01 level (LRX2 = 66.48,
df = 1, p < .01).

4.3.2 Testing multiple coefficients

In many situations, one wishes to test complex hypotheses that involve more than one coefficient.
For example, we have two variables that reflect education in the family, hc and wc. The conclusion
that education has (or does not have) a significant effect on labor force participation cannot be based
on a pair of tests of single coefficients. But, a joint hypothesis can be tested using either test or
lrtest.

Testing multiple coefficients using test

To test that the effect of the wife attending college and of the husband attending college on labor
force participation are both equal to 0, H0: βwc = βhc = 0, we estimate the full model and then

. test hc wc

( 1) hc = 0.0
( 2) wc = 0.0

chi2( 2) = 17.66
Prob > chi2 = 0.0001
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We conclude that

The hypothesis that the effects of the husband’s and the wife’s education are simultane-
ously equal to zero can be rejected at the .01 level (X2 = 17.66, df = 2, p < .01).

This form of the test command can be readily extended to hypotheses regarding more than two
independent variables by listing more variables; for example, test wc hc k5.

test can also be used to test the equality of coefficients. For example, to test that the effect of
the wife attending college on labor force participation is equal to the effect of the husband attending
college, H0: βwc = βhc:

. test hc=wc

( 1) - wc + hc = 0.0

chi2( 1) = 3.54
Prob > chi2 = 0.0600

Note that test has translated βwc = βhc into the equivalent expression −βwc + βhc = 0. We
conclude that

The null hypothesis that the effects of husband’s and wife’s education are equal is
marginally significant at the .05 level (X2 = 3.54, df = 1, p = .06). This suggests
that we have weak evidence that the effects are not equal.

Testing multiple coefficients using lrtest

To compute an LR test of multiple coefficients, we first estimate the full model and then save the
results using the command: lrtest, saving(0). Then, to test the hypothesis that the effect of
the wife attending college and of the husband attending college on labor force participation are both
equal to zero, H0: βwc = βhc = 0, we estimate the model that excludes these two variables and then
run lrtest:

. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753
LR chi2(7) = 124.48
Prob > chi2 = 0.0000

Log likelihood = -452.63296 Pseudo R2 = 0.1209
(output omitted )

. lrtest, saving(0)

. logit lfp k5 k618 age lwg inc, nolog
(output omitted )

. lrtest
Logit: likelihood-ratio test chi2(2) = 18.50

Prob > chi2 = 0.0001

We conclude that

The hypothesis that the effects of the husband’s and the wife’s education are simultane-
ously equal to zero can be rejected at the .01 level (LRX2 = 18.50, df = 2, p < .01).
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This logic can be extended to exclude other variables. Say we wish to test the null hypothesis that
all of the effects of the independent variables are simultaneously equal to zero. We do not need to
estimate the full model again since the results are still saved from our use of lrtest, saving(0)
above. We estimate the model with no independent variables and run lrtest:

. logit lfp, nolog

Logit estimates Number of obs = 753
LR chi2(0) = 0.00
Prob > chi2 = .

Log likelihood = -514.8732 Pseudo R2 = 0.0000
(output omitted )

. lrtest

Logit: likelihood-ratio test chi2(7) = 124.48
Prob > chi2 = 0.0000

We can reject the hypothesis that all coefficients except the intercept are zero at the .01
level (LRX2 = 124.48, df = 7, p < .01).

Note that this test is identical to the test in the header of the logit output: LR chi2(7) = 124.48.

4.3.3 Comparing LR and Wald tests

While the LR and Wald tests are asymptotically equivalent, their values differ in finite samples. For
example,

LR Test Wald Test

Hypothesis df G2 p W p

βk5 = 0 1 66.48 <0.01 55.14 <0.01

βwc = βhc = 0 2 18.50 <0.01 17.66 <0.01

All slopes = 0 7 124.48 <0.01 95.0 < 0.01

Statistical theory is unclear on whether the LR or Wald test is to be preferred in models for categorical
outcomes, although many statisticians, ourselves included, prefer the LR test. The choice of which
test to use is often determined by convenience, personal preference, and convention within an area
of research.

4.4 Residuals and influence using predict

Examining residuals and outliers is an important way to assess the fit of a regression model. Residu-
als are the difference between a model’s predicted and observed outcome for each observation in the
sample. Cases that fit poorly (i.e., have large residuals) are known as outliers. When an observation
has a large effect on the estimated parameters, it is said to be influential.
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4.4 Residuals and influence using predict 113

Not all outliers are influential, as Figure 4.3 illustrates. In the top panel Figure 4.3, we show a
scatterplot of some simulated data, and we have drawn the line that results from the linear regression
of y on x. The residual of any observation is its vertical distance from the regression line. The
observation highlighted by the box has a very large residual and so is an outlier. Even so, it is not
very influential on the slope of the regression line. In the bottom panel, the only observation whose
value has changed is the highlighted one. Now, the magnitude of the residual for this observation is
much smaller, but it is very influential; its presence is entirely responsible for the slope of the new
regression line being positive instead of negative.

y

Large outlier that is not influential
x

 Regression line  
 

0 5 10
0

5

10

y

Smaller outlier that is influential
x

 Old regression line  New regression line
 

0 15 30
0

15

30

Figure 4.3: The distinction between an outlier and an influential observation.

Building on the analysis of residuals and influence in the linear regression model (see Fox 1991
and Weisberg 1980, Chapter 5 for details), Pregibon (1981) extended these ideas to the BRM.

4.4.1 Residuals

If we define the predicted probability for a given set of independent variables as

πi = Pr (yi = 1 | xi)

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



114 Chapter 4. Models for Binary Outcomes

then the deviations yi − πi are heteroskedastistic, with

Var (yi − πi | xi) = πi (1 − πi)

This implies that the variance in a binary outcome is greatest when πi = .5 and least as πi ap-
proaches 0 or 1. For example, .5 (1 − .5) = .25 and .01 (1 − .01) = .0099. In other words, there is
heteroskedasticity that depends on the probability of a positive outcome. This suggests the Pearson
residual which divides the residual y − π̂ by its standard deviation:

ri =
yi − π̂i√
π̂i (1 − π̂i)

Large values of r suggest a failure of the model to fit a given observation. Pregibon (1981) showed
that the variance of r is not one, since Var(yi − π̂i) �= π̂i (1 − π̂i), and proposed the standardized
Pearson residual

rStd
i =

ri√
1 − hii

where
hii = π̂i (1 − π̂i)xi V̂ar

(
β̂
)
x′

i (4.4)

While rStd is preferred over r due to its constant variance, we find that the two residuals are often
similar in practice. But, since rStd is simple to compute in Stata, we recommend that you use this
measure.

Example

An index plot is a useful way to examine residuals by simply plotting them against the observation
number. The standardized residuals can be computed by specifying the rs option with predict.
For example,

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. predict rstd, rs

. label var rstd "Standardized Residual"

. sort inc

. generate index = _n

. label var index "Observation Number"

In this example, we first estimate the logit model. Second, we use the rs option for predict
to specify that we want standardized residuals, which are placed in a new variable that we have
named rstd. Third, we sort the cases by income, so that observations are ordered from lowest to
highest incomes. This results in a plot of residuals in which cases are ordered from low income to
high income. The next line creates a new variable index whose value for each observation is that
observation’s number (i.e., row) in the dataset. Note that n on the right side of generate inserts the
observation number. All that remains is to plot the residuals against the index using the commands3

3Recall that the > in the following command indicates a line wrap. The /* */ is just a way of executing long lines in
do-files. You should not type these characters if you are working from the Command Window.
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. graph rstd index, s(o) xscale(0,800) yscale(-4,4) yline(0) gap(4) /*
> */ xlabel(0,200,400,600,800) ylabel(-4,-2,0,2,4) b2("Observation Number")

which produces the following index plot of standardized Pearson residuals:
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There is no hard-and-fast rule for what counts as a “large” residual. Indeed, in their detailed
discussion of residuals and outliers in the binary regression model, Hosmer and Lemeshow (2000,
176) sagely caution that it is impossible to provide any absolute standard: “in practice, an assessment
of ‘large’ is, of necessity, a judgment call based on experience and the particular set of data being
analyzed”.

One way to search for problematic residuals is to sort the residuals by the value of a variable that
you think may be a problem for the model. In our example, we sorted the data by income before
plotting. If this variable was primarily responsible for the lack of fit of some observations, the plot
would show a disproportionate number of cases with large residuals among either the low income or
high income observations in our model. However, this does not appear to be the case for these data.

Still, in our plot, several residuals stand out as being large relative to the others. In such a cases,
it is important to identify the specific observations with large residuals for further inspection. We
can do this by instructing graph to use the observation number to label each point in our plot. Recall
that we just created a new variable called index whose value is equal to the observation number for
each observation. If we replace option s(o), which plots points as small circles, with s([index]),
then the values of index will be used as the symbol for each point in the plot. For example, the
command4

. graph rstd index, s([index]) xscale(0,800) yscale(-4,4) yline(0) gap(4) /*
> */ xlabel(0,200,400,600,800) ylabel(-4,-2,0,2,4) b2("Observation Number")

leads to the following plot:

4If you attempt to reproduce this example, the observation numbers of the observations with the largest residuals could
be slightly different. This is because there are tie values in the data; sort breaks the ties randomly.
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While labeling points with observations leads to chaos where there are many points, it effectively
highlights and identifies the isolated cases. You can then easily list these cases. For example, the
observation 142 stands out and should be examined:

. list in 142

Observation 142

lfp inLF k5 1 k618 2
age 36 wc NoCol hc NoCol
lwg -2.054124 inc 11.2 rstd 3.191524

index 142

Alternatively, we can use list to list all observations with large residuals:

. list rstd index if rstd>2.5 | rstd<-2.5

rstd index
142. 3.191524 142
345. 2.873378 345
511. -2.677243 511
555. -2.871972 555
752. 3.192648 752

We can then check the listed cases to see if there are problems.

Regardless of which method is used, further analyses of the highlighted cases might reveal either
incorrectly coded data or some inadequacy in the specification of the model. Cases with large
positive or negative residuals should not simply be discarded from the analysis, but rather should be
examined to determine why they fit so poorly.

4.4.2 Influential cases

As shown in Figure 4.3, large residuals do not necessarily have a strong influence on the estimated
parameters, and observations with relatively small residuals can have a large influence. Influential
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4.5 Scalar measures of fit using fitstat 117

points are also sometimes called high-leverage points. These can be determined by examining the
change in the estimated β̂ that occurs when the ith observation is deleted. While estimating a new
logit for each case is usually impractical (although as the speed of computers increases, this may
soon no longer be so), Pregibon (1981) derived an approximation that only requires estimating the
model once. This measure summarizes the effect of removing the ith observation on the entire
vector β̂, which is the counterpart to Cook’s distance for the linear regression model. The measure
is defined as

Ci =
r2i hii

(1 − hii)
2

where hii, was defined in Equation 4.4. In Stata, which refers to Cook’s distance as dbeta, we can
compute and plot Cook’s distance as follows:

. predict cook, dbeta

. label var cook "Cook´s Statistic"

. graph cook index, s([index]) xscale(0,800) yscale(0,.3) yline(.1,.2) /*
> */ xlabel(0,200,400,600,800) ylabel(0,.1,.2,.3) b2("Observation Number")

These commands produce the following plot, which shows that cases 142, 309, and 752 merit further
examination:
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Methods for plotting residuals and outliers can be extended in many ways, including plots of
different diagnostics against one another. Details of these plots are found in Cook and Weisberg
(1999), Hosmer and Lemeshow (2000), and Landwehr et al. (1984).

4.5 Scalar measures of fit using fitstat

As discussed in Chapter 3, a scalar measure of fit can be useful in comparing competing models.
Within a substantive area, measures of fit provide a rough index of whether a model is adequate. For
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118 Chapter 4. Models for Binary Outcomes

example, if prior models of labor force participation routinely have values of .4 for a given measure
of fit, you would expect that new analyses with a different sample or with revised measures of the
variables would result in a similar value for that measure of fit. But, it is worth repeating that there
is no convincing evidence that selecting a model that maximizes the value of a given measure of fit
results in a model that is optimal in any sense other than the model having a larger value of that
measure. Details on these measures are presented in Chapter 3.

Example

To illustrate the use of scalar measures of fit, consider two models. M1 contains our original spec-
ification of independent variables: k5, k618, age, wc, hc, lwg, and inc. M2 drops the variables
k618, hc, and lwg, and adds agesq, which is the square of age. These models are estimated and
measures of fit are computed:

. quietly logit lfp k5 k618 age wc hc lwg inc, nolog

. outreg using 04fit, replace nolabel

. quietly fitstat, save

. gen agesq = age*age

. quietly logit lfp k5 age agesq wc inc, nolog

. outreg using 04fit, append nolabel

We used quietly to suppress the output from logit, and then used outreg to combine the results
from the two logits:

Model1 Model2
k5 -1.463 -1.380

(7.43)** (7.06)**
k618 -0.065

(0.95)
age -0.063 0.057

(4.92)** (0.50)
wc 0.807 1.094

(3.51)** (5.50)**
hc 0.112

(0.54)
lwg 0.605

(4.01)**
inc -0.034 -0.032

(4.20)** (4.18)**
agesq -0.001

(1.00)
Constant 3.182 0.979

(4.94)** (0.40)

Observations 753 753
Absolute value of z-statistics in parentheses
* significant at 5%; ** significant at 1%

The output from fitstat forM1 was suppressed, but the results were saved to be listed by a second
call to fitstat using the dif option:
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4.6 Interpretation using predicted values 119

. fitstat, dif

Measures of Fit for logit of lfp

Current Saved Difference
Model: logit logit
N: 753 753 0
Log-Lik Intercept Only: -514.873 -514.873 0.000
Log-Lik Full Model: -461.653 -452.633 -9.020
D: 923.306(747) 905.266(745) 18.040(2)
LR: 106.441(5) 124.480(7) 18.040(2)
Prob > LR: 0.000 0.000 0.000
McFadden´s R2: 0.103 0.121 -0.018
McFadden´s Adj R2: 0.092 0.105 -0.014
Maximum Likelihood R2: 0.132 0.152 -0.021
Cragg & Uhler´s R2: 0.177 0.204 -0.028
McKelvey and Zavoina´s R2: 0.182 0.217 -0.035
Efron´s R2: 0.135 0.155 -0.020
Variance of y*: 4.023 4.203 -0.180
Variance of error: 3.290 3.290 0.000
Count R2: 0.677 0.693 -0.016
Adj Count R2: 0.252 0.289 -0.037
AIC: 1.242 1.223 0.019
AIC*n: 935.306 921.266 14.040
BIC: -4024.871 -4029.663 4.791
BIC´: -73.321 -78.112 4.791

Difference of 4.791 in BIC´ provides positive support for saved model.

Note: p-value for difference in LR is only valid if models are nested.

These results illustrate the limitations inherent in scalar measures of fit. M2 deleted two variables
that were not significant and one that was from M1. It added a new variable that was not significant
in the new model. Since the models are not nested, they cannot be compared using a difference of
chi-squared test.5 What do the fit statistics show? First, the values of the pseudo-R2s are slightly
larger for M2 even though a significant variable was dropped and only a nonsignificant variable was
added. If you take the pseudo-R2s as evidence for the “best” model, which we do not, there is some
evidence preferring M2. Second, the BIC statistic is smaller for M1, which provides support for that
model. Following Raftery’s (1996) guidelines, one would say that there is positive (neither weak
nor strong) support for M1.

4.6 Interpretation using predicted values

Since the BRM is nonlinear, no single approach to interpretation can fully describe the relationship
between a variable and the outcome. We suggest that you try a variety of methods, with the goal of
finding an elegant way to present the results that does justice to the complexities of the nonlinear
model.

In general, the estimated parameters from the BRM do not provide directly useful information
for understanding the relationship between the independent variables and the outcome. With the
exception of the rarely used method of interpreting the latent variable (which we discuss in our
treatment of ordinal models in Chapter 5), substantively meaningful interpretations are based on

5fitstat, dif computes the difference between all measures even if the models are not nested. As with the Stata
command lrtest, it is up to the user to determine if it makes sense to interpret the computed difference.
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120 Chapter 4. Models for Binary Outcomes

predicted probabilities and functions of those probabilities (e.g., ratios, differences). As shown in
Figure 4.1, for a given set of values of the independent variables, the predicted probability in BRMs
is defined as

Logit: P̂r (y = 1 | x) = Λ
(
xβ̂

)
Probit: P̂r (y = 1 | x) = Φ

(
xβ̂

)
where Λ is the cdf for the logistic distribution with variance π2/3 and Φ is the cdf for the normal
distribution with variance 1. For any set of values of the independent variables, the predicted proba-
bility can be computed. A variety of commands in Stata and our pr* commands make it very simple
to work with these predicted probabilities.

4.6.1 Predicted probabilities with predict

After running logit or probit,

predict newvarname
[
if exp

] [
in range

]
can be used to compute the predicted probability of a positive outcome for each observation, given
the values on the independent variables for that observation. The predicted probabilities are stored
in the new variable newvarname. The predictions are computed for all cases in memory that do not
have missing values for the variables in the model, regardless of whether if and in had been used to
restrict the estimation sample. For example, if you estimate logit lfp k5 age if wc==1, only
212 cases are used. But predict newvarname computes predictions for the entire dataset, 753
cases. If you only want predictions for the estimation sample, you can use the command predict
newvarname if e(sample)==1. 6

predict can be used to examine the range of predicted probabilities from your model. For
example,

. predict prlogit
(option p assumed; Pr(lfp))

. summarize prlogit

Variable Obs Mean Std. Dev. Min Max

prlogit 753 .5683931 .1944213 .0139875 .9621198

The message (option p assumed; Pr(lfp)) reflects that predict can compute many different
quantities. Since we did not specify an option indicating which quantity to predict, option p for
predicted probabilities was assumed, and the new variable prlogit was given the variable label
Pr(lfp). summarize computes summary statistics for the new variable and shows that the pre-
dicted probabilities in the sample range from .014 to .962, with a mean predicted probability of
being in the labor force of .568.

We can use dotplot to plot the predicted probabilities for our sample,7

6Stata estimation commands create the variable e(sample) indicating whether a case was used when estimating a model.
Accordingly, the condition if e(sample)==1 selects only cases used in the last estimation.

7Recall from Chapter 2 that the gap() option controls the distance between the left-side text and the vertical axis.
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. label var prlogit "Logit: Pr(lfp)"

. dotplot prlogit, ylabel(0 .2 to 1) gap(3)

which leads to the following plot:
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The plot clearly shows that the predicted probabilities for individual observations span almost the
entire range from 0 to 1, but that roughly two-thirds of the observations have predicted probabilities
between .40 and .80.

predict can also be used to demonstrate that the predictions from logit and probit models are
essentially identical. Even though the two models make different assumptions about Var(ε), these
differences are absorbed in the relative magnitudes of the estimated coefficients. To see this, we first
estimate the two models and compute their predicted probabilities:

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. predict prlogit
(option p assumed; Pr(lfp))
. label var prlogit "Logit: Pr(lfp)"

. probit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. predict prprobit
(option p assumed; Pr(lfp))
. label var prprobit "Probit: Pr(lfp)"

Next, we check the correlation between the two sets of predicted values:

. pwcorr prlogit prprobit

prlogit prprobit

prlogit 1.0000
prprobit 0.9998 1.0000
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122 Chapter 4. Models for Binary Outcomes

The extremely high correlation is confirmed by plotting them against one another. The command

. graph prlogit prprobit, /*
> */ xscale(0,1) yscale(0,1) yline(.25,.5,.75,1) xline(.25,.5,.75,1)

leads to the following plot:
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In terms of predictions, there is very little reason to prefer either logit or probit. If your substantive
findings turn on whether you used logit or probit, we would not place much confidence in either re-
sult. In our own research, we tend to use logit, primarily because of the availability of interpretation
in terms of odds and odds ratios (discussed below).

Overall, examining predicted probabilities for the cases in the sample provides an initial check of
the model. To better understand and present the substantive findings, it is usually more effective to
compute predictions at specific, substantively informative values. Our commands prvalue, prtab,
and prgen are designed to make this very simple.

4.6.2 Individual predicted probabilities with prvalue

A table of probabilities for ideal types of people (or countries, cows, or whatever you are studying)
can quickly summarize the effects of key variables. In our example of labor force participation, we
could compute predicted probabilities of labor force participation for women in these three types of
families:

• Young, low income and low education families with young children.

• Highly educated, middle aged couples with no children at home.

• An “average family” defined as having the mean on all variables.
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This can be done with a series of calls to prvalue (see Chapter 3 for a discussion of options for this
command):8

. * young, low income, low education families with young children.

. prvalue, x(age=35 k5=2 wc=0 hc=0 inc=15) rest(mean)

logit: Predictions for lfp

Pr(y=inLF|x): 0.1318 95% ci: (0.0723,0.2282)

Pr(y=NotInLF|x): 0.8682 95% ci: (0.7718,0.9277)

k5 k618 age wc hc lwg

x= 2 1.3532537 35 0 0 1.0971148

inc

x= 15

We have set the values of the independent variables to those that define our first type of family, with
other variables held at their mean. The output shows the predicted probability of working (.13),
along with the chosen values for each variable. While the values of the independent variables can
be suppressed with the brief option, it is safest to look at them to make sure they are correct. This
process is repeated for the other ideal types:

. * highly educated families with no children at home.

. prvalue, x(age=50 k5=0 k618=0 wc=1 hc=1) rest(mean)

logit: Predictions for lfp

Pr(y=inLF|x): 0.7166 95% ci: (0.6266,0.7921)

Pr(y=NotInLF|x): 0.2834 95% ci: (0.2079,0.3734)

k5 k618 age wc hc lwg

x= 0 0 50 1 1 1.0971148

inc

x= 20.128965

. * an average person

. prvalue, rest(mean)

logit: Predictions for lfp

Pr(y=inLF|x): 0.5778 95% ci: (0.5388,0.6159)

Pr(y=NotInLF|x): 0.4222 95% ci: (0.3841,0.4612)

k5 k618 age wc hc lwg

x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148

inc

x= 20.128965

With predictions in hand, we can summarize the results and get a better general feel for the factors
affecting a wife’s labor force participation.

8mean is the default setting for the rest() option, so rest(mean) does not need to be specified. We include it in many of
our examples anyway, because its use emphasizes that the results are contingent on specified values for all of the independent
variables.
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Probability
Ideal Type of LFP

Young, low income and low education 0.13
families with young children.

Highly educated, middle-aged couples 0.72
with no children at home.

An “average” family 0.58

4.6.3 Tables of predicted probabilities with prtab

In some cases, the focus might be on two or three categorical independent variables. Predictions for
all combinations of the categories of these variables could be presented in a table. For example,

Number Predicted Probability
of Young Did Not Attended
Children Attend College Difference

0 0.61 0.78 0.17
1 0.26 0.44 0.18
2 0.08 0.16 0.08
3 0.02 0.04 0.02

This table shows the strong effect on labor force participation of having young children and how the
effect differs according to the wife’s education. One way to construct such a table is by a series of
calls to prvalue (we use the brief option to limit output):

. prvalue, x(k5=0 wc=0) rest(mean) brief

Pr(y=inLF|x): 0.6069 95% ci: (0.5558,0.6558)
Pr(y=NotInLF|x): 0.3931 95% ci: (0.3442,0.4442)

. prvalue, x(k5=1 wc=0) rest(mean) brief

Pr(y=inLF|x): 0.2633 95% ci: (0.1994,0.3391)
Pr(y=NotInLF|x): 0.7367 95% ci: (0.6609,0.8006)

. * and so on, ad nauseam...

Even for a simple table, this approach is tedious and error-prone. prtab automates the process by
computing a table of predicted probabilities for all combinations of up to four categorical variables.
For example,

(Continued on next page)
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. prtab k5 wc, rest(mean)

logit: Predicted probabilities of positive outcome for lfp

Wife College:
# kids < 1=yes,0=no
6 NoCol College

0 0.6069 0.7758
1 0.2633 0.4449
2 0.0764 0.1565
3 0.0188 0.0412

k5 k618 age wc hc lwg
x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148

inc
x= 20.128965

4.6.4 Graphing predicted probabilities with prgen

When a variable of interest is continuous, you can either select values (e.g., quartiles) and construct
a table, or create a graph. For example, to examine the effects of income on labor force participation
by age, we can use the estimated parameters to compute predicted probabilities as income changes
for fixed values of age. This is shown in Figure 4.4. The command prgen creates data that can be
graphed in this way. The first step is to generate the predicted probabilities for those aged 30:

. prgen inc, from(0) to(100) generate(p30) x(age=30) rest(mean) n(11)

logit: Predicted values as inc varies from 0 to 100.

k5 k618 age wc hc lwg
x= .2377158 1.3532537 30 .2815405 .39176627 1.0971148

inc
x= 20.128965

. label var p30p1 "Age 30"

inc is the independent variable that we want to vary along the x-axis. The options that we use are

from(0) and to(100) specify the minimum and maximum values over which inc is to vary.
The default is the variable’s observed minimum and maximum values.

n(11) indicates that 11 evenly spaced values of inc between 0 and 100 should be used. You should
choose the value that corresponds to the number of symbols you want on your graph.

x(age=30) indicates that we want to hold the value of age at 30. By default, other variables will
be held at their mean unless rest() is used to specify some other summary statistic.

gen(p30) indicates the root name used in constructing new variables. prgen creates p30x that
contains the values of inc that are used; p30p1 with the values of the probability of a 1, and
p30p0 with values of the probability of a 0.
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Figure 4.4: Graph of predicted probabilities created using prgen.

Additional calls of prgen are made holding age at different values:

. prgen inc, from(0) to(100) generate(p40) x(age=40) rest(mean) n(11)
(output omitted )

. label var p40p1 "Age 40"

. prgen inc, from(0) to(100) generate(p50) x(age=50) rest(mean) n(11)
(output omitted )

. label var p50p1 "Age 50"

. prgen inc, from(0) to(100) generate(p60) x(age=60) rest(mean) n(11)
(output omitted )

. label var p60p1 "Age 60"

Listing the values for the first eleven observations in the dataset for some of the new variables
prgen has created may help you understand better what this command does:

. list p30p1 p40p1 p50p1 p60p1 p60x in 1/11

p30p1 p40p1 p50p1 p60p1 p60x
1. .8575829 .7625393 .6313345 .4773258 0
2. .8101358 .6947005 .5482202 .3928797 10
3. .7514627 .6172101 .462326 .3143872 20
4. .6817801 .5332655 .3786113 .2452419 30
5. .6028849 .4473941 .3015535 .187153 40
6. .5182508 .36455 .2342664 .1402662 50
7. .4325564 .289023 .1781635 .1036283 60
8. .3507161 .2236366 .1331599 .0757174 70
9. .2768067 .1695158 .0981662 .0548639 80
10. .2133547 .1263607 .071609 .0395082 90
11. .1612055 .0929622 .0518235 .0283215 100
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4.6 Interpretation using predicted values 127

The predicted probabilities of labor force participation for those average on all other variables at
ages 30, 40, 50, and 60 are in the first four columns. The clear negative effect of age is shown by
the increasingly small probabilities as we move across these columns in any row. The last column
indicates the value of income for a given row, starting at 0 and ending at 100. We can see that the
probabilities decrease as income increases.

The following graph command generates the plot:

. graph p30p1 p40p1 p50p1 p60p1 p60x, s(pdST) connect(ssss) /*
> */ b2("Income") xlabel(0,20,40,60,80,100) xscale(0,100) /*
> */ l2("Pr(In Labor Force)") ylabel(0,.25,.50,.75,1) yscale(0,1)

Since we have not used graph much yet, it is worth discussing some points that we find useful (also
see the section on Graphics in Chapter 2).

1. Recall that /* */ is a way of entering long lines in do-files, and that > indicates line wrap
in the output.

2. The variables to plot are: p30p1 p40p1 p50p1 p60p1 p60x, where p60x, the last variable
in the list, is the variable for the horizontal axis. All variables before the last variable are
plotted on the vertical axis.

3. connect(ssss) smooths the four curves. The option s means that you want to smooth the
line connecting the points. There are four s’s because there are four different lines whose
points we are connecting. To see what smoothing does, try running the command using
c(llll) to connect the points with straight lines.

4. s(pdST) are the symbols used to mark the data points on the lines. The options for these
symbols are provided in Chapter 2. p is used to print a small plus; d a small diamond; S a
large square; and T a large triangle.

4.6.5 Changes in predicted probabilities

While graphs are very useful for showing how predicted probabilities are related to an independent
variable, for even our simple example it is not practical to plot all possible combinations of the
independent variables. And, in some cases, the plots show that a relationship is linear so that a graph
is superfluous. In such circumstances, a useful summary measure is the change in the outcome as
one variable changes, holding all other variables constant.

Marginal change

In economics, the marginal effect or change is commonly used:

Marginal Change =
∂ Pr(y = 1 | x)

∂xk

The marginal change is shown by the tangent to the probability curve in Figure 4.5. The value of
the marginal effect depends on the level of all variables in the model. It is often computed with all
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variables held at their mean or by computing the marginal for each observation in the sample and
then averaging across all values.

Figure 4.5: Marginal change compared to discrete change in the BRM.

Marginal change with prchange command The command prchange computes the marginal at
the values of the independent variables specified with x() or rest(). Running prchange without
any options computes the marginal change (along with a lot of other things discussed below) with
all variables at their mean. Or, we can compute the marginal at specific values of the independent
variables, such as when wc = 1 and age = 40. Here we request only the results for age:

. prchange age, x(wc=1 age=40) help

logit: Changes in Predicted Probabilities for lfp

min->max 0->1 -+1/2 -+sd/2 MargEfct
age -0.3940 -0.0017 -0.0121 -0.0971 -0.0121

NotInLF inLF
Pr(y|x) 0.2586 0.7414

k5 k618 age wc hc lwg inc
x= .237716 1.35325 40 1 .391766 1.09711 20.129

sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348

Pr(y|x): probability of observing each y for specified x values
Avg|Chg|: average of absolute value of the change across categories
Min->Max: change in predicted probability as x changes from its minimum to

its maximum
0->1: change in predicted probability as x changes from 0 to 1
-+1/2: change in predicted probability as x changes from 1/2 unit below

base value to 1/2 unit above
-+sd/2: change in predicted probability as x changes from 1/2 standard

dev below base to 1/2 standard dev above
MargEfct: the partial derivative of the predicted probability/rate with

respect to a given independent variable
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4.6 Interpretation using predicted values 129

In plots that we do not show (but that we encourage you to create them using prgen and graph), we
found that the relationship between age and the probability of being in the labor force was essentially
linear for those who attend college. Accordingly, we can take the marginal computed by prchange,
multiply it by 10 to get the amount of change over 10 years, and report that

For women who attend college, a ten year increase in age decreases the probability of
labor force participation by approximately .12, holding other variables at their mean.

When using the marginal, it is essential to keep two points in mind. First, the amount of change
depends on the level of all variables. Second, as shown in Figure 4.5, the marginal is the instanta-
neous rate of change. In general, it does not equal the actual change for a given finite change in the
independent variable unless you are in a region of the probability curve that is approximately linear.
Such linearity justifies the interpretation given above.

Marginal change with mfx command The marginal change can also be computed using mfx
compute, where the at() option is used to set values of the independent variables. Below we use
mfx compute to estimate the marginal change for the same values that we used when calculating
the marginal effect for age with prchange above:

. mfx compute, at(wc=1 age=40)

Marginal effects after logit
y = Pr(lfp) (predict)

= .74140317

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

k5 -.2804763 .04221 -6.64 0.000 -.363212 -.197741 .237716
k618 -.0123798 .01305 -0.95 0.343 -.037959 .013199 1.35325
age -.0120538 .00245 -4.92 0.000 -.016855 -.007252 40.0000
wc* .1802113 .04742 3.80 0.000 .087269 .273154 1.00000
hc* .0212952 .03988 0.53 0.593 -.056866 .099456 .391766
lwg .1159345 .03229 3.59 0.000 .052643 .179226 1.09711
inc -.0066042 .00163 -4.05 0.000 -.009802 -.003406 20.1290

(*) dy/dx is for discrete change of dummy variable from 0 to 1

mfx compute is particularly useful if you need estimates of the standard errors of the marginal
effects; however, mfx compute computes the estimates using numerical methods, and for some
models the command can take a long time.

Discrete change

Given the nonlinearity of the model, we prefer the discrete change in the predicted probabilities for
a given change in an independent variable. To define discrete change, we need two quantities:

Pr (y = 1 | x, xk) is the probability of an event given x, noting in particular the value of xk.

Pr (y = 1 | x, xk + δ) is the probability of the event with only xk increased by some quantity δ.
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Then, the discrete change for a change of δ in xk equals

∆ Pr (y = 1 | x)
∆xk

= Pr (y = 1 | x, xk + δ) − Pr (y = 1 | x, xk)

which can be interpreted as

For a change in variable xk from xk to xk + δ, the predicted probability of an event
changes by ∆ Pr(y=1|x)

∆xk
, holding all other variables constant.

As shown in Figure 4.5, in general, the two measures of change are not equal. That is,

∂ Pr(y = 1 | x)
∂xk

�= ∆ Pr (y = 1 | x)
∆xk

The measures differ because the marginal change is the instantaneous rate of change, while the
discrete change is the amount of change in the probability for a given finite change in one indepen-
dent variable. The two measures are similar, however, when the change occurs over a region of the
probability curve that is roughly linear.

The value of the discrete change depends on

1. The start level of the variable that is being changed. For example, do you want to examine the
effect of age beginning at 30? At 40? At 50?

2. The amount of change in that variable. Are you interested in the effect of a change of 1 year
in age? Of 5 years? Of 10 years?

3. The level of all other variables in the model. Do you want to hold all variables at their mean?
Or, do you want to examine the effect for women? Or, to compute changes separately for men
and women?

Accordingly, a decision must be made regarding each of these factors. See Chapter 3 for further
discussion.

For our example, let’s look at the discrete change with all variables held at their mean, which
is computed by default by prchange, where the help option is used to get detailed descriptions of
what the measures mean:

. prchange, help

logit: Changes in Predicted Probabilities for lfp

min->max 0->1 -+1/2 -+sd/2 MargEfct
k5 -0.6361 -0.3499 -0.3428 -0.1849 -0.3569

k618 -0.1278 -0.0156 -0.0158 -0.0208 -0.0158
age -0.4372 -0.0030 -0.0153 -0.1232 -0.0153
wc 0.1881 0.1881 0.1945 0.0884 0.1969
hc 0.0272 0.0272 0.0273 0.0133 0.0273
lwg 0.6624 0.1499 0.1465 0.0865 0.1475
inc -0.6415 -0.0068 -0.0084 -0.0975 -0.0084

NotInLF inLF
Pr(y|x) 0.4222 0.5778
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k5 k618 age wc hc lwg inc
x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129

sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348

Pr(y|x): probability of observing each y for specified x values
Avg|Chg|: average of absolute value of the change across categories
Min->Max: change in predicted probability as x changes from its minimum to

its maximum
0->1: change in predicted probability as x changes from 0 to 1

-+1/2: change in predicted probability as x changes from 1/2 unit below
base value to 1/2 unit above

-+sd/2: change in predicted probability as x changes from 1/2 standard
dev below base to 1/2 standard dev above

MargEfct: the partial derivative of the predicted probability/rate with
respect to a given independent variable

First consider the results of changes from the minimum to the maximum. There is little to be learned
by analyzing variables whose range of probabilities is small, such as hc, while age, k5, wc, lwg,
and inc have potentially important effects. For these we can examine the value of the probabilities
before and after the change by using the fromto option:

. prchange k5 age wc lwg inc, fromto

logit: Changes in Predicted Probabilities for lfp

from: to: dif: from: to: dif: from:
x=min x=max min->max x=0 x=1 0->1 x-1/2

k5 0.6596 0.0235 -0.6361 0.6596 0.3097 -0.3499 0.7398
age 0.7506 0.3134 -0.4372 0.9520 0.9491 -0.0030 0.5854
wc 0.5216 0.7097 0.1881 0.5216 0.7097 0.1881 0.4775
lwg 0.1691 0.8316 0.6624 0.4135 0.5634 0.1499 0.5028
inc 0.7326 0.0911 -0.6415 0.7325 0.7256 -0.0068 0.5820

to: dif: from: to: dif:
x+1/2 -+1/2 x-1/2sd x+1/2sd -+sd/2 MargEfct

k5 0.3971 -0.3428 0.6675 0.4826 -0.1849 -0.3569
age 0.5701 -0.0153 0.6382 0.5150 -0.1232 -0.0153
wc 0.6720 0.1945 0.5330 0.6214 0.0884 0.1969
lwg 0.6493 0.1465 0.5340 0.6204 0.0865 0.1475
inc 0.5736 -0.0084 0.6258 0.5283 -0.0975 -0.0084

NotInLF inLF
Pr(y|x) 0.4222 0.5778

k5 k618 age wc hc lwg inc
x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129

sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348

We learn, for example, that varying age from its minimum of 30 to its maximum of 60 decreases
the predicted probability from .75 to .31, a decrease of .44. Changing family income (inc) from its
minimum to its maximum decreases the probability of a women being in the labor force from .73 to
.09. Interpreting other measures of change, the following interpretations can be made:

Using the unit change labeled -+1/2: For a woman who is average on all characteris-
tics, an additional young child decreases the probability of employment by .34.

Using the standard deviation change labeled -+1/2sd: A standard deviation change in
age centered around the mean will decrease the probability of working by .12, holding
other variables to their means.

Using a change from 0 to 1 labeled 0->1: If a woman attends college, her probability
of being in the labor force is .18 greater than a woman who does not attend college,
holding other variables at their mean.
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What if you need to calculate discrete change for changes in the independent values that are not
the default for prchange (e.g., a change of 10 years in age rather than 1 year)? This can be done in
two ways:

Nonstandard discrete changes with prvalue command The command prvalue can be used to
calculate the change in the probability for a discrete change of any magnitude in an independent
variable. Say we want to calculate the effect of a ten-year increase in age for a 30-year old woman
who is average on all other characteristics:

. prvalue, x(age=30) save brief

Pr(y=inLF|x): 0.7506 95% ci: (0.6771,0.8121)
Pr(y=NotInLF|x): 0.2494 95% ci: (0.1879,0.3229)

. prvalue, x(age=40) dif brief

Current Saved Difference
Pr(y=inLF|x): 0.6162 0.7506 -0.1345
Pr(y=NotInLF|x): 0.3838 0.2494 0.1345

The save option preserves the results from the first call of prvalue. The second call adds the dif
option to compute the differences between the two sets of predictions. We find that an increase in
age from 30 to 40 years decreases a woman’s probability of being in the labor force by .13.

Nonstandard discrete changes with prchange Alternatively, we can use prchange with the
delta() and uncentered options. delta(#) specifies that the discrete change is to be computed
for a change of # units instead of a one-unit change. uncentered specifies that the change should
be computed starting at the base value (i.e., values set by the x() and rest() options), rather than
being centered around the base. In this case, we want an uncentered change of 10 units, starting at
age=30:

. prchange age, x(age=30) uncentered d(10) rest(mean) brief

min->max 0->1 +delta +sd MargEfct
age -0.4372 -0.0030 -0.1345 -0.1062 -0.0118

The result under the heading +delta is the same as what we just calculated using prvalue.

4.7 Interpretation using odds ratios with listcoef

Effects for the logit model, but not probit, can be interpreted in terms of changes in the odds. Recall
that for binary outcomes, we typically consider the odds of observing a positive outcome versus a
negative one:

Ω =
Pr(y = 1)
Pr(y = 0)

=
Pr(y = 1)

1 − Pr(y = 1)
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4.7 Interpretation using odds ratios with listcoef 133

Recall also that the log of the odds is called the logit and that the logit model is linear in the logit,
meaning that the log odds are a linear combination of the x’s and β’s. For example, consider a logit
model with three independent variables:

ln
[

Pr(y = 1 | x)
1 − Pr(y = 1 | x)

]
= ln Ω(x) = β0 + β1x1 + β2x2 + β3x3

We can interpret the coefficients as

For a unit change in xk, we expect the logit to change by βk, holding all other variables
constant.

This interpretation does not depend on the level of the other variables in the model. The problem
is that a change of βk in the log odds has little substantive meaning for most people (including the
authors of this book). Alternatively, by taking the exponential of both sides of this equation, we can
create a model that is multiplicative instead of linear, but in which the outcome is the more intuitive
measure, the odds:

Ω(x, x2) = eβ0eβ1x1eβ2x2eβ3x3

where we take particular note of the value of x2. If we let x2 change by 1,

Ω(x, x2 + 1) = eβ0eβ1x1eβ2(x2+1)eβ3x3

= eβ0eβ0eβ1x1eβ2x2eβ2eβ3x3

which leads to the odds ratio:

Ω(x, x2 + 1)
Ω (x, x2)

=
eβ0eβ1x1eβ2x2eβ2eβ3x3

eβ0eβ1x1eβ2x2eβ3x3
= eβ2

Accordingly, we can interpret the exponential of the coefficient as

For a unit change in xk, the odds are expected to change by a factor of exp(βk), holding
all other variables constant.

For exp(βk) > 1, you could say that the odds are “exp(βk) times larger”. For exp(βk) < 1,
you could say that the odds are “exp(βk) times smaller”. We can evaluate the effect of a standard
deviation change in xk instead of a unit change:

For a standard deviation change in xk, the odds are expected to change by a factor of
exp(βk × s

k
), holding all other variables constant.

The odds ratios for both a unit and a standard deviation change of the independent variables can be
obtained with listcoef:
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134 Chapter 4. Models for Binary Outcomes

. listcoef, help

logit (N=753): Factor Change in Odds

Odds of: inLF vs NotInLF

lfp b z P>|z| e^b e^bStdX SDofX

k5 -1.46291 -7.426 0.000 0.2316 0.4646 0.5240
k618 -0.06457 -0.950 0.342 0.9375 0.9183 1.3199
age -0.06287 -4.918 0.000 0.9391 0.6020 8.0726
wc 0.80727 3.510 0.000 2.2418 1.4381 0.4500
hc 0.11173 0.542 0.588 1.1182 1.0561 0.4885

lwg 0.60469 4.009 0.000 1.8307 1.4266 0.5876
inc -0.03445 -4.196 0.000 0.9661 0.6698 11.6348

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

Examples of interpretations are

For each additional young child, the odds of being employed decrease by a factor of
.23, holding all other variables constant.

For a standard deviation increase in the log of the wife’s expected wages, the odds of
being employed are 1.43 times greater, holding all other variables constant.

Being ten years older decreases the odds by a factor of .53 (= e[−.063]×10), holding all
other variables constant.

Other ways of computing odds ratios Odds ratios can also be computed with the or option for
logit. This approach does not, however, report the odds ratios for a standard deviation
change in the independent variables.

Multiplicative coefficients

When interpreting the odds ratios, remember that they are multiplicative. This means that positive
effects are greater than one and negative effects are between zero and one. Magnitudes of positive
and negative effects should be compared by taking the inverse of the negative effect (or vice versa).
For example, a positive factor change of 2 has the same magnitude as a negative factor change of
.5=1/2. Thus, a coefficient of .1=1/10 indicates a stronger effect than a coefficient of 2. Another
consequence of the multiplicative scale is that to determine the effect on the odds of the event not
occurring, you simply take the inverse of the effect on the odds of the event occurring. listcoef
will automatically calculate this for you if you specify the reverse option:
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. listcoef, reverse

logit (N=753): Factor Change in Odds

Odds of: NotInLF vs inLF

lfp b z P>|z| e^b e^bStdX SDofX

k5 -1.46291 -7.426 0.000 4.3185 2.1522 0.5240
k618 -0.06457 -0.950 0.342 1.0667 1.0890 1.3199
age -0.06287 -4.918 0.000 1.0649 1.6612 8.0726
wc 0.80727 3.510 0.000 0.4461 0.6954 0.4500
hc 0.11173 0.542 0.588 0.8943 0.9469 0.4885
lwg 0.60469 4.009 0.000 0.5462 0.7010 0.5876
inc -0.03445 -4.196 0.000 1.0350 1.4930 11.6348

Note that the header indicates that these are now the factor changes in the odds of NotInLF versus
inLF, whereas before we computed the factor change in the odds of inLF versus NotInLF. We can
interpret the result for k5 as follows:

For each additional child, the odds of not being employed are increased by a factor of
4.3 (= 1/.23), holding other variables constant.

Effect of the base probability

The interpretation of the odds ratio assumes that the other variables have been held constant, but it
does not require that they be held at any specific values. While the odds ratio seems to resolve the
problem of nonlinearity, it is essential to keep the following in mind: A constant factor change in
the odds does not correspond to a constant change or constant factor change in the probability. For
example, if the odds are 1/100, the corresponding probability is .01.9 If the odds double to 2/100,
the probability increases only by approximately .01. Depending on one’s substantive purposes, this
small change may be trivial or quite important (such as when one identifies a risk factor that makes
it twice as likely that a subject will contract a fatal disease). Meanwhile, if the odds are 1/1 and
double to 2/1, the probability increases by .167. Accordingly, the meaning of a given factor change
in the odds depends on the predicted probability, which in turn depends on the levels of all variables
in the model.

Percent change in the odds

Instead of a multiplicative or factor change in the outcome, some people prefer the percent change,

100 [ exp (βk × δ) − 1]

which is listed by listcoef with the percent option.

9The formula for computing probabilities from odds is p = Ω
1+Ω

.
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. listcoef, percent

logit (N=753): Percentage Change in Odds

Odds of: inLF vs NotInLF

lfp b z P>|z| % %StdX SDofX

k5 -1.46291 -7.426 0.000 -76.8 -53.5 0.5240
k618 -0.06457 -0.950 0.342 -6.3 -8.2 1.3199
age -0.06287 -4.918 0.000 -6.1 -39.8 8.0726
wc 0.80727 3.510 0.000 124.2 43.8 0.4500
hc 0.11173 0.542 0.588 11.8 5.6 0.4885

lwg 0.60469 4.009 0.000 83.1 42.7 0.5876
inc -0.03445 -4.196 0.000 -3.4 -33.0 11.6348

With this option, the interpretations would be

For each additional young child, the odds of being employed decrease by 77%, holding
all other variables constant.

A standard deviation increase in the log of the wife’s expected wages increases the odds
of being employed by 83%, holding all other variables constant.

Percentage and factor change provide the same information; which you use for the binary model is
a matter of preference. While we both tend to prefer percentage change, methods for the graphical
interpretation of the multinomial logit model (Chapter 6) only work with factor change coefficients.

4.8 Other commands for binary outcomes

Logit and probit models are the most commonly used models for binary outcomes and are the only
ones that we consider in this book, but other models exist that can be estimated in Stata. Among
them, cloglog assumes a complementary log-log distribution for the errors instead of a logistic or
normal distribution. scobit estimates a logit model that relaxes the assumption that the marginal
change in the probability is greatest when Pr(y = 1) = .5. hetprob allows the assumed variance
of the errors in the probit model to vary as a function of the independent variables. blogit and
bprobit estimate logit and probit models on grouped (“blocked”) data. Further details on all of
these models can be found in the appropriate entries in the Stata manuals.
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5 Models for Ordinal Outcomes

The categories of an ordinal variable can be ranked, but the distances between the categories are
unknown. For example, in survey research, opinions are often ranked as strongly agree, agree,
disagree, and strongly disagree, without an assumption that the distance from strongly agreeing and
agreeing is the same as the distance from agree to disagree. Educational attainments can be ordered
as elementary education, high school diploma, college diploma, and graduate or professional degree.
Ordinal variables also commonly result from limitations of data availability that require a coarse
categorization of a variable that could, in principle, have been measured on an interval scale. For
example, we might have a measure of income that is simply low, medium, or high.

Ordinal variables are often coded as consecutive integers from 1 to the number of categories.
Perhaps as a consequence of this coding, it is tempting to analyze ordinal outcomes with the linear re-
gression model. However, an ordinal dependent variable violates the assumptions of the LRM, which
can lead to incorrect conclusions, as demonstrated strikingly by McKelvey and Zavoina (1975, 117)
and Winship and Mare (1984, 521–523). Accordingly, with ordinal outcomes it is much better to
use models that avoid the assumption that the distances between categories are equal. While many
different models have been designed for ordinal outcomes, in this chapter we focus on the logit and
probit versions of the ordinal regression model (ORM), introduced by McKelvey and Zavoina (1975)
in terms of an underlying latent variable and in biostatistics by McCullagh (1980) who referred to
the logit version as the proportional odds model.

As with the binary regression model, the ORM is nonlinear and the magnitude of the change
in the outcome probability for a given change in one of the independent variables depends on the
levels of all of the independent variables. And, as with the BRM, the challenge is to summarize the
effects of the independent variables in a way that fully reflects key substantive processes without
overwhelming and distracting detail. For ordinal outcomes, as well as for the models for nominal
outcomes in Chapter 6, the difficulty of this task is increased by having more than two outcomes to
explain.

Before proceeding, we caution that researchers should think carefully before concluding that
their outcome is indeed ordinal. Simply because the values of a variable can be ordered does not
imply that the variable should be analyzed as ordinal. A variable that can be ordered when con-
sidered for one purpose could be unordered or ordered differently when used for another purpose.
Miller and Volker (1985) show how different assumptions about the ordering of occupations resulted
in different conclusions. A variable might also reflect ordering on more than one dimension, such
as attitude scales that reflect both the intensity of opinion and the direction of opinion. Moreover,
surveys commonly include the category “don’t know”, which probably does not correspond to the
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138 Chapter 5. Models for Ordinal Outcomes

middle category in a scale, even though analysts might be tempted to treat it this way. Overall, when
the proper ordering is ambiguous, the models for nominal outcomes discussed in Chapter 6 should
be considered.

We begin by reviewing the statistical model, followed by an examination of testing, fit, and
methods of interpretation. These discussions are intended as a review for those who are familiar with
the models. For a complete discussion, see Long (1997). We end the chapter by considering several
less common models for ordinal outcomes, which can be estimated using ado-files that others have
developed. As always, you can obtain sample do-files and data files by downloading the spostst4
package (see Chapter 1 for details).

5.1 The statistical model

The ORM can be developed in different ways, each of which leads to the same form of the model.
These approaches to the model parallel those for the BRM. Indeed, the BRM can be viewed as a
special case of the ordinal model in which the ordinal outcome has only two categories.

5.1.1 A latent variable model

The ordinal regression model is commonly presented as a latent variable model. Defining y∗ as a
latent variable ranging from −∞ to ∞, the structural model is

y∗i = xiβ + εi

Or, for the case of a single independent variable,

y∗i = α+ βxi + εi

where i is the observation and ε is a random error, discussed further below.

The measurement model for binary outcomes is expanded to divide y∗ into J ordinal categories:

yi = m if τm−1 ≤ y∗i < τm for m = 1 to J

where the cutpoints τ1 through τJ−1 are estimated. (Some authors refer to these as thresholds.) We
assume τ0 = −∞ and τJ = ∞ for reasons that will be clear shortly.

To illustrate the measurement model, consider the example that is used in this chapter. People
are asked to respond to the following statement:

A working mother can establish just as warm and secure of a relationship with her child
as a mother who does not work.

Possible responses are: 1=Strongly Disagree (SD), 2=Disagree (D), 3=Agree (A), and 4=Strongly
Agree (SA). The continuous latent variable can be thought of as the propensity to agree that working
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5.1 The statistical model 139

mothers can be good mothers. The observed response categories are tied to the latent variable by the
measurement model:

yi =


1 ⇒ SD if τ0 = −∞ ≤ y∗i < τ1
2 ⇒ D if τ1 ≤ y∗i < τ2
3 ⇒ A if τ2 ≤ y∗i < τ3
4 ⇒ SA if τ3 ≤ y∗i < τ4 = ∞

Thus, when the latent y∗ crosses a cutpoint, the observed category changes.

Figure 5.1: Relationship between observed y and latent y∗ in ordinal regression model with a single
independent variable.

For a single independent variable, the structural model is y∗ = α + βx+ ε, which is plotted in
Figure 5.1 along with the cutpoints for the measurement model. This figure is similar to that for the
binary regression model, except that there are now three horizontal lines representing the cutpoints
τ1, τ2, and τ3. The three cutpoints lead to four levels of y that are labeled on the right-hand side of
the graph.

The probability of an observed outcome for a given value of x is the area under the curve between
a pair of cutpoints. For example, the probability of observing y = m for given values of the x’s
corresponds to the region of the distribution where y∗ falls between τm−1 and τm:

Pr (y = m | x) = Pr (τm−1 ≤ y∗ < τm | x)

Substituting xβ + ε for y∗ and using some algebra leads to the standard formula for the predicted
probability in the ORM,

Pr (y = m | x) = F (τm − xβ) − F (τm−1 − xβ) (5.1)

where F is the cdf for ε. In ordinal probit, F is normal with Var(ε) = 1; in ordinal logit, F is
logistic with Var(ε) = π2/3. Note that for y = 1, the second term on the right drops out since
F (−∞− xβ) = 0, and for y = J , the first term equals F (∞− xβ) = 1.
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140 Chapter 5. Models for Ordinal Outcomes

Comparing these equations to those for the BRM shows that the ORM is identical to the binary
regression model, with one exception. To show this, we estimate Chapter 4’s binary model for labor
force participation using both logit and ologit (the command for ordinal logit):

. use binlfp2, clear
(Data from 1976 PSID-T Mroz)

. logit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. outreg using 05lgtolgt, xstats replace

. ologit lfp k5 k618 age wc hc lwg inc, nolog
(output omitted )

. outreg using 05lgtolgt, xstats append

To compare the coefficients, we combine them using outreg; this leads to the following table, which
has been slightly edited:

logit ologit
results results

-------------------------------------------------------------
# kids < 6 -1.463 -1.463

(7.43)** (7.43)**
# kids 6-18 -0.065 -0.065

(0.95) (0.95)
Wife´s age in years -0.063 -0.063

(4.92)** (4.92)**
Wife College: 1=yes 0=no 0.807 0.807

(3.51)** (3.51)**
Husband College: 1=yes 0=no 0.112 0.112

(0.54) (0.54)
Log of wife´s estimated wages 0.605 0.605

(4.01)** (4.01)**
Family income excluding wife´s -0.034 -0.034

(4.20)** (4.20)**
Constant 3.182

(4.94)**
_cut1 -3.182

(4.94)**
Observations 753 753
-------------------------------------------------------------
Absolute value of z-statistics in parentheses
* significant at 5% level; ** significant at 1% level

The slope coefficients and their standard errors are identical, but for logit an intercept is reported
(i.e., the coefficient associated with cons), while for ologit the constant is replaced by the cutpoint
labeled cut1, which is equal but of opposite sign.

This difference is due to how the two models are identified. As the ORM has been presented,
there are “too many” free parameters; that is, you can’t estimate J−1 thresholds and the constant too.
For a unique set of ML estimates to exist, an identifying assumption needs to be made about either
the intercept or one of the cutpoints. In Stata, the ORM is identified by assuming that the intercept is 0
and the values of all cutpoints are estimated. Some statistics packages for the ORM instead fix one of
the cutpoints to 0 and estimate the intercept. And, in presenting the BRM, we immediately assumed
that the value that divided y∗ into observed 0s and 1s was 0. In effect, we identified the model by
assuming a threshold of 0. While different parameterizations can be confusing, keep in mind that the
slope coefficients and predicted probabilities are the same under either parameterization (see Long
1997, 122–23 for further details).
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5.2 Estimation using ologit and oprobit 141

5.1.2 A nonlinear probability model

The ordinal regression model can also be developed as a nonlinear probability model without ap-
pealing to the idea of a latent variable. Here we show how this can be done for the ordinal logit
model. First, define the odds that an outcome is less than or equal to m versus greater than m given
x:

Ω≤m|>m (x) ≡ Pr (y ≤ m | x)
Pr (y > m | x)

for m = 1, J − 1

For example, we could compute the odds of disagreeing or strongly disagreeing (i.e., m≤2) versus
agreeing or strongly agreeing (m > 2). The log of the odds is assumed to equal

ln Ω≤m|>m (x) = τm − xβ (5.2)

For a single independent variable and three categories (where we are fixing the intercept to equal 0),

ln
Pr (y ≤ 1 | x)
Pr (y > 1 | x)

= τ1 − β1x1

ln
Pr (y ≤ 2 | x)
Pr (y > 2 | x)

= τ2 − β1x1

While it may seem confusing that the model subtracts βx rather than adding it, this is a consequence
of computing the logit of y ≤ m versus y > m. While we agree that it would be simpler to stick
with τm + βx, this is not the way the model is normally presented.

5.2 Estimation using ologit and oprobit

The ordered logit and probit models can be estimated with the following commands:

ologit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, level(#)

nolog table cluster(varname) robust
]

oprobit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, level(#)

nolog table cluster(varname) robust
]

In our experience, these models take more steps to converge than either the models for binary or
nominal outcomes.

Variable Lists

depvar is the dependent variable. The specific values assigned to the outcome categories are irrele-
vant except that larger values are assumed to correspond to “higher” outcomes. For example,
if you had three outcomes, you could use the values 1, 2, and 3 or −1.23, 2.3, and 999. Up to
50 outcomes are allowed in Intercooled Stata; 20 outcomes are allowed in Small Stata.

indepvars is a list of independent variables. If indepvars is not included, Stata estimates a model
with only cutpoints.
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142 Chapter 5. Models for Ordinal Outcomes

Specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if you want to
estimate an ordered logit model for only those in the 1989 sample, you could specify ologit warm
age ed prst male white if yr89==1.

Listwise deletion Stata excludes cases in which there are missing values for any of the variables
in the model. Accordingly, if two models are estimated using the same dataset but have different
sets of independent variables, it is possible to have different samples. We recommend that you use
mark and markout (discussed in Chapter 3) to explicitly remove cases with missing data.

Weights Both ologit and oprobit can be used with fweights, pweights, and iweights. See
Chapter 3 for further details.

Options

nolog suppresses the iteration history.

table lists the equations for predicted probabilities and reports the observed percent of cases for
each category in the estimation sample. For example,

warm Probability Observed

SD Pr( xb+u<_cut1) 0.1295
D Pr(_cut1<xb+u<_cut2) 0.3153
A Pr(_cut2<xb+u<_cut3) 0.3733
SA Pr(_cut3<xb+u) 0.1819

level(#) specifies the level of the confidence interval for estimated parameters. By default, Stata
uses a 95% interval. You can also change the default level, say, to a 90% interval, with the
command set level 90.

cluster(varname) specifies that the observations are independent across the groups specified by
unique values of varname but not necessarily within the groups. See Chapter 3 for further details.

robust indicates that robust variance estimates are to be used. When cluster() is specified, robust
standard errors are automatically used. See Chapter 3 for further details.

5.2.1 Example of attitudes toward working mothers

Our example is based on a question from the 1977 and 1989 General Social Survey. As we have
already described, respondents were asked to evaluate the following statement: “A working mother
can establish just as warm and secure of a relationship with her child as a mother who does not
work”. Responses were coded as: 1=Strongly Disagree (SD), 2=Disagree (D), 3=Agree (A), and
4=Strongly Agree (SA). A complete description of the data can be obtained by using describe,
summarize, and tabulate:
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5.2 Estimation using ologit and oprobit 143

. use ordwarm2
(77 & 89 General Social Survey)

. describe warm yr89 male white age ed prst

storage display value
variable name type format label variable label

warm byte %10.0g SD2SA Mom can have warm relations
with child

yr89 byte %10.0g yrlbl Survey year: 1=1989 0=1977
male byte %10.0g sexlbl Gender: 1=male 0=female
white byte %10.0g racelbl Race: 1=white 0=not white
age byte %10.0g Age in years
ed byte %10.0g Years of education
prst byte %10.0g Occupational prestige

. sum warm yr89 male white age ed prst

Variable Obs Mean Std. Dev. Min Max

warm 2293 2.607501 .9282156 1 4
yr89 2293 .3986044 .4897178 0 1
male 2293 .4648932 .4988748 0 1
white 2293 .8765809 .3289894 0 1

age 2293 44.93546 16.77903 18 89
ed 2293 12.21805 3.160827 0 20

prst 2293 39.58526 14.49226 12 82

. tab warm

Mom can
have warm
relations

with child Freq. Percent Cum.

SD 297 12.95 12.95
D 723 31.53 44.48
A 856 37.33 81.81
SA 417 18.19 100.00

Total 2293 100.00

Using these data, we estimated the model

Pr(warm = m | xi) = F (τm − xβ) − F (τm−1 − xβ)

where

xβ = βyr89yr89 + βmalemale + βwhitewhite + βageage + βprstprst

Here is the output from ologit and oprobit, which we combine using outreg:

. ologit warm yr89 male white age ed prst, nolog

Ordered logit estimates Number of obs = 2293
LR chi2(6) = 301.72
Prob > chi2 = 0.0000

Log likelihood = -2844.9123 Pseudo R2 = 0.0504

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

yr89 .5239025 .0798988 6.56 0.000 .3673037 .6805013
male -.7332997 .0784827 -9.34 0.000 -.8871229 -.5794766
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white -.3911595 .1183808 -3.30 0.001 -.6231815 -.1591374
age -.0216655 .0024683 -8.78 0.000 -.0265032 -.0168278
ed .0671728 .015975 4.20 0.000 .0358624 .0984831

prst .0060727 .0032929 1.84 0.065 -.0003813 .0125267

_cut1 -2.465362 .2389126 (Ancillary parameters)
_cut2 -.630904 .2333155
_cut3 1.261854 .2340179

. outreg using 05lgtpbt, replace

. oprobit warm yr89 male white age ed prst, nolog

Ordered probit estimates Number of obs = 2293
LR chi2(6) = 294.32
Prob > chi2 = 0.0000

Log likelihood = -2848.611 Pseudo R2 = 0.0491

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

yr89 .3188147 .0468519 6.80 0.000 .2269867 .4106427
male -.4170287 .0455459 -9.16 0.000 -.5062971 -.3277603

white -.2265002 .0694773 -3.26 0.001 -.3626733 -.0903272
age -.0122213 .0014427 -8.47 0.000 -.0150489 -.0093937
ed .0387234 .0093241 4.15 0.000 .0204485 .0569982

prst .003283 .001925 1.71 0.088 -.0004899 .0070559

_cut1 -1.428578 .1387742 (Ancillary parameters)
_cut2 -.3605589 .1369219
_cut3 .7681637 .1370564

. outreg using 05lgtpbt, append

The information in the header and the table of coefficients is in the same form as discussed in
Chapter 3.

The estimated coefficients have been combined using outreg. The first call of the program
saves the coefficients from ologit to the file 05lgtpbt.out, while the second call using append
adds the coefficients from oprobit. After making a few edits to the file, we get

Ordered Ordered
Logit Probit

--------------------------------------------
Year of survey 0.524 0.319

(6.56) (6.80)
Sex -0.733 -0.417

(9.34) (9.16)
Race -0.391 -0.227

(3.30) (3.26)
Age in years -0.022 -0.012

(8.78) (8.47)
Years of education 0.067 0.039

(4.20) (4.15)
Occupational prestige 0.006 0.003

(1.84) (1.71)
--------------------------------------------
Observations 2293 2293
Absolute value of z-statistics in parentheses

As with the BRM, the estimated coefficients differ from logit to probit by a factor of about 1.7,
reflecting the differing scaling of the ordered logit and ordered probit models. Values of the z-tests
are very similar since they are not affected by the scaling.
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5.3 Hypothesis testing with test and lrtest 145

5.2.2 Predicting perfectly

If the dependent variable does not vary within one of the categories of an independent variable, there
will be a problem with estimation. To see what happens, let’s transform the prestige variable prst
into a dummy variable:

. gen dumprst = (prst<20 & warm==1)

. tab dumprst warm, miss

Mother has warm relationship
dumprst SD D A SA Total

0 257 723 856 417 2253
1 40 0 0 0 40

Total 297 723 856 417 2293

In all cases where dumprst is 1, respondents have values of SD for warm. That is, if you know
dumprst is 1 you can predict perfectly that warm is 1 (i.e., SD). While we purposely constructed
dumprst so this would happen, perfect prediction can also occur in real data. If we estimate the
ORM using dumprst rather than prst,

. ologit warm yr89 male white age ed dumprst, nolog

Ordered logit estimates Number of obs = 2293
LR chi2(6) = 447.02
Prob > chi2 = 0.0000

Log likelihood = -2772.2621 Pseudo R2 = 0.0746

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

yr89 .5268578 .0805997 6.54 0.000 .3688853 .6848303
male -.7251825 .0792896 -9.15 0.000 -.8805872 -.5697778
white -.4240687 .1197416 -3.54 0.000 -.658758 -.1893795

age -.0210592 .0024462 -8.61 0.000 -.0258536 -.0162648
ed .072143 .0133133 5.42 0.000 .0460494 .0982366

dumprst -37.58373 8670897 -0.00 1.000 -1.70e+07 1.70e+07

_cut1 -2.776233 .243582 (Ancillary parameters)
_cut2 -.8422903 .2363736
_cut3 1.06148 .236561

note: 40 observations completely determined. Standard errors questionable.

The note: 40 observations completely determined. Standard errors questionable
indicates the problem. In practice, the next step would be to delete the 40 cases in which dumprst
equals 1 (you could use the command drop if dumprst==1 to do this) and re-estimate the model
without dumprst. This corresponds to what is done automatically for binary models estimated by
logit and probit.

5.3 Hypothesis testing with test and lrtest

Hypothesis tests of regression coefficients can be evaluated with the z-statistics in the estimation
output, with test for Wald tests of simple and complex hypotheses, and with lrtest for the corre-
sponding likelihood-ratio tests. We briefly review each.
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5.3.1 Testing individual coefficients

If the assumptions of the model hold, the ML estimators from ologit and oprobit are distributed

asymptotically normally. The hypothesis H0:βk = β∗ can be tested with z =
(
β̂k − β∗

)
/σ̂β̂k

.

Under the assumptions justifying ML, if H0 is true, then z is distributed approximately normally
with a mean of 0 and a variance of 1 for large samples. For example, consider the results for the
variable male from the ologit output above:

. ologit warm male yr89 white age ed prst, nolog
(output omitted )

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

male -.7332997 .0784827 -9.34 0.000 -.8871229 -.5794766
(output omitted )

We conclude that

Gender significantly affects attitudes toward working mothers (z = −9.34, p < 0.01
for a two-tailed test).

Either a one-tailed and two-tailed test can be used as discussed in Chapter 4.

The z-test in the output of estimation commands is a Wald test, which can also be computed
using test. For example, to test H0:βmale = 0,

. test male

( 1) male = 0.0

chi2( 1) = 87.30
Prob > chi2 = 0.0000

We conclude that

Gender significantly affects attitudes toward working mothers (X2 = 87.30, df =
1, p < 0.01).

The value of a chi-squared test with 1 degree of freedom is identical to the square of the correspond-
ing z-test, which can be demonstrated with the display command:

. display "z*z=" -9.343*-9.343
z*z=87.291649

An LR test is computed by comparing the log likelihood from a full model to that of a restricted
model. To test a single coefficient, we begin by estimating the full model:

. ologit warm yr89 male white age ed prst, nolog

Ordered logit estimates Number of obs = 2293
LR chi2(6) = 301.72
Prob > chi2 = 0.0000

Log likelihood = -2844.9123 Pseudo R2 = 0.0504
(output omitted )

. lrtest, saving(0)

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



5.3 Hypothesis testing with test and lrtest 147

Then we estimate the model excluding male:

. ologit warm yr89 white age ed prst, nolog

Ordered logit estimates Number of obs = 2293
LR chi2(5) = 212.98
Prob > chi2 = 0.0000

Log likelihood = -2889.278 Pseudo R2 = 0.0355
(output omitted )

. lrtest
Ologit: likelihood-ratio test chi2(1) = 88.73

Prob > chi2 = 0.0000

The resulting LR test can be interpreted as

The effect of being male is significant at the .01 level (LRX2 = 88.73, df = 1, p <
.01).

5.3.2 Testing multiple coefficients

We can also test a complex hypothesis that involves more than one coefficient. For example, our
model has three demographic variables: age, white, and male. To test that all of the demographic
factors are simultaneously equal to zero, H0: βage = βwhite = βmale = 0, we can use either a Wald
or a LR test. For the Wald test, we estimate the full model as before and then type

. test age white male

( 1) age = 0.0
( 2) white = 0.0
( 3) male = 0.0

chi2( 3) = 166.62
Prob > chi2 = 0.0000

We conclude that

The hypothesis that the demographic effects of age, race, and gender are simultaneously
equal to zero can be rejected at the .01 level (X2 = 166.62, df = 3, p < .01).

test can also be used to test the equality of effects as shown in Chapter 4.

To compute an LR test of multiple coefficients, we first estimate the full model and save the
results with lrtest, saving(0). Then, to test H0: βage = βwhite = βmale = 0, we estimate the
model that excludes these three variables and run lrtest:

* estimate full model
. ologit warm yr89 male white age ed prst, nolog

(output omitted )

. lrtest, saving(0)

* estimate constrained model
. ologit warm yr89 ed prst, nolog

(output omitted )

. lrtest

Ologit: likelihood-ratio test chi2(3) = 171.58
Prob > chi2 = 0.0000
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We conclude that

The hypothesis that the demographic effects of age, race, and gender are simultaneously
equal to zero can be rejected at the .01 level (X2 = 171.58, df = 3, p < .01).

In our experience, the Wald and LR tests usually lead to the same decisions. When there are
differences, they generally occur when the tests are near the cutoff for statistical significance. Given
that the LR test is invariant to reparameterization, we prefer the LR test.

5.4 Scalar measures of fit using fitstat

As we discuss at greater length in Chapter 3, scalar measures of fit can be useful in comparing
competing models (see also Long 1997, 85–113). Several different measures can be computed after
either ologit or oprobit with the SPost command fitstat:

. ologit warm yr89 male white age ed prst, nolog
(output omitted )

. fitstat

Measures of Fit for ologit of warm

Log-Lik Intercept Only: -2995.770 Log-Lik Full Model: -2844.912
D(2284): 5689.825 LR(6): 301.716

Prob > LR: 0.000
McFadden´s R2: 0.050 McFadden´s Adj R2: 0.047
Maximum Likelihood R2: 0.123 Cragg & Uhler´s R2: 0.133
McKelvey and Zavoina´s R2: 0.127
Variance of y*: 3.768 Variance of error: 3.290
Count R2: 0.432 Adj Count R2: 0.093
AIC: 2.489 AIC*n: 5707.825
BIC: -11982.891 BIC´: -255.291

Using simulations, both Hagle and Mitchell (1992) and Windmeijer (1995) find that, for ordinal
outcomes, McKelvey and Zavonia’s R2 most closely approximates the R2 obtained by estimating
the linear regression model on the underlying latent variable.

5.5 Converting to a different parameterization∗

Earlier we noted that different software packages use different parameterizations to identify the
model. Stata sets β0 = 0 and estimates τ1, while some programs fix τ1 = 0 and estimate β0.
While all quantities of interest for purpose of interpretation (e.g., predicted probabilities) are the
same under both parameterizations, it is useful to see how Stata can estimate the model under either
parameterization. The key to understanding how this is done is the equation:

Pr (y = m | x) = F ([τm − δ] − [β0 − δ] − xβ) − F ([τm−1 − δ] − [β0 − δ] − xβ)

Without further constraints, it is only possible to estimate the differences τm − δ and β0 − δ. Stata
assumes δ = β0, which forces the estimate of β0 to be 0, while some other programs assume δ = τ1,
which forces the estimate of τ1 to be 0. For example,
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5.5 Converting to a different parameterization∗ 149

Model Stata’s Alternative
Parameter Estimate Parameterization

β0 β0 − β0 = 0 β0 − τ1
τ1 τ1 − β0 τ1 − τ1 = 0
τ2 τ2 − β0 τ2 − τ1
τ3 τ3 − β0 τ3 − τ1

While you would only need to compute the alternative parameterization if you wanted to compare
your results to those produced by another statistics package, seeing how this is done illustrates
why the intercept and thresholds are arbitrary. To estimate the alternative parameterization, we use
lincom to estimate the difference between Stata’s estimates (see page 143) and the estimated value
of the first cutpoint:

. ologit warm yr89 male white age ed prst, nolog
(output omitted )

. * intercept

. lincom 0 - _b[_cut1]

( 1) - _cut1 + _cut2 = 0.0

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 2.777878 .2437943 11.39 0.000 2.30005 3.255706

Here we are computing the alternative parameterization of the intercept. ologit assumes that β0 =
0, so we simply estimate 0 − τ1; that is, 0- b[ cut1]. The trick is that the cutpoints are contained
in the vector b[ ], with the index for these scalars specified as cut1, cut2, and cut3. For the
thresholds, we are estimating τ2 − τ1 and τ3 − τ1, which correspond to b[ cut2]- b[ cut1] and
b[ cut3]- b[ cut1]:

. * cutpoint 2

. lincom _b[_cut2] - _b[_cut1]

( 1) - _cut1 + _cut2 = 0.0

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.834458 .0630432 29.10 0.000 1.710895 1.95802

. * cutpoint 3

. lincom _b[_cut3] - _b[_cut1]

( 1) - _cut1 + _cut3 = 0.0

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 3.727216 .0826215 45.11 0.000 3.565281 3.889151

The estimate of τ1 − τ1 is, of course, 0.
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150 Chapter 5. Models for Ordinal Outcomes

5.6 The parallel regression assumption

Before discussing interpretation, it is important to understand an assumption that is implicit in the
ORM, known both as the parallel regression assumption and, for the ordinal logit model, the pro-
portional odds assumption. Using Equation 5.1, the ORM can be written as

Pr (y = 1 | x) = F (τm − xβ)
Pr (y = m | x) = F (τm − xβ) − F (τm−1 − xβ) for m = 2 to J − 1
Pr (y = J | x) = 1 − F (τm−1 − xβ)

These equations can be used to compute the cumulative probabilities, which have the simple form

Pr(y ≤ m | x) = F (τm−xβ) for m = 1 to J − 1 (5.3)

This equation shows that the ORM is equivalent to J−1 binary regressions with the critical assump-
tion that the slope coefficients are identical across each regression.

For example, with four outcomes and a single independent variable, the equations are

Pr (y ≤ 1 | x) = F (τ1 − βx)
Pr (y ≤ 2 | x) = F (τ2 − βx)
Pr (y ≤ 3 | x) = F (τ3 − βx)

The intercept α is not in the equation since it has been assumed to equal 0 to identify the model.
These equations lead to the following figure:1

P
r(

y<
=

m
)

x

 Pr(y<=1 | x)  Pr(y<=2 | x)
 Pr(y<=3 | x)

0 50 100 150

0

.5

1

1This plot illustrates how graph can be used to construct graphs that are not based on real data. The commands for this
graph are contained in st4ch5.do, which is part of the package spostst4. See Chapter 1 for details.

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



5.6 The parallel regression assumption 151

Each probability curve differs only in being shifted to the left or right. That is, they are parallel as a
consequence of the assumption that the β’s are equal for each equation.

This figure suggests that the parallel regression assumption can be tested by comparing the esti-
mate from the J−1 binary regressions,

Pr(y ≤ m | x) = F (τm − xβm) for m = 1, J − 1

where the β’s are allowed to differ across the equations. The parallel regression assumption implies
that β1 = β2 = · · · = βJ−1. To the degree that the parallel regression assumption holds, the
coefficients β̂1, β̂2,..., β̂J−1 should be “close”. There are two commands in Stata that perform this
test:

An approximate LR test The command omodel Wolfe and Gould (1998) is not part of official
Stata, but can be obtained by typing net search omodel and following the prompts. omodel
computes an approximate LR test. Essentially, this method compares the log likelihood from ologit
(or oprobit) to that obtained from pooling J−1 binary models estimated with logit (or probit),
making an adjustment for the correlation between the binary outcomes defined by y ≤ m. The
syntax is

omodel
[
logit|probit] depvar

[
varlist

] [
weight

] [
if exp

] [
in range

]
where the options logit or probit indicates whether ordered logit or ordered probit is to be used.
For example,

. omodel logit warm yr89 male white age ed prst
(same output as for ologit warm yr89 male white age ed prst )

Approximate likelihood-ratio test of proportionality of odds
across response categories:

chi2(12) = 48.91
Prob > chi2 = 0.0000

In this case, the parallel regression assumption can be rejected at the .01 level.

A Wald test The LR test is an omnibus test that the coefficients for all variables are simultaneously
equal. Accordingly, you cannot determine whether the coefficients for some variables are identical
across the binary equations while coefficients for other variables differ. To this end, a Wald test by
Brant (1990) is useful since it tests the parallel regression assumption for each variable individually.
The messy details of computing this test are found in Brant (1990) or Long (1997, 143–144). In
Stata the test is computed quickly with brant, which is part of SPost. After running ologit
(brant does not work with oprobit), you run brant with the syntax:

brant
[
, detail

]
The detail option provides a table of coefficients from each of the binary models. For example,
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152 Chapter 5. Models for Ordinal Outcomes

. brant, detail

Estimated coefficients from j-1 binary regressions

y>1 y>2 y>3
yr89 .9647422 .56540626 .31907316
male -.30536425 -.69054232 -1.0837888

white -.55265759 -.31427081 -.39299842
age -.0164704 -.02533448 -.01859051
ed .10479624 .05285265 .05755466

prst -.00141118 .00953216 .00553043
_cons 1.8584045 .73032873 -1.0245168

Brant Test of Parallel Regression Assumption

Variable chi2 p>chi2 df

All 49.18 0.000 12

yr89 13.01 0.001 2
male 22.24 0.000 2

white 1.27 0.531 2
age 7.38 0.025 2
ed 4.31 0.116 2

prst 4.33 0.115 2

A significant test statistic provides evidence that the parallel
regression assumption has been violated.

The chi-squared of 49.18 for the Brant test is very close to the value of 48.91 from the LR test.
However, the Brant test shows that the largest violations are for yr89 and male, which suggests that
there may be problems related to these variables.

Caveat regarding the parallel regression assumption In our experience, the parallel regression
assumption is frequently violated. When the assumption of parallel regressions is rejected, alterna-
tive models should be considered that do not impose the constraint of parallel regressions. Alterna-
tive models that can be considered include models for nominal outcomes discussed in Chapter 6 or
other models for ordinal outcomes discussed in Section 5.9

5.7 Residuals and outliers using predict

While no methods for detecting influential observations and outliers have been developed specif-
ically for the ORM, Hosmer and Lemeshow (2000, 305) suggest applying the methods for binary
models to the J − 1 cumulative probabilities that were discussed in the last section. As noted by
Hosmer and Lemeshow, the disadvantage of this approach is that you are only evaluating an ap-
proximation to the model you have estimated, since the coefficients of the binary models differ from
those estimated in the ordinal model. But, if the parallel regression assumption is not rejected, you
can be more confident in the results of your residual analysis.

To illustrate this approach, we start by generating three binary variables corresponding to warm
< 2, warm < 3, and warm < 4:
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5.7 Residuals and outliers using predict 153

. gen warmlt2 = (warm<2) if warm ~=.

. gen warmlt3 = (warm<3) if warm ~=.

. gen warmlt4 = (warm<4) if warm ~=.

For example, warmlt3 is 1 if warm equals 1 or 2, else 0. Next, we estimate binary logits for
warmlt2, warmlt3, and warmlt4 using the same independent variables as in our original ologit
model. After estimating each logit, we generate standardized residuals using predict (for a detailed
discussion of generating and inspecting these residuals, see Chapter 4):

* warm < 2
. logit warmlt2 yr89 male white age ed prst

(output omitted )

. predict rstd_lt2, rs

* warm < 3
. logit warmlt3 yr89 male white age ed prst

(output omitted )

. predict rstd_lt2, rs

. predict rstd_lt3, rs

* warm < 4
. logit warmlt4 yr89 male white age ed prst

(output omitted )

. predict rstd_lt4, rs

Next we create an index plot for each of the three binary equations. For example, using the results
from the logit of warmlt3,

. sort prst

. gen index = _n

. graph rstd_lt3 index, s(o) xscale(0,800) yscale(-4,4) yline(0) /*
> */ ylabel(-4,-2,0,2,4) b2("Observation Number") gap(3)
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154 Chapter 5. Models for Ordinal Outcomes

Given the size of the dataset, no residual stands out as being especially large. However, since the
parallel regression assumption was violated, alternative models should still be considered.

5.8 Interpretation

If the idea of a latent variable makes substantive sense, simple interpretations are possible by rescal-
ing y∗ to compute standardized coefficients that can be used just like coefficients for the linear
regression model. If the focus is on the categories of the ordinal variable (e.g., what affects the
likelihood of strongly agreeing), the methods illustrated for the BRM can be extended to multiple
outcomes. Since the ORM is nonlinear in the outcome probabilities, no single approach can fully de-
scribe the relationship between a variable and the outcome probabilities. Consequently, you should
consider each of these methods before deciding which approach is most effective in a your appli-
cation. For purposes of illustration, we continue to use the example of attitudes toward working
mothers. Keep in mind, however, that the test of the parallel regression assumption suggests that
this model is not appropriate for these data.

5.8.1 Marginal change in y∗

In the ORM, y∗ = xβ + ε and the marginal change in y∗ with respect to xk is

∂y∗

∂xk
= βk

Since y∗ is latent (and hence its metric is unknown), the marginal change cannot be interpreted
without standardizing by the estimated standard deviation of y∗,

σ̂2
y∗ = β̂′V̂ar (x) β̂ + Var (ε)

where V̂ar (x) is the covariance matrix for the observed x’s, β̂ contains ML estimates, and Var(ε) =
1 for ordered probit and π2/3 for ordered logit. Then, the y∗-standardized coefficient for xk is

βSy∗
k =

βk

σy∗

which can be interpreted as

For a unit increase in xk, y∗ is expected to increase by βSy∗
k standard deviations, holding

all other variables constant.

The fully standardized coefficient is

βS
k =

σkβk

σy∗
= σkβ

Sy∗
k

which can be interpreted as

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.
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For a standard deviation increase in xk, y∗ is expected to increase by βS
k standard devi-

ations, holding all other variables constant.

These coefficients can be computed with listcoef using the std option. For example, after
estimating the ordered logit model,

. listcoef, std help

ologit (N=2293): Unstandardized and Standardized Estimates

Observed SD: .9282156
Latent SD: 1.9410634

warm b z P>|z| bStdX bStdY bStdXY SDofX

yr89 0.52390 6.557 0.000 0.2566 0.2699 0.1322 0.4897
male -0.73330 -9.343 0.000 -0.3658 -0.3778 -0.1885 0.4989
white -0.39116 -3.304 0.001 -0.1287 -0.2015 -0.0663 0.3290

age -0.02167 -8.778 0.000 -0.3635 -0.0112 -0.1873 16.7790
ed 0.06717 4.205 0.000 0.2123 0.0346 0.1094 3.1608

prst 0.00607 1.844 0.065 0.0880 0.0031 0.0453 14.4923

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
bStdX = x-standardized coefficient
bStdY = y-standardized coefficient
bStdXY = fully standardized coefficient
SDofX = standard deviation of X

If we think of the dependent variable as measuring “support” for mothers in the workplace, then the
effect of the year of the interview can be interpreted as

In 1989 support was .27 standard deviations higher than in 1977, holding all other
variables constant.

To consider the effect of education,

Each standard deviation increase in education increases support by .11 standard devia-
tions, holding all other variables constant.

5.8.2 Predicted probabilities

For the most part, we prefer interpretations based in one way or another on predicted probabilities.
These probabilities can be estimated with the formula

P̂r (y = m | x) = F
(
τ̂m − xβ̂

)
− F

(
τ̂m−1 − xβ̂

)
with cumulative probabilities computed as

P̂r (y ≤ m | x) = F
(
τm − xβ̂

)
The values of x can be based on observations in the sample or can be hypothetical values of interest.
The most basic command for computing probabilities is predict, but our SPost commands can be
used to compute predicted probabilities in particularly useful ways.
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156 Chapter 5. Models for Ordinal Outcomes

5.8.3 Predicted probabilities with predict

After estimating a model with ologit or oprobit, a useful first step is to compute the in sample
predictions with the command

predict newvar1
[
newvar2

[
newvar3...

]] [
if exp

] [
in range

]
where you indicate one new variable name for each category of the dependent variable. For instance,
in the following example predict specifies that the variables SDwarm, Dwarm, Awarm, and SAwarm
should be created with predicted values for the four outcome categories:

. ologit warm yr89 male white age ed prst, nolog
(output omitted )

. predict SDlogit Dlogit Alogit SAlogit
(option p assumed; predicted probabilities)

The message (option p assumed; predicted probabilities) reflects that predict can com-
pute many different quantities. Since we did not specify an option indicating which quantity to
predict, option p for predicted probabilities was assumed.

An easy way to see the range of the predictions is with dotplot, one of our favorite commands
for quickly checking data:

. label var SDwarm "Pr(SD)"

. label var Dwarm "Pr(D)"

. label var Awarm "Pr(A)"

. label var SAwarm "Pr(SA)"

. dotplot SDwarm Dwarm Awarm SAwarm, ylabel(0,.25,.5,.75)

which leads to the following plot:

 

 

 
Pr(SD) Pr(D) Pr(A) Pr(SA)

0

.25

.5

.75

The predicted probabilities for the extreme categories tend to be less than .25, with the majority of
predictions for the middle categories falling between .25 and .5. In only a few cases is the probability
of any outcome greater than .5.
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5.8 Interpretation 157

Examining predicted probabilities within the sample provides a first, quick check of the model.
To understand and present the substantive findings, however, it is usually more effective to compute
predictions at specific, substantively informative values. Our commands prvalue, prtab, prgen,
and prchange are designed to make this simple.

5.8.4 Individual predicted probabilities with prvalue

Predicted probabilities for individuals with a particular set of characteristics can be computed with
prvalue. For example, we might want to examine the predicted probabilities for individuals with
the following characteristics:

• Working class men in 1977 who are near retirement.

• Young, highly educated women with prestigious jobs.

• An “average individual” in 1977.

• An “average individual” in 1989.

Each of these can be easily computed with prvalue (see Chapter 3 for a discussion of options for
this command). The predicted probabilities for older, working class men are

. prvalue, x(yr89=0 male=1 prst=20 age=64 ed=16) rest(mean)

ologit: Predictions for warm

Pr(y=SD|x): 0.2317
Pr(y=D|x): 0.4221
Pr(y=A|x): 0.2723
Pr(y=SA|x): 0.0739

yr89 male white age ed prst
x= 0 1 .8765809 64 16 20

or, for young, highly educated women with prestigious jobs

. prvalue, x(yr89=1 male=0 prst=80 age=30 ed=24) rest(mean) brief

Pr(y=SD|x): 0.0164
Pr(y=D|x): 0.0781
Pr(y=A|x): 0.3147
Pr(y=SA|x): 0.5908

and so on, for other sets of values.

There are several points about using prvalue that are worth emphasizing. First, we have set the
values of the independent variables that define our hypothetical person using the x() and rest()
options. The output from the first call of prvalue lists the values that have been set for all in-
dependent variables. This allows you to verify that x() and rest() did what you intended. For
the second call, we added the brief option. This suppresses the output showing the levels of the
independent variables. If you use this option, be certain that you have correctly specified the levels
of all variables. Second, the output of prvalue labels the categories according to the value labels
assigned to the dependent variable. For example, Pr(y=SD | x): 0.2317. Since it is very easy
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to be confused about the outcome categories when using these models, it is prudent to assign clear
value labels to your dependent variable (we describe how to assign value labels in Chapter 2).

We can summarize the results in a table that lists the ideal types and provides a clear indication
of which variables are important:

Outcome Category
Ideal Type SD D A SA
Working class men in 1977 who are near retirement. 0.23 0.42 0.27 0.07
Young, highly educated women in 1989 with

prestigious jobs. 0.02 0.08 0.32 0.59
An “average individual” in 1977. 0.13 0.36 0.37 0.14
An “average individual” in 1989. 0.08 0.28 0.43 0.21

5.8.5 Tables of predicted probabilities with prtab

In other cases, it can be useful to compute predicted probabilities for all combinations of a set of
categorical independent variables. For example, the ideal types illustrate the importance of gender
and the year when the question was asked. Using prtab, we can easily show the degree to which
these variables affect opinions for those average on other characteristics.

. prtab yr89 male, novarlbl

ologit: Predicted probabilities for warm

Predicted probability of outcome 1 (SD)

male
yr89 Women Men

1977 0.0989 0.1859
1989 0.0610 0.1191

Predicted probability of outcome 2 (D)

male
yr89 Women Men

1977 0.3083 0.4026
1989 0.2282 0.3394

(tables for other outcomes omitted )

Tip Sometimes the output of prtab is clearer without the variable labels. These can be suppressed
with the novarlbl option.
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The output from prtab can be rearranged into a table that clearly shows that men are more likely
than women to strongly disagree or disagree with the proposition that working mothers can have
as warm of relationships with their children as mothers who do not work. The table also shows
that between 1977 and 1989 there was a movement for both men and women toward more positive
attitudes about working mothers.

1977 SD D A SA
Men 0.19 0.40 0.32 0.10

Women 0.10 0.31 0.41 0.18
Difference 0.09 0.09 -0.09 -0.08

1989 SD D A SA
Men 0.12 0.34 0.39 0.15

Women 0.06 0.23 0.44 0.27
Difference 0.06 0.11 -0.05 -0.12

Change from 1977 to 1989
SD D A SA

Men -0.07 -0.06 0.07 0.05
Women -0.04 -0.08 0.03 0.09

5.8.6 Graphing predicted probabilities with prgen

Graphing predicted probabilities for each outcome can also be useful for the ORM. In this example,
we consider women in 1989 and show how predicted probabilities are affected by age. Of course,
the plot could also be constructed for other sets of characteristics. The predicted probabilities as age
ranges from 20 to 80 are generated by prgen:

. prgen age, from(20) to(80) generate(w89) x(male=0 yr89=1) ncases(13)

ologit: Predicted values as age varies from 20 to 80.

yr89 male white age ed prst
x= 1 0 .8765809 44.935456 12.218055 39.585259

You should be familiar with how x() operates, but it is useful to review the other options:

from(20) and to(80) specify the minimum and maximum values over which inc is to vary. The
default is the variable’s minimum and maximum values.

ncases(13) indicates that 13 evenly spaced values of age between 20 and 80 should be generated.

gen(w89) is the root name for the new variables.

In our example, w89x contains values of age ranging from 20 to 80. The p# variables contain the
predicted probability for outcome # (e.g., w89p2 is the predicted probability of outcome 2). With
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ordinal outcomes, prgen also computes cumulative probabilities (i.e., summed) that are indicated
by s (e.g., w89s2 is the sum of the predicted probability of outcomes 1 and 2). A list of the variables
that are created should make this clear:

. desc w89*

storage display value
variable name type format label variable label

w89x float %9.0g Changing value of age
w89p1 float %9.0g pr(SD) [1]
w89s1 float %9.0g pr(y<=1)
w89p2 float %9.0g pr(D) [2]
w89s2 float %9.0g pr(y<=2)
w89p3 float %9.0g pr(A) [3]
w89s3 float %9.0g pr(y<=3)
w89p4 float %9.0g pr(SA) [4]
w89s4 float %9.0g pr(y<=4)

While prgen assigns variable labels to the variables it creates, we can change these to improve the
look of the plot that we are creating. Specifically,

. label var w89p1 "SD"

. label var w89p2 "D"

. label var w89p3 "A"

. label var w89p4 "SA"

. label var w89s1 "SD"

. label var w89s2 "SD & D"

. label var w89s3 "SD, D & A"

First we plot the probabilities of individual outcomes using graph. Since the graph command is
long, we use /* */ to allow the commands to be longer than one line in our do-file. In the output,
the >’s indicate that the same command is continuing across lines:

. * step 1: graph predicted probabilities

. graph w89p1 w89p2 w89p3 w89p4 w89x, /*
> */ title("Panel A: Predicted Probabilities") b2("Age") /*
> */ xlabel(20,30,40,50,60,70,80) ylabel(0,.25,.50) xscale(20,80) yscale(0,.5) /*
> */ s(OdST) connect(ssss) noaxis yline(0,.5) gap(4) xline(44.93) /*
> */ saving(tmp1.gph, replace)

This graph command plots the four predicted probabilities against generated values for age con-
tained in w89x. Standard options for graph are used to specify the axes and labels. The vertical
line specified by xline(44.93) marks the average age in the sample. This line is used to illustrate
the marginal effect discussed in Section 5.8.7. Option saving(tmp1.gph, replace) saves the
graph to the temporary file tmp1.gph so that we can combine it with the next graph, which plots the
cumulative probabilities:

. * step 2: graph cumulative probabilities

. graph w89s1 w89s2 w89s3 w89x, /*
> */ title("Panel B: Cumulative Probabilities") b2("Age") /*
> */ xlabel(20,30,40,50,60,70,80) ylabel(0,.25,.50,.75,1.0) xscale(20,80) /*
> */ yscale(0,1) s(OdST) connect(sss) yline(0,1) gap(4) noaxis /*
> */ saving(tmp2.gph, replace)

Next we combine these two graphs along with a null graph (see Chapter 2 for details on combining
graphs):
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. * step 3: create an empty graph

. graph using, saving(null,replace)

. * step 4: combine graphs

. graph using tmp1 null tmp2

This leads to Figure 5.2. Panel A plots the predicted probabilities and shows that with age the
probability of SA decreases rapidly while the probability of D (and to a lesser degree SD) increases.
Panel B plots the cumulative probabilities. Since both panels present the same information, which
one you use is largely a matter of personal preference.

Panel A: Predicted Probabilities
Age

 SD  D
 A  SA

20 30 40 50 60 70 80

0

.25

.5

Panel B: Cumulative Probabilities
Age

 SD  SD & D
 SD, D & A
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.5

.75

1

Figure 5.2: Plot of predicted probabilities for the ordered logit model.
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162 Chapter 5. Models for Ordinal Outcomes

5.8.7 Changes in predicted probabilities

When there are many variables in the model, it is impractical to plot them all. In such cases, measures
of change in the outcome probabilities are a useful way to summarize the effects of each variable.
Before proceeding, however, we hasten to note that values of both discrete and marginal change
depend on the levels of all variables in the model. We return to this point shortly.

Marginal change with prchange

The marginal change in the probability is computed as

∂ Pr(y = m | x)
∂xk

=
∂F (τm − xβ)

∂xk
− ∂F (τm−1 − xβ)

∂xk

which is the slope of the curve relating xk to Pr(y=m |x), holding all other variables constant. In
our example, we consider the marginal effect of age (∂ Pr(y = m | x) /∂age) for women in 1989
who are average on all other variables. This corresponds to the slope of the curves in Panel A
of Figure 5.2 evaluated at the vertical line (recall that this line is drawn at the average age in the
sample). The marginal is computed with prchange, where we specify that only the coefficients for
age should be computed:

. prchange age, x(male=0 yr89=1) rest(mean)

ologit: Changes in Predicted Probabilities for warm

age

Avg|Chg| SD D A SA

Min->Max .16441458 .10941909 .21941006 -.05462247 -.27420671

-+1/2 .00222661 .00124099 .00321223 -.0001803 -.00427291

-+sd/2 .0373125 .0208976 .05372739 -.00300205 -.07162295

MargEfct .00890647 .00124098 .00321226 -.00018032 -.00427292

SD D A SA

Pr(y|x) .06099996 .22815652 .44057754 .27026597

yr89 male white age ed prst

x= 1 0 .876581 44.9355 12.2181 39.5853

sd(x)= .489718 .498875 .328989 16.779 3.16083 14.4923

The first thing to notice is the row labeled Pr(y | x), which is the predicted probabilities at the
values set by x() and rest(). In Panel A, these probabilities correspond to the intersection of the
vertical line and the probability curves. The row MargEfct lists the slopes of the probability curves
at the point of intersection with the vertical line in the figure. For example, the slope for SD (shown
with circles) is .00124, while the slope for A (shown with squares) is negative and small. As with
the BRM, the size of the slope indicates the instantaneous rate of change, but does not correspond
exactly to the amount of change in the probability for a change of one unit in the independent
variable. However, when the probability curve is approximately linear, the marginal effect can be
used to summarize the effect of a unit change in the variable on the probability of an outcome.
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5.8 Interpretation 163

Marginal change with mfx compute

Marginal change can also be computed using mfx compute, where at() is used to set values of the
independent variables. Unlike prchange, mfx does not allow you to compute effects for a subset
of the independent variables. And, it only estimates the marginal effects for one outcome category
at a time, where the category is specified with the option predict(outcome(#)). Using the same
values for the independent variables as in the example above, we obtain the following results:

. mfx compute, at(male=0 yr89=1) predict(outcome(1))

Marginal effects after ologit
y = Pr(warm==1) (predict, outcome(1))

= .06099996

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

yr89* -.0378526 .00601 -6.30 0.000 -.049633 -.026072 1.00000
male* .0581355 .00731 7.95 0.000 .043803 .072468 0.00000

white* .0197511 .0055 3.59 0.000 .008972 .03053 .876581
age .001241 .00016 7.69 0.000 .000925 .001557 44.9355
ed -.0038476 .00097 -3.96 0.000 -.005754 -.001941 12.2181

prst -.0003478 .00019 -1.83 0.068 -.000721 .000025 39.5853

(*) dy/dx is for discrete change of dummy variable from 0 to 1

The marginal for age is .001241, which matches the result obtained from prchange. The advantage
of mfx is that it computes standard errors.

Discrete change with prchange

Since the marginal change can be misleading when the probability curve is changing rapidly or
when an independent variable is a dummy variable, we prefer using discrete change (mfx computes
discrete change for independent variables that are binary, but not for other independent variables).
The discrete change is the change in the predicted probability for a change in xk from the start value
xS to the end value xE (e.g., a change from xk = 0 to xk = 1). Formally,

∆ Pr (y = m | x)
∆xk

= Pr (y = m | x, xk = xE) − Pr (y = m | x, xk = xS)

where Pr (y = m | x, xk) is the probability that y = m given x, noting a specific value for xk. The
change is interpreted as

When xk changes from xS to xE, the predicted probability of outcome m changes by
∆ Pr(y=m|x)

∆xk
, holding all other variables at x.

The value of the discrete change depends on: (1) the value at which xk starts; (2) the amount of
change in xk; and (3) the values of all other variables. Most frequently, each continuous variable
except xk is held at its mean. For dummy independent variables, the change could be computed for
both values of the variable. For example, we could compute the discrete change for age separately
for men and women.
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164 Chapter 5. Models for Ordinal Outcomes

In our example, the discrete change coefficients for male, age, and prst for women in 1989,
with other variables at their mean, are computed as follows:

. prchange male age prst, x(male=0 yr89=1) rest(mean)

ologit: Changes in Predicted Probabilities for warm

male
Avg|Chg| SD D A SA

0->1 .08469636 .05813552 .11125721 -.05015317 -.11923955

age
Avg|Chg| SD D A SA

Min->Max .16441458 .10941909 .21941006 -.05462247 -.27420671
-+1/2 .00222661 .00124099 .00321223 -.0001803 -.00427291

-+sd/2 .0373125 .0208976 .05372739 -.00300205 -.07162295
MargEfct .00890647 .00124098 .00321226 -.00018032 -.00427292

prst
Avg|Chg| SD D A SA

Min->Max .04278038 -.02352008 -.06204067 .00013945 .08542132
-+1/2 .00062411 -.00034784 -.00090037 .00005054 .00119767

-+sd/2 .00904405 -.00504204 -.01304607 .00073212 .01735598
MargEfct .00249643 -.00034784 -.00090038 .00005054 .00119767

SD D A SA
Pr(y|x) .06099996 .22815652 .44057754 .27026597

yr89 male white age ed prst
x= 1 0 .876581 44.9355 12.2181 39.5853

sd(x)= .489718 .498875 .328989 16.779 3.16083 14.4923

For variables that are not binary, the discrete change can be interpreted for a unit change centered
around the mean, for a standard deviation change centered around the mean, or as the variable
changes from its minimum to its maximum value. For example,

For a standard deviation increase in age, the probability of disagreeing increases by .05,
holding other variables constant at their means.

Moving from the minimum prestige to the maximum prestige changes the predicted
probability of strongly agreeing by .06, holding all other variables constant at their
means.

The J discrete change coefficients for a variable can be summarized by computing the average
of the absolute values of the changes across all of the outcome categories:

∆ =
1
J

J∑
j=1

∣∣∣∣∆ Pr (y = j | x)
∆xk

∣∣∣∣
The absolute value must be used since the sum of the changes without taking the absolute value is
necessarily zero. These are labeled as Avg | Chg |. For example, the effect of being a male is on
average 0.08, which is larger than the average effect of a standard deviation change in either age or
occupational prestige.
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5.8 Interpretation 165

Computing discrete change for a 10 year increase in age

In the example above, age was measured in years. Not surprisingly, the change in the predicted
probability for a one-year increase in age is trivially small. But, to characterize the effect of age,
we could report the effect of a ten-year change in age.

Warning It is tempting to compute the discrete change for a ten-year change in age by simply
multiplying the one-year discrete change by 10. This will give you approximately the right
answer if the probability curve is nearly linear over the range of change. But, when the curve
is not linear, simply multiplying can give very misleading results and even the wrong sign. To
be safe, don’t do it!

The delta(#) option for prchange computes the discrete change as an independent value
changes from #/2 units below the base value to #/2 above. In our example, we use delta(10)
and set the base value of age to its mean:

. prchange age, x(male=0 yr89=1) rest(mean) delta(10)

ologit: Changes in Predicted Probabilities for warm

(Note: d = 10)

age
Avg|Chg| SD D A SA

Min->Max .16441458 .10941909 .21941006 -.05462247 -.27420671
-+d/2 .02225603 .01242571 .03208634 -.00179818 -.04271388
-+sd/2 .0373125 .0208976 .05372739 -.00300205 -.07162295

MargEfct .00890647 .00124098 .00321226 -.00018032 -.00427292

SD D A SA
Pr(y|x) .06099996 .22815652 .44057754 .27026597

yr89 male white age ed prst
x= 1 0 .876581 44.9355 12.2181 39.5853

sd(x)= .489718 .498875 .328989 16.779 3.16083 14.4923

For females interviewed in 1989, the results in the -+d/2 row show the changes in the predicted
probabilities associated with a ten-year increase in age centered on the mean.

5.8.8 Odds ratios using listcoef

For ologit, but not oprobit, we can interpret the results using odds ratios. Earlier, Equation 5.2
defined the ordered logit model as

Ω≤m|>m (x) = exp (τm − xβ)

For example, with four outcomes we would simultaneously estimate three equations:

Ω≤1|>1 (x) = exp (τ1 − xβ)
Ω≤2|>2 (x) = exp (τ2 − xβ)
Ω≤3|>3 (x) = exp (τ3 − xβ)
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166 Chapter 5. Models for Ordinal Outcomes

Using the same approach as shown for binary logit, the effect of a change in xk of 1 equals

Ω≤m|>m (x, xk + 1)
Ω≤m|>m (x, xk)

= e−βk =
1
eβk

which can be interpreted as

For a unit increase in xk, the odds of an outcome being less than or equal to m is
changed by the factor exp (−βk), holding all other variables constant.

The value of the odds ratio does not depend on the value of m, which is why the parallel regression
assumption is also known as the proportional odds assumption. That is to say, we could interpret the
odds ratio as

For a unit increase in xk, the odds of a lower outcome compared to a higher outcome
are changed by the factor exp (−βk), holding all other variables constant.

or, for a change in xk of δ,

Ω≤m|>m (x, xk + δ)
Ω≤m|>m (x, xk)

= exp (−δ × βk) =
1

exp (δ × βk)

so that

For an increase of δ in xk, the odds of lower outcome compared to a higher outcome
change by the factor exp (−δ × βk), holding all other variables constant.

In these results, we are discussing factor changes in the odds of lower outcomes compared to
higher outcomes. This is done since the model is traditionally written as ln Ω≤m|>m (x) = τm−xβ,
which leads to the factor change coefficient of exp (−βk). For purposes of interpretation, we could
just as well consider the factor change in the odds of higher versus lower values; that is, changes in
the odds Ω>m|≤m (x). This would equal exp (βk).

The odds ratios for both a unit and a standard deviation change of the independent variables
can be computed with listcoef, which lists the factor changes in the odds of higher versus lower
outcomes. Here, we request coefficients for only male and age:

. ologit warm yr89 male white age ed prst, nolog
(output omitted )

. listcoef male age, help

ologit (N=2293): Factor Change in Odds

Odds of: >m vs <=m

warm b z P>|z| e^b e^bStdX SDofX

male -0.73330 -9.343 0.000 0.4803 0.6936 0.4989
age -0.02167 -8.778 0.000 0.9786 0.6952 16.7790
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b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

or to compute percent changes in the odds,

. listcoef male age, help percent

ologit (N=2293): Percentage Change in Odds

Odds of: >m vs <=m

warm b z P>|z| % %StdX SDofX

male -0.73330 -9.343 0.000 -52.0 -30.6 0.4989
age -0.02167 -8.778 0.000 -2.1 -30.5 16.7790

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
% = percent change in odds for unit increase in X

%StdX = percent change in odds for SD increase in X
SDofX = standard deviation of X

These results can be interpreted as

The odds of having more positive attitudes towards working mothers are .48 times
smaller for men than women, holding all other variables constant. Equivalently, the
odds of having more positive values are 52 percent smaller for men than women, hold-
ing other variables constant.

For a standard deviation increase in age, the odds of having more positive attitudes
decrease by a factor of .69, holding all other variables constant.

When presenting odds ratios, our experience is that people find it easier to understand the results
if you talk about increases in the odds rather than decreases. That is, it is clearer to say, “The odds
increased by a factor of 2” than to say, “The odds decreased by a factor of .5”. If you agree, then
you can reverse the order when presenting odds. For example, we could say

The odds of having more negative attitudes towards working mothers are 2.08 times
larger for men than women, holding all other variables constant.

This new factor change, 2.08, is just the inverse of the old value .48 (that is, 1/.48). listcoef
computes the odds of a lower category versus a higher category if you specify the reverse option:

. listcoef male, reverse

ologit (N=2293): Factor Change in Odds

Odds of: <=m vs >m

warm b z P>|z| e^b e^bStdX SDofX

male -0.73330 -9.343 0.000 2.0819 1.4417 0.4989
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168 Chapter 5. Models for Ordinal Outcomes

Notice that the output now says Odds of: < =m vs > m instead of Odds of: > m vs < =m as
it did earlier.

When interpreting the odds ratios, it is important to keep in mind two points that are discussed
in detail in Chapter 4. First, since odds ratios are multiplicative coefficients, positive and negative
effects should be compared by taking the inverse of the negative effect (or vice versa). For example, a
negative factor change of .5 has the same magnitude as a positive factor change of 2=1/.5. Second,
the interpretation only assumes that the other variables have been held constant, not held at any
specific values (as was required for discrete change). But, a constant factor change in the odds does
not correspond to a constant change or constant factor change in the probability.

5.9 Less common models for ordinal outcomes

Stata can also be used to estimate several less commonly used models for ordinal outcomes. In
concluding this chapter, we describe these models briefly and note their commands for estimation.
Our SPost commands do not work with these models. For gologit and ocratio, this is mainly
because these commands do not fully incorporate the new methods of returning information that
were introduced with Stata 6.

5.9.1 Generalized ordered logit model

The parallel regression assumption results from assuming the same coefficient vector β for all com-
parisons in the J − 1 equations

ln Ω≤m|>m (x) = τm − xβ

where Ω≤m|>m (x) = Pr(y≤m|x)
Pr(y>m|x) . The generalized ordered logit model (GOLM) allows β to differ

for each of the J − 1 comparisons. That is,

ln Ω≤m|>m (x) = τm − xβm for j = 1 to J − 1

where predicted probabilities are computed as

Pr (y = 1 | x) =
exp (τ1 − xβ1)

1 + exp (τ1 − xβ1)

Pr (y = j | x) =
exp

(
τj − xβj

)
1 + exp

(
τj − xβj

) − exp
(
τj−1 − xβj−1

)
1 + exp

(
τj−1 − xβj−1

) for j = 2 to J − 1

Pr (y = J | x) = 1 − exp
(
τJ−1 − xβJ−1

)
1 + exp

(
τJ−1 − xβJ−1

)
To insure that the Pr (y = j | x) is between 0 and 1, the condition(

τj − xβj

) ≥ (
τj−1 − xβj−1

)
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5.9 Less common models for ordinal outcomes 169

must hold. Once predicted probabilities are computed, all of the approaches used to interpret the
ORM results can be readily applied. This model has been discussed by Clogg and Shihadeh (1994,
146–147), Fahrmeir and Tutz (1994, 91), and McCullagh and Nelder (1989, 155). It can be esti-
mated in Stata with the add-on command gologit (Fu 1998). To obtain this command, enter net
search gologit and follow the prompts to download.

5.9.2 The stereotype model

The stereotype ordered regression model (SORM) was proposed by Anderson (1984) in response
to the restrictive assumption of parallel regressions in the ordered regression model. The model,
which can be estimated with mclest written by Hendrickx (2000) (type net search mclest to
download), is a compromise between allowing the coefficients for each independent variable to vary
by outcome category and restricting them to be identical across all outcomes. The SORM is defined
as2

ln
Pr (y = q | x)
Pr (y = r | x)

= (αq − αr)β0 + (φq − φr) (xβ) (5.4)

where β0 is the intercept and β is a vector of coefficients associated with the independent variables;
since β0 is included in the equation, it is not included in β. The α’s and φ’s are scale factors
associated with the outcome categories. The model allows the coefficients associated with each
independent variable to differ by a scalar factor that depends on the pair of outcomes on the left-
hand side of the equation. Similarly, the α’s allow different intercepts for each pair of outcomes. As
the model stands, there are too many unconstrained α’s and φ’s for the parameters to be uniquely
determined. The model can be identified in a variety of ways. For example, we can assume that
φ1 = 1, φJ = 0, α1 = 1, and αJ = 0. Or, using the approach from loglinear models for ordinal
outcomes, the model is identified by the constraints

∑J
j=1 φj = 0 and

∑J
j=1 φ

2
j = 1. See DiPrete

(1990) for further discussion. To insure ordinality of the outcomes, φ1 = 1 > φ2 > · · · > φJ−1 >
φJ = 0 must hold. Note that mclest does not impose this inequality constraint during estimation.

Equation 5.4 can be used to compute the predicted probabilities:

Pr (y = m | x) =
exp (αmβ0 + φmxβ)∑J
j=1 exp (αjβ0 + φjxβ)

This formula can be used for interpreting the model using methods discussed above. The model can
also be interpreted in terms of the effect of a change in xk on the odds of outcome q versus r. After
rewriting Equation 5.4 in terms of odds,

Ωq|r (x,xk) =
Pr (y = q | x,xk)
Pr (y = r | x,xk)

= exp [(αq − αr)β0 + (φq − φr) (xβ)]

It is easy to show that
Ωq|r (x,xk + 1)

Ωq|r (x,xk)
= e(φq−φr)βk =

(
eφq

eφr

)βk

2The sterotype model can be set up in several different ways. For example, in some presentations, it is assumed that
β0 = 0 and fewer constraints are imposed on the α’s. Here we parameterize the model to highlight its links to other models
that we consider.
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170 Chapter 5. Models for Ordinal Outcomes

Thus, the effect of xk on the odds of q versus r differs across outcome comparisons according to the
scaling coefficients φ.

5.9.3 The continuation ratio model

The continuation ratio model was proposed by Fienberg (1980, 110) and was designed for ordinal
outcomes in which the categories represent the progression of events or stages in some process
though which an individual can advance. For example, the outcome could be faculty rank, where
the stages are assistant professor, associate professor, and full professor. A key characteristic of the
process is that an individual must pass through each stage. For example, to become an associate
professor you must be an assistant professor; to be a full professor, an associate professor. While
there are versions of this model based on other binary models (e.g., probit), here we consider the
logit version.

If Pr (y = m | x) is the probability of being in stage m given x and Pr (y > m | x) is the prob-
ability of being in a stage later than m, the continuation ratio model for the log odds is

ln
[
Pr (y = m | x)
Pr (y > m | x)

]
= τm − xβ for m = 1 to J − 1

where the β’s are constrained to be equal across outcome categories, while the constant term τm
differs by stage. As with other logit models, we can also express the model in terms of the odds:

Pr (y = m | x)
Pr (y > m | x)

= exp (τm − xβ)

Accordingly, exp (−βk) can be interpreted as the effect of a unit increase in xk on the odds of being
in m compared to being in a higher category given that an individual is in category m or higher,
holding all other variables constant. From this equation, the predicted probabilities can be computed
as

Pr (y = m | x) =
exp (τm − xβ)∏m

j=1 [1 + exp (τj − xβ)]
for m = 1 to J − 1

Pr (y = J | x) = 1 −
J−1∑
j=1

Pr (y = j | x)

These predicted probabilities can be used for interpreting the model. In Stata, this model can be
estimated using ocratio by Wolfe (1998); type net search ocratio and follow the prompts to
download.
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6 Models for Nominal Outcomes

An outcome is nominal when the categories are assumed to be unordered. For example, marital
status can be grouped nominally into the categories of divorced, never married, married, or widowed.
Occupations might be organized as professional, white collar, blue collar, craft, and menial, which
is the example we use in this chapter. Other examples include reasons for leaving the parents’ home,
the organizational context of scientific work (e.g., industry, government, and academia), and the
choice of language in a multilingual society. Further, in some cases a researcher might prefer to treat
an outcome as nominal even though it is ordered or partially ordered. For example, if the response
categories are strongly agree, agree, disagree, strongly disagree, and don’t know, the category “don’t
know” invalidates models for ordinal outcomes. Or, you might decide to use a nominal regression
model when the assumption of parallel regressions is rejected. In general, if there are concerns about
the ordinality of the dependent variable, the potential loss of efficiency in using models for nominal
outcomes is outweighed by avoiding potential bias.

This chapter focuses on two closely related models for nominal outcomes. The multinomial
logit model (MNLM) is the most frequently used nominal regression model. In this model, the
effects of the independent variables are allowed to differ for each outcome, and are similar to the
generalized ordered logit model discussed in the last chapter. In the conditional logit model (CLM),
characteristics of the outcomes are used to predict which choice is made. While probit versions
of these models are theoretically possible, issues of computation and identification limit their use
(Keane 1992) .

The biggest challenge in using the MNLM is that the model includes a lot of parameters, and it
is easy to be overwhelmed by the complexity of the results. This complexity is compounded by the
nonlinearity of the model, which leads to the same difficulties of interpretation found for models
in prior chapters. While estimation of the model is straight-forward, interpretation involves many
challenges that are the focus of this chapter. We begin by reviewing the statistical model, followed
by a discussion of testing, fit, and finally methods of interpretation. These discussions are intended
as a review for those who are familiar with the models. For a complete discussion, see Long (1997).
As always, you can obtain sample do-files and data files by downloading the spostst4 package
(see Chapter 1 for details).
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172 Chapter 6. Models for Nominal Outcomes

6.1 The multinomial logit model

The MNLM can be thought of as simultaneously estimating binary logits for all comparisons among
the dependent categories. For example, let occ3 be a nominal outcome with the categories M for
manual jobs, W for white collar jobs, and P for professional jobs. Assume that there is a single
independent variable ed measuring years of education. We can examine the effect of ed on occ3 by
estimating three binary logits,

ln
[

Pr (P | x)
Pr (M | x)

]
= β0,P |M + β1,P |Med

ln
[
Pr (W | x)
Pr (M | x)

]
= β0,W |M + β1,W |Med

ln
[

Pr (P | x)
Pr (W | x)

]
= β0,P |W + β1,P |W ed

where the subscripts to the β’s indicate which comparison is being made (e.g., β1,P |M is the coeffi-
cient for the first independent variable for the comparison of P and M ).

The three binary logits include redundant information. Since ln a
b = ln a − ln b, the following

equality must hold:

ln
[

Pr (P | x)
Pr (M | x)

]
− ln

[
Pr (W | x)
Pr (M | x)

]
= ln

[
Pr (P | x)
Pr (W | x)

]
This implies that

β0,P |M − β0,W |M = β0,P |W (6.1)

β1,P |M − β1,W |M = β1,P |W

In general, with J outcomes, only J − 1 binary logits need to be estimated. Estimates for the
remaining coefficients can be computed using equalities of the sort shown in Equation 6.1.

The problem with estimating the MNLM by estimating a series of binary logits is that each binary
logit is based on a different sample. For example, in the logit comparing P to M , those in W are
dropped. To see this, we can look at the output from a series of binary logits. First, we estimate a
binary logit comparing manual and professional workers:

. use nomintro2, clear
(1982 General Social Survey)

. tab prof_man, miss

prof_man Freq. Percent Cum.

Manual 184 54.60 54.60
Prof 112 33.23 87.83

. 41 12.17 100.00

Total 337 100.00
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6.1 The multinomial logit model 173

. logit prof_man ed, nolog

Logit estimates Number of obs = 296
LR chi2(1) = 139.78
Prob > chi2 = 0.0000

Log likelihood = -126.43879 Pseudo R2 = 0.3560

prof_man Coef. Std. Err. z P>|z| [95% Conf. Interval]

ed .7184599 .0858735 8.37 0.000 .550151 .8867688
_cons -10.19854 1.177457 -8.66 0.000 -12.50632 -7.89077

Notice that 41 cases are missing for prof man and have been deleted. These correspond to respon-
dents who have white collar occupations. In the same way, the next two binary logits also exclude
cases corresponding to the excluded category:

. tab wc_man, miss

wc_man Freq. Percent Cum.

Manual 184 54.60 54.60
WhiteCol 41 12.17 66.77

. 112 33.23 100.00

Total 337 100.00

. logit wc_man ed, nolog

Logit estimates Number of obs = 225
LR chi2(1) = 16.00
Prob > chi2 = 0.0001

Log likelihood = -98.818194 Pseudo R2 = 0.0749

wc_man Coef. Std. Err. z P>|z| [95% Conf. Interval]

ed .3418255 .0934517 3.66 0.000 .1586636 .5249875
_cons -5.758148 1.216291 -4.73 0.000 -8.142035 -3.374262

. tab prof_wc, miss

prof_wc Freq. Percent Cum.

WhiteCol 41 12.17 12.17
Prof 112 33.23 45.40

. 184 54.60 100.00

Total 337 100.00

. logit prof_wc ed, nolog

Logit estimates Number of obs = 153
LR chi2(1) = 23.34
Prob > chi2 = 0.0000

Log likelihood = -77.257045 Pseudo R2 = 0.1312

prof_wc Coef. Std. Err. z P>|z| [95% Conf. Interval]

ed .3735466 .0874469 4.27 0.000 .2021538 .5449395
_cons -4.332833 1.227293 -3.53 0.000 -6.738283 -1.927382
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The results from the binary logits can be compared to the output from mlogit, the command
that estimates the MNLM:

. tab occ3, miss

occ3 Freq. Percent Cum.

Manual 184 54.60 54.60
WhiteCol 41 12.17 66.77

Prof 112 33.23 100.00

Total 337 100.00

. mlogit occ3 ed, nolog

Multinomial regression Number of obs = 337
LR chi2(2) = 145.89
Prob > chi2 = 0.0000

Log likelihood = -248.14786 Pseudo R2 = 0.2272

occ3 Coef. Std. Err. z P>|z| [95% Conf. Interval]

WhiteCol
ed .3000735 .0841358 3.57 0.000 .1351703 .4649767

_cons -5.232602 1.096086 -4.77 0.000 -7.380892 -3.084312

Prof
ed .7195673 .0805117 8.94 0.000 .5617671 .8773674

_cons -10.21121 1.106913 -9.22 0.000 -12.38072 -8.041698

(Outcome occ3==Manual is the comparison group)

The output from mlogit is divided into two panels. The top panel is labeled WhiteCol, which is
the value label for the second category of the dependent variable; the second panel is labeled Prof,
which corresponds to the third outcome category. The key to understanding the two panels is the last
line of output: Outcome occ3==Manual is the comparison group. This means that the panel
WhiteCol presents coefficients from the comparison of W to M ; the second panel labeled Prof
holds the comparison of P to M . Accordingly, the top panel should be compared to the coefficients
from the binary logit for W and M (outcome variable wc man) listed above. For example, the
coefficient for the comparison of W to M from mlogit is β̂1,W |M = .3000735 with z = 3.567,

while the logit estimate is β̂1,W |M = .3418255 with z = 3.658. Overall, the estimates from the
binary model are close to those from the MNLM, but not exactly the same.

Next, notice that while theoretically β1,P |M − β1,W |M = β1,P |W , the estimates from the bi-

nary logits are β̂1,P |M − β̂1,W |M = .7184599 − .3418255 = .3766344, which does not equal the

binary logit estimate β̂1,P |W = .3735466. The general point is that a series of binary logits using
logit does not impose the constraints among coefficients that are implicit in the definition of the
model. When estimating the model with mlogit, the constraints are imposed. Indeed, the out-
put from mlogit only presents two of the three comparisons from our example, namely, W versus
M and P versus M . The remaining comparison, W versus P , is the difference between the two
sets of estimated coefficients. Details on using listcoef to automatically compute the remaining
comparisons are given below.
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6.2 Estimation using mlogit 175

6.1.1 Formal statement of the model

Formally, the MNLM can be written as

ln Ωm|b (x) = ln
Pr (y = m | x)
Pr (y = b | x)

= xβm|b for m = 1 to J

where b is the base category, which is also referred to as the comparison group. Since ln Ωb|b (x) =
ln 1 = 0, it must hold that βb|b = 0. That is, the log odds of an outcome compared to itself is always
0, and thus the effects of any independent variables must also be 0. These J equations can be solved
to compute the predicted probabilities:

Pr (y = m | x) =
exp

(
xβm|b

)
∑J

j=1 exp
(
xβj|b

)
While the predicted probability will be the same regardless of the base category b, changing the

base category can be confusing since the resulting output from mlogit appears to be quite different.
For example, suppose you have three outcomes and estimate the model with outcome 1 as the base
category. Your probability equations would be

Pr (y = m | x) =
exp

(
xβm|1

)
∑J

j=1 exp
(
xβj|1

)
and you would obtain estimates β̂2|1 and β̂3|1, where β1|1 = 0. If someone else set up the model
with base category 2, their equations would be

Pr (y = m | x) =
exp

(
xβm|2

)
∑J

j=1 exp
(
xβj|2

)
and they would obtain β̂1|2 and β̂3|2, where β2|2 = 0. While the estimated parameters are different,
they are only different parameterizations that provide the same predicted probabilities. The con-
fusion arises only if you are not clear about which parameterization you are using. Unfortunately,
some software packages, but not Stata, make it very difficult to tell which set of parameters is being
estimated. We return to this issue when we discuss how Stata’s mlogit parameterizes the model in
the next section.

6.2 Estimation using mlogit

The multinomial logit model is estimated with the following command:

mlogit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, level(#) nolog

cluster(varname) robust basecategory(#) constraints(clist) rrr

noconstant
]
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176 Chapter 6. Models for Nominal Outcomes

In our experience, the model converges very quickly, even when there are many outcome categories
and independent variables.

Variable lists

depvar is the dependent variable. The actual values taken on by the dependent variable are irrele-
vant. For example, if you had three outcomes, you could use the values 1, 2, and 3 or −1, 0,
and 999. Up to 50 outcomes are allowed in Intercooled Stata, and 20 outcomes are allowed in
Small Stata.

indepvars is a list of independent variables. If indepvars is not included, Stata estimates a model
with only constants.

Specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if you want to esti-
mate the model with only white respondents, use the command mlogit occ ed exper if white==1.

Listwise deletion Stata excludes cases in which there are missing values for any of the variables.
Accordingly, if two models are estimated using the same dataset but have different sets of inde-
pendent variables, it is possible to have different samples. We recommend that you use mark and
markout (discussed in Chapter 3) to explicitly remove cases with missing data.

Weights

mlogit can be used with fweights, pweights, and iweights. In Chapter 3, we provide a brief
discussion of the different types of weights and how weights are specified in Stata’s syntax.

Options

basecategory(#) specifies the value of depvar that is the base category (i.e., reference group)
for the coefficients that are listed. This determines how the model is parameterized. If the
basecategory option is not specified, the most frequent category in the estimation sample is
chosen as the base. The base category is always reported immediately below the estimates; for
example, Outcome occ3==Manual is the comparison group.

constraints(clist) specifies the linear constraints to be applied during estimation. The default is
to perform unconstrained estimation. Constraints are defined with the constraint command.
This option is illustrated in Section 6.3.3 when we discuss an LR test for combining outcome
categories.

rrr reports the estimated coefficients transformed to relative risk ratios, defined as exp (b) rather
than b. We do not consider this option further, because the same information is available through
listcoef.

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



6.2 Estimation using mlogit 177

noconstant excludes the constant terms from the model.

nolog suppresses the iteration history.

level(#) specifies the level of the confidence interval for estimated parameters. By default, Stata
uses 95% intervals. You can also change the default level, say, to a 90% interval, with the
command set level 90.

cluster(varname) specifies that the observations are independent across the groups specified by
unique values of varname but not necessarily independent within the groups. See Chapter 3 for
further details.

robust indicates that robust variance estimates are to be used. When cluster() is specified, robust
standard errors are automatically used. See Chapter 3 for further details.

6.2.1 Example of occupational attainment

The 1982 General Social Survey asked respondents their occupation, which we recoded into five
broad categories: menial jobs (M ), blue collar jobs (B), craft jobs (C), white collar jobs (W ), and
professional jobs (P ). Three independent variables are considered: white indicating the race of the
respondent, ed measuring years of education, and exper measuring years of work experience.

. sum white ed exper

Variable Obs Mean Std. Dev. Min Max

white 337 .9169139 .2764227 0 1
ed 337 13.09496 2.946427 3 20

exper 337 20.50148 13.95936 2 66

The distribution among outcome categories is

. tab occ, missing

Occupation Freq. Percent Cum.

Menial 31 9.20 9.20
BlueCol 69 20.47 29.67
Craft 84 24.93 54.60

WhiteCol 41 12.17 66.77
Prof 112 33.23 100.00

Total 337 100.00

Using these variables the following MNLM was estimated:

ln ΩM |P (xi) = β0,M |P + β1,M |P white + β2,M |P ed + β3,M |P exper
ln ΩB|P (xi) = β0,B|P + β1,B|P white + β2,B|P ed + β3,B|Pexper
ln ΩC|P (xi) = β0,C|P + β1,C|P white + β2,C|P ed + β3,C|P exper
ln ΩW |P (xi) = β0,W |P + β1,W |P white + β2,W |P ed + β3,W |P exper

where we specify the fifth category P as the base category:
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178 Chapter 6. Models for Nominal Outcomes

. mlogit occ white ed exper, basecategory(5) nolog

Multinomial regression Number of obs = 337
LR chi2(12) = 166.09
Prob > chi2 = 0.0000

Log likelihood = -426.80048 Pseudo R2 = 0.1629

occ Coef. Std. Err. z P>|z| [95% Conf. Interval]

Menial
white -1.774306 .7550543 -2.35 0.019 -3.254186 -.2944273

ed -.7788519 .1146293 -6.79 0.000 -1.003521 -.5541826
exper -.0356509 .018037 -1.98 0.048 -.0710028 -.000299
_cons 11.51833 1.849356 6.23 0.000 7.893659 15.143

BlueCol
white -.5378027 .7996033 -0.67 0.501 -2.104996 1.029391

ed -.8782767 .1005446 -8.74 0.000 -1.07534 -.6812128
exper -.0309296 .0144086 -2.15 0.032 -.05917 -.0026893
_cons 12.25956 1.668144 7.35 0.000 8.990061 15.52907

Craft
white -1.301963 .647416 -2.01 0.044 -2.570875 -.0330509

ed -.6850365 .0892996 -7.67 0.000 -.8600605 -.5100126
exper -.0079671 .0127055 -0.63 0.531 -.0328693 .0169351
_cons 10.42698 1.517943 6.87 0.000 7.451864 13.40209

WhiteCol
white -.2029212 .8693072 -0.23 0.815 -1.906732 1.50089

ed -.4256943 .0922192 -4.62 0.000 -.6064407 -.2449479
exper -.001055 .0143582 -0.07 0.941 -.0291967 .0270866
_cons 5.279722 1.684006 3.14 0.002 1.979132 8.580313

(Outcome occ==Prof is the comparison group)

Methods of testing coefficients and interpretation of the estimates are considered after we discuss
the effects of using different base categories.

6.2.2 Using different base categories

By default, mlogit sets the base category to the outcome with the most observations. Alternatively,
as illustrated in the last example, you can select the base category with basecategory(). mlogit
then reports coefficients for the effect of each independent variable on each category relative to the
base category. However, you should also examine the effects on other pairs of outcome categories.
For example, you might be interested in how race affects the allocation of workers between Craft
and BlueCol (e.g., β1,B|C), which was not estimated in the output listed above. While this co-
efficient can be estimated by re-running mlogit with a different base category (e.g., mlogit occ
white ed exper, basecategory(3)), it is easier to use listcoef, which presents estimates for
all combinations of outcome categories. Since listcoef can generate a lot of output, we illustrate
two options that limit which coefficients are listed. First, you can include a list of variables, and
only coefficients for those variables will be listed. For example,
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. listcoef white, help

mlogit (N=337): Factor Change in the Odds of occ

Variable: white (sd= .276423)

Odds comparing
Group 1 vs Group 2 b z P>|z| e^b e^bStdX

Menial -BlueCol -1.23650 -1.707 0.088 0.2904 0.7105
Menial -Craft -0.47234 -0.782 0.434 0.6235 0.8776
Menial -WhiteCol -1.57139 -1.741 0.082 0.2078 0.6477
Menial -Prof -1.77431 -2.350 0.019 0.1696 0.6123
BlueCol -Menial 1.23650 1.707 0.088 3.4436 1.4075
BlueCol -Craft 0.76416 1.208 0.227 2.1472 1.2352
BlueCol -WhiteCol -0.33488 -0.359 0.720 0.7154 0.9116
BlueCol -Prof -0.53780 -0.673 0.501 0.5840 0.8619
Craft -Menial 0.47234 0.782 0.434 1.6037 1.1395
Craft -BlueCol -0.76416 -1.208 0.227 0.4657 0.8096
Craft -WhiteCol -1.09904 -1.343 0.179 0.3332 0.7380
Craft -Prof -1.30196 -2.011 0.044 0.2720 0.6978
WhiteCol-Menial 1.57139 1.741 0.082 4.8133 1.5440
WhiteCol-BlueCol 0.33488 0.359 0.720 1.3978 1.0970
WhiteCol-Craft 1.09904 1.343 0.179 3.0013 1.3550
WhiteCol-Prof -0.20292 -0.233 0.815 0.8163 0.9455
Prof -Menial 1.77431 2.350 0.019 5.8962 1.6331
Prof -BlueCol 0.53780 0.673 0.501 1.7122 1.1603
Prof -Craft 1.30196 2.011 0.044 3.6765 1.4332
Prof -WhiteCol 0.20292 0.233 0.815 1.2250 1.0577

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

Or, you can limit the output to those coefficients that are significant at a given level using the
pvalue(#) option, which specifies that only coefficients significant at the # significance level or
smaller will be printed. For example,

. listcoef, pvalue(.05)

mlogit (N=337): Factor Change in the Odds of occ when P>|z| < 0.05

Variable: white (sd= .276423)

Odds comparing
Group 1 vs Group 2 b z P>|z| e^b e^bStdX

Menial -Prof -1.77431 -2.350 0.019 0.1696 0.6123
Craft -Prof -1.30196 -2.011 0.044 0.2720 0.6978
Prof -Menial 1.77431 2.350 0.019 5.8962 1.6331
Prof -Craft 1.30196 2.011 0.044 3.6765 1.4332

Variable: ed (sd= 2.94643)

Odds comparing
Group 1 vs Group 2 b z P>|z| e^b e^bStdX

Menial -WhiteCol -0.35316 -3.011 0.003 0.7025 0.3533
Menial -Prof -0.77885 -6.795 0.000 0.4589 0.1008
BlueCol -Craft -0.19324 -2.494 0.013 0.8243 0.5659
BlueCol -WhiteCol -0.45258 -4.425 0.000 0.6360 0.2636
BlueCol -Prof -0.87828 -8.735 0.000 0.4155 0.0752
Craft -BlueCol 0.19324 2.494 0.013 1.2132 1.7671
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Craft -WhiteCol -0.25934 -2.773 0.006 0.7716 0.4657
Craft -Prof -0.68504 -7.671 0.000 0.5041 0.1329
WhiteCol-Menial 0.35316 3.011 0.003 1.4236 2.8308
WhiteCol-BlueCol 0.45258 4.425 0.000 1.5724 3.7943
WhiteCol-Craft 0.25934 2.773 0.006 1.2961 2.1471
WhiteCol-Prof -0.42569 -4.616 0.000 0.6533 0.2853
Prof -Menial 0.77885 6.795 0.000 2.1790 9.9228
Prof -BlueCol 0.87828 8.735 0.000 2.4067 13.3002
Prof -Craft 0.68504 7.671 0.000 1.9838 7.5264
Prof -WhiteCol 0.42569 4.616 0.000 1.5307 3.5053

Variable: exper (sd= 13.9594)

Odds comparing
Group 1 vs Group 2 b z P>|z| e^b e^bStdX

Menial -Prof -0.03565 -1.977 0.048 0.9650 0.6079
BlueCol -Prof -0.03093 -2.147 0.032 0.9695 0.6494
Prof -Menial 0.03565 1.977 0.048 1.0363 1.6449
Prof -BlueCol 0.03093 2.147 0.032 1.0314 1.5400

6.2.3 Predicting perfectly

mlogit handles perfect prediction somewhat differently than the estimations commands for binary
and ordinal models that we have discussed. logit and probit automatically remove the observa-
tions that imply perfect prediction and compute estimates accordingly. ologit and oprobit keep
these observations in the model, estimate the z for the problem variable as 0, and provide an incor-
rect LR chi-squared, but also warn that a given number of observations are completely determined.
You should delete these observations and re-estimate the model. mlogit is just like ologit and
oprobit except that you do not receive a warning message. You will see, however, that all coeffi-
cients associated with the variable causing the problem have z = 0 (and p > |z| = 1). You should
re-estimate the model, excluding the problem variable and deleting the observations that imply the
perfect predictions. Using the tabulate command to generate a cross-tabulation of the problem
variable and the dependent variable should reveal the combination that results in perfect prediction.

6.3 Hypothesis testing of coefficients

In the MNLM you can test individual coefficients with the reported z-statistics, with a Wald test
using test, or with an LR test using lrtest. Since the methods of testing a single coefficient that
were discussed in Chapters 4 and 5 still apply fully, they are not considered further here. However,
in the MNLM there are new reasons for testing groups of coefficients. First, testing that a variable
has no effect requires a test that J − 1 coefficients are simultaneously equal to zero. Second, testing
whether the independent variables as a group differentiate between two outcomes requires a test of
K coefficients. This section focuses on these two kinds of tests.
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6.3 Hypothesis testing of coefficients 181

Caution Regarding Specification Searches Given the difficulties of interpretation that are associ-
ated with the MNLM, it is tempting to search for a more parsimonious model by excluding
variables or combining outcome categories based on a sequence of tests. Such a search re-
quires great care. First, these tests involve multiple coefficients. While the overall test might
indicate that as a group the coefficients are not significantly different from zero, an individual
coefficient can still be substantively and statistically significant. Accordingly, you should ex-
amine the individual coefficients involved in each test before deciding to revise your model.
Second, as with all searches that use repeated, sequential tests, there is a danger of over-fitting
the data. When models are constructed based on prior testing using the same data, significance
levels should only be used as rough guidelines.

6.3.1 mlogtest for tests of the MNLM

While the tests in this section can be computed using test or lrtest, in practice this is tedious.
The mlogtest command (Freese and Long 2000) makes the computation of these tests very simple.
The syntax is

mlogtest
[
, lr wald combine lrcomb set(varlist

[\ varlist
[\...]]) all iia

hausman smhsiao detail base
]

Options

lr requests LR tests for each independent variable.

wald requests Wald tests for each independent variable.

combine requests Wald tests of whether dependent categories can be combined.

lrcomb requests LR tests of whether dependent categories can be combined. These tests use con-
strained estimation and overwrite constraint #999 if it is already defined.

set(varlist
[\ varlist

[\...]]) specifies that a set of variables is to be considered together for the
LR test or Wald test. \ is used to specify multiple sets of variables. For example, mlogtest,
lr set(age age2 \ iscat1 iscat2) computes one LR test for the hypothesis that the effects
of age and age2 are jointly 0 and a second LR test that the effects of iscat1 and iscat2 are
jointly 0.

Other options for mlogtest are discussed later in the chapter.

6.3.2 Testing the effects of the independent variables

With J dependent categories, there are J − 1 nonredundant coefficients associated with each inde-
pendent variable xk. For example, in our logit on occupation there are four coefficients associated
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with ed: β2,M |P , β2,B|P , β2,C|P , and β2,W |P . The hypothesis that xk does not affect the dependent
variable can be written as

H0: βk,1|b = · · · = βk,J|b = 0

where b is the base category. Since βk,b|b is necessarily 0, the hypothesis imposes constraints on
J − 1 parameters. This hypothesis can be tested with either a Wald or an LR test.

A likelihood-ratio test

The LR test involves: 1) estimating the full model including all of the variables, resulting in the
likelihood-ratio statistic LR2

F ; 2) estimating the restricted model that excludes variable xk, resulting
in LR2

R; and 3) computing the difference LR2
RvsF =LR2

F−LR2
R, which is distributed as chi-squared

with J−1 degrees of freedom if the null hypothesis is true. This can be done using lrtest:

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. lrtest, saving(0)

. mlogit occ ed exper, basecategory(5) nolog
(output omitted )

. lrtest
Mlogit: likelihood-ratio test chi2(4) = 8.10

Prob > chi2 = 0.0881

. mlogit occ white exper, basecategory(5) nolog
(and so on )

While using lrtest is straightforward, the command mlogtest, lr is even simpler since it auto-
matically computes the tests for all variables by making repeated calls to lrtest:

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. mlogtest, lr

**** Likelihood-ratio tests for independent variables

Ho: All coefficients associated with given variable(s) are 0.

occ chi2 df P>chi2

white 8.095 4 0.088
ed 156.937 4 0.000

exper 8.561 4 0.073

The results of the LR test, regardless of how they are computed, can be interpreted as follows:

The effect of race on occupation is significant at the .10 level but not at the .05 level
(X2 = 8.10, df = 4, p = .09). The effect of education is significant at the .01 level
(X2 = 156.94, df = 4, p < .01).

or, more formally,

The hypothesis that all of the coefficients associated with education are simultaneously
equal to 0 can be rejected at the .01 level (X2 = 156.94, df = 4, p < .01).
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A Wald test

Although the LR test is generally considered superior, if the model is complex or the sample is very
large, the computational costs of the LR test can be prohibitive. Alternatively, K Wald tests can be
computed using test without estimating additional models. For example,

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. test white

( 1) [Menial]white = 0.0
( 2) [BlueCol]white = 0.0
( 3) [Craft]white = 0.0
( 4) [WhiteCol]white = 0.0

chi2( 4) = 8.15
Prob > chi2 = 0.0863

. test ed

( 1) [Menial]ed = 0.0
( 2) [BlueCol]ed = 0.0
( 3) [Craft]ed = 0.0
( 4) [WhiteCol]ed = 0.0

chi2( 4) = 84.97
Prob > chi2 = 0.0000

. test exper

( 1) [Menial]exper = 0.0
( 2) [BlueCol]exper = 0.0
( 3) [Craft]exper = 0.0
( 4) [WhiteCol]exper = 0.0

chi2( 4) = 7.99
Prob > chi2 = 0.0918

The output from test makes explicit which coefficients are being tested. Here we see the way in
which Stata labels parameters in models with multiple equations. For example, [Menial]white
is the coefficient for the effect of white in the equation comparing the outcome Menial to the
base category Prof; [BlueCol]white is the coefficient for the effect of white in the equation
comparing the outcome BlueCol to the base category Prof.

As with the LR test, mlogtest, wald automates this process:

. mlogtest, wald

**** Wald tests for independent variables

Ho: All coefficients associated with given variable(s) are 0.

occ chi2 df P>chi2

white 8.149 4 0.086
ed 84.968 4 0.000

exper 7.995 4 0.092

These tests can be interpreted in the same way as illustrated for the LR test above.
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Testing multiple independent variables

The logic of the Wald or LR tests can be extended to test that the effects of two or more independent
variables are simultaneously zero. For example, the hypothesis to test that xk and x� have no effect
is

H0: βk,1|b = · · · = βk,J|b = β�,1|b = · · · = β�,J|b = 0

The set(varlist
[\ varlist

[\...]]) option in mlogtest specifies which variables are to be simul-
taneously tested. For example, to test the hypothesis that the effects of ed and exper are simultane-
ously equal to 0, we could use lrtest as follows:

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. lrtest, saving(0)

. mlogit occ white, basecategory(5) nolog
(output omitted )

. lrtest
Mlogit: likelihood-ratio test chi2(8) = 160.77

Prob > chi2 = 0.0000

or, using mlogtest,

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. mlogtest, lr set(ed exper)

**** Likelihood-ratio tests for independent variables

Ho: All coefficients associated with given variable(s) are 0.

occ chi2 df P>chi2

white 8.095 4 0.088
ed 156.937 4 0.000

exper 8.561 4 0.073

set_1: 160.773 8 0.000
ed

exper

6.3.3 Tests for combining dependent categories

If none of the independent variables significantly affect the odds of outcome m versus outcome n,
we say that m and n are indistinguishable with respect to the variables in the model (Anderson
1984) . Outcomes m and n being indistinguishable corresponds to the hypothesis

H0: β1,m|n = · · ·βK,m|n = 0

which can be tested with either a Wald or an LR test. In our experience, the two tests provide very
similar results. If two outcomes are indistinguishable with respect to the variables in the model,
then you can obtain more efficient estimates by combining them. To test whether categories are
indistinguishable, you can use mlogtest.
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A Wald test for combining outcomes

The command mlogtest, combine computes Wald tests of the null hypothesis that two categories
can be combined for all combinations of outcome categories. For example,

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. mlogtest, combine

**** Wald tests for combining outcome categories

Ho: All coefficients except intercepts associated with given pair
of outcomes are 0 (i.e., categories can be collapsed).

Categories tested chi2 df P>chi2

Menial- BlueCol 3.994 3 0.262
Menial- Craft 3.203 3 0.361
Menial-WhiteCol 11.951 3 0.008
Menial- Prof 48.190 3 0.000

BlueCol- Craft 8.441 3 0.038
BlueCol-WhiteCol 20.055 3 0.000
BlueCol- Prof 76.393 3 0.000

Craft-WhiteCol 8.892 3 0.031
Craft- Prof 60.583 3 0.000

WhiteCol- Prof 22.203 3 0.000

For example, we can reject the hypothesis that outcomes Menial and Prof are indistinguishable,
while we cannot reject that Menial and BlueCol are indistinguishable.

Using test [category]∗

The mlogtest command computes the tests for combining categories with the test command. For
example, to test that Menial is indistinguishable from the base category Prof, type

. test [Menial]

( 1) [Menial]white = 0.0
( 2) [Menial]ed = 0.0
( 3) [Menial]exper = 0.0

chi2( 3) = 48.19
Prob > chi2 = 0.0000

which matches the results from mlogtest in row Menial-Prof. [category] in test is used to
indicate which equation is being referenced in multiple equation commands. mlogit is a multiple
equation command since it is in effect estimating J − 1 binary logit equations.

The test is more complicated when neither category is the base category. For example, to test
that m and n are indistinguishable when the base category b is neither m nor n, the hypothesis you
want to test is

H0:
(
β1,m|b − β1,n|b

)
= · · · =

(
βK,m|b − βK,n|b

)
= 0

That is, you want to test the difference between two sets of coefficients. This can be done with test
[category1=category2]. For example, to test if Menial and Craft can be combined, type
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. test [Menial=Craft]

( 1) [Menial]white - [Craft]white = 0.0
( 2) [Menial]ed - [Craft]ed = 0.0
( 3) [Menial]exper - [Craft]exper = 0.0

chi2( 3) = 3.20
Prob > chi2 = 0.3614

Again, the results are identical to those from mlogtest.

An LR test for combining outcomes

An LR test of combining m and n can be computed by first estimating the full model with no
constraints, with the resulting LR statistic LR2

F . Then estimate a restricted model MR in which
category m is used as the base category and all the coefficients except the constant in the equation
for category n are constrained to 0, with the resulting test statistic LR2

R. The test statistic is the
difference LR2

RvsF =LR2
F−LR2

R, which is distributed as chi-squared with K degrees of freedom.
The command mlogtest, lrcomb computes J × (J − 1) tests for all pairs of outcome categories.
For example,

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. mlogtest, lrcomb

**** LR tests for combining outcome categories

Ho: All coefficients except intercepts associated with given pair
of outcomes are 0 (i.e., categories can be collapsed).

Categories tested chi2 df P>chi2

Menial- BlueCol 4.095 3 0.251
Menial- Craft 3.376 3 0.337
Menial-WhiteCol 13.223 3 0.004
Menial- Prof 64.607 3 0.000
BlueCol- Craft 9.176 3 0.027
BlueCol-WhiteCol 22.803 3 0.000
BlueCol- Prof 125.699 3 0.000

Craft-WhiteCol 9.992 3 0.019
Craft- Prof 95.889 3 0.000

WhiteCol- Prof 26.736 3 0.000

Using constraint with lrtest∗

The command mlogtest, lrcomb computes the test by using the powerful constraint command.
To illustrate this, we use the test comparing Menial and BlueCol reported by mlogtest, lrcomb
above. First, we estimate the full model and save the results of lrtest:

. mlogit occ exper ed white, nolog
(output omitted )

. lrtest, saving(lrf)
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Second, we define a constraint using the command:

. constraint define 999 [Menial]

This defines constraint number 999, where the number is arbitrary. The option [Menial] indicates
that all of the coefficients except the constant from the Menial equation should be constrained to 0.
Third, we re-estimate the model with this constraint. The base category must be BlueCol, so that
the coefficients indicated by [Menial] are comparisons of BlueCol and Menial:

. mlogit occ exper ed white, base(2) constraint(999) nolog

( 1) [Menial]exper = 0.0
( 2) [Menial]ed = 0.0
( 3) [Menial]white = 0.0

Multinomial regression Number of obs = 337
LR chi2(9) = 161.99
Prob > chi2 = 0.0000

Log likelihood = -428.84791 Pseudo R2 = 0.1589

occ Coef. Std. Err. z P>|z| [95% Conf. Interval]

Menial
exper (dropped)

ed (dropped)
white (dropped)
_cons -.8001193 .2162194 -3.70 0.000 -1.223901 -.3763371

Craft
exper .0242824 .0113959 2.13 0.033 .0019469 .0466179

ed .1599345 .0693853 2.31 0.021 .0239418 .2959273
white -.2381783 .4978563 -0.48 0.632 -1.213959 .7376021
_cons -1.969087 1.054935 -1.87 0.062 -4.036721 .098547

WhiteCol
exper .0312007 .0143598 2.17 0.030 .0030561 .0593454

ed .4195709 .0958978 4.38 0.000 .2316147 .607527
white .8829927 .843371 1.05 0.295 -.7699841 2.535969
_cons -7.140306 1.623401 -4.40 0.000 -10.32211 -3.958498

Prof
exper .032303 .0133779 2.41 0.016 .0060827 .0585233

ed .8445092 .093709 9.01 0.000 .6608429 1.028176
white 1.097459 .6877939 1.60 0.111 -.2505923 2.44551
_cons -12.42143 1.569897 -7.91 0.000 -15.49837 -9.344489

(Outcome occ==BlueCol is the comparison group)

mlogit requires the option constraint(999) to indicate that estimation should impose this con-
straint. The output clearly indicates which constraints have been imposed. Finally, we use lrtest
to compute the test:

. lrtest, using(lrf)
Mlogit: likelihood-ratio test chi2(3) = 4.09

Prob > chi2 = 0.2514
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6.4 Independence of irrelevant alternatives

Both the MNLM and the conditional logit model (discussed below) make the assumption known as
the independence of irrelevant alternatives (IIA). Here we describe the assumption in terms of the
MNLM. In this model,

Pr (y = m | x)
Pr (y = n | x)

= exp
(
x
[
βm|b − βn|b

])
where the odds do not depend on other outcomes that are available. In this sense, these alternative
outcomes are “irrelevant.” What this means is that adding or deleting outcomes does not affect the
odds among the remaining outcomes. This point is often made with the red bus/blue bus example.
Suppose that you have the choice of a red bus or a car to get to work and that the odds of taking
a red bus compared to a car are 1:1. IIA implies that the odds will remain 1:1 between these two
alternatives even if a new blue bus company comes to town that is identical to the red bus company
except for the color of the bus. Thus, the probability of driving a car can be made arbitrarily small
by adding enough different colors of buses! More reasonably, we might expect that the odds of a
red bus compared to a car would be reduced to 1:2 since half of those riding the red bus would be
expected to ride the blue bus.

There are two tests of the IIA assumption. Hausman and McFadden (1984) proposed a Hausman-
type test and McFadden, Tye, and Train (1976) proposed an approximate likelihood ratio test that
was improved by Small and Hsiao (1985). For both the Hausman and the Small-Hsiao tests, multiple
tests of IIA are possible. Assuming that the MNLM is estimated with base category b, J − 1 tests
can be computed by excluding each of the remaining categories to form the restricted model. By
changing the base category, a test can also be computed that excludes b. The results of the test differ
depending on which base category was used to estimate the model. See Zhang and Hoffman (1993)
or Long (1997, Chapter 6) for further information.

Hausman test of IIA

The Hausman test of IIA involves the following steps:

1. Estimate the full model with all J outcomes included, with estimates in β̂F .

2. Estimate a restricted model by eliminating one or more outcome categories, with estimates in
β̂R.

3. Let β̂∗
F be a subset of β̂F after eliminating coefficients not estimated in the restricted model.

The test statistic is

H =
(
β̂R − β̂∗

F

)′ [
V̂ar

(
β̂R

)
− V̂ar

(
β̂∗

F

)]−1 (
β̂R − β̂∗

F

)
where H is asymptotically distributed as chi-squared with degrees of freedom equal to the
rows in β̂R if IIA is true. Significant values of H indicate that the IIA assumption has been
violated.
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6.4 Independence of irrelevant alternatives 189

The Hausman test of IIA can be computed with mlogtest. In our example, the results are

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. mlogtest, hausman base

**** Hausman tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted chi2 df P>chi2 evidence

Menial 7.324 12 0.835 for Ho
BlueCol 0.320 12 1.000 for Ho

Craft -14.436 12 --- for Ho
WhiteCol -5.541 11 --- for Ho

Prof -0.119 12 --- for Ho

Note: If chi2<0, the estimated model does not
meet asymptotic assumptions of the test.

Five tests of IIA are reported. The first four correspond to excluding one of the four non-base
categories. The fifth test, in row Prof, is computed by re-estimating the model using the largest
remaining category as the base category.1 While none of the tests reject the H0 that IIA holds, the
results differ considerably depending on the category considered. Further, three of the test statistics
are negative, which we find to be very common. Hausman and McFadden (1984, 1226) note this
possibility and conclude that a negative result is evidence that IIA has not been violated. A further
sense of the variability of the results can be seen by re-running mlogit with a different base category
and then running mlogtest, hausman base.

Small and Hsiao test of IIA

To compute Small and Hsiao’s test, the sample is divided randomly into two subsamples of about
equal size. The unrestricted MNLM is estimated on both subsamples, where β̂S1

u contains estimates
from the unrestricted model on the first subsample and β̂S2

u is its counterpart for the second subsam-
ple. A weighted average of the coefficients is computed as

β̂S1S2
u =

(
1√
2

)
β̂S1

u +
[
1 −

(
1√
2

)]
β̂S2

u

Next, a restricted sample is created from the second subsample by eliminating all cases with a chosen
value of the dependent variable. The MNLM is estimated using the restricted sample yielding the
estimates β̂S2

r and the likelihood L(β̂S2
r ). The Small-Hsiao statistic is

SH = −2
[
L(β̂S1S2

u ) − L(β̂S2
r )

]
which is asymptotically distributed as a chi-squared with the degrees of freedom equal to K + 1,
where K is the number of independent variables.

1Even though mlogtest estimates other models in order to compute various tests, when the command ends it restores
the estimates from your original model. Accordingly, other commands that require results from your original mlogit, such
as predict and prvalue, will still work correctly.
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190 Chapter 6. Models for Nominal Outcomes

To compute the Small-Hsiao test, you use the command mlogtest, smhsiao (our program
uses code from smhsiao by Nick Winter, available at the SSC-IDEAS archive). For example,

. mlogtest, smhsiao

**** Small-Hsiao tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted lnL(full) lnL(omit) chi2 df P>chi2 evidence

Menial -182.140 -169.907 24.466 4 0.000 against Ho
BlueCol -148.711 -140.054 17.315 4 0.002 against Ho

Craft -131.801 -119.286 25.030 4 0.000 against Ho
WhiteCol -161.436 -148.550 25.772 4 0.000 against Ho

The results vary considerably from those of the Hausman tests. In this case, each test indicates that
IIA has been violated.

Since the Small-Hsiao test requires randomly dividing the data into subsamples, the results will
differ with successive calls of the command since the sample will be divided differently. To obtain
test results that can be replicated, you must explicitly set the seed used by the random number
generator. For example,

. set seed 8675309

. mlogtest, smhsiao

**** Small-Hsiao tests of IIA assumption

Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.

Omitted lnL(full) lnL(omit) chi2 df P>chi2 evidence

Menial -169.785 -161.523 16.523 4 0.002 against Ho
BlueCol -131.900 -125.871 12.058 4 0.017 against Ho

Craft -136.934 -129.905 14.058 4 0.007 against Ho
WhiteCol -155.364 -150.239 10.250 4 0.036 against Ho

Advanced: setting the random seed The random numbers that divide the sample for the Small-
Hsiao test are based on Stata’s uniform() function, which uses a pseudo-random number
generator. This generator creates a sequence of numbers based on a seed number. While these
numbers appear to be random, exactly the same sequence will be generated each time you
start with the same seed number. In this sense (and some others), these numbers are pseudo-
random rather than random. If you specify the seed with set seed #, you can ensure that you
will be able to replicate your results later. See the User’s Guide for further details.
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Conclusions regarding tests of IIA

Our experience with these tests is that they often give inconsistent results and provide little guidance
to violations of the IIA assumption. Unfortunately, there do not appear to be simulation studies
that examine their small sample properties. Perhaps as a result of the practical limitations of these
tests, McFadden (1973) suggested that IIA implies that the multinomial and conditional logit models
should only be used in cases where the outcome categories “can plausibly be assumed to be distinct
and weighed independently in the eyes of each decision maker.” Similarly, Amemiya (1981, 1517)
suggests that the MNLM works well when the alternatives are dissimilar. Care in specifying the
model to involve distinct outcomes that are not substitutes for one another seems to be reasonable,
albeit unfortunately ambiguous, advice.

6.5 Measures of fit

As with the binary and ordinal models, scalar measures of fit for the MNLM model can be computed
with the SPost command fitstat. The same caveats against overstating the importance of these
scalar measures apply here as to the other models we consider (see also Chapter 3). To examine the
fit of individual observations, you can estimate the series of binary logits implied by the multinomial
logit model and use the established methods of examining the fit of observations to binary logit
estimates. This is the same approach that was recommended in Chapter 5 for ordinal models.

6.6 Interpretation

While the MNLM is a mathematically simple extension of the binary model, interpretation is made
difficult by the large number of possible comparisons. Even in our simple example with five out-
comes, we have many possible comparisons: M |P , B|P , C|P , W |P , M |W , B|W , C|W , M |C,
B|C, and M |B. It is tedious to write all of the comparisons, let alone to interpret each of them for
each of the independent variables. Thus, the key to interpretation is to avoid being overwhelmed
by the many comparisons. Most of the methods we propose are very similar to those for ordinal
outcomes, and accordingly these are treated very briefly. However, methods of plotting discrete
changes and factor changes are new, so these are considered in greater detail.

6.6.1 Predicted probabilities

Predicted probabilities can be computed with the formula

P̂r (y = m | x) =
exp

(
xβ̂m|J

)
∑J

j=1 exp
(
xβ̂j|J

)
where x can contain values from individuals in the sample or hypothetical values. The most basic
command for computing probabilities is predict, but we also illustrate a series of SPost commands
that compute predicted probabilities in useful ways.
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192 Chapter 6. Models for Nominal Outcomes

6.6.2 Predicted probabilities with predict

After estimating the model with mlogit, the predicted probabilities within the sample can be calcu-
lated with the command

predict newvar1
[
newvar2...

[
newvarJ

]] [
if exp

] [
in range

]
where you must provide one new variable name for each of the J categories of the dependent vari-
able, ordered from the lowest to highest numerical values. For example,

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. predict ProbM ProbB ProbC ProbW ProbP
(option p assumed; predicted probabilities)

The variables created by predict are

. describe Prob*

storage display value
variable name type format label variable label

ProbM float %9.0g Pr(occ==1)
ProbB float %9.0g Pr(occ==2)
ProbC float %9.0g Pr(occ==3)
ProbW float %9.0g Pr(occ==4)
ProbP float %9.0g Pr(occ==5)

. sum Prob*

Variable Obs Mean Std. Dev. Min Max

ProbM 337 .0919881 .059396 .0010737 .3281906
ProbB 337 .2047478 .1450568 .0012066 .6974148
ProbC 337 .2492582 .1161309 .0079713 .551609
ProbW 337 .1216617 .0452844 .0083857 .2300058
ProbP 337 .3323442 .2870992 .0001935 .9597512

Using predict to compare mlogit and ologit

An interesting way to illustrate how predictions can be plotted is to compare predictions from or-
dered logit and multinomial logit when the models are applied to the same data. Recall from Chap-
ter 5 that the range of the predicted probabilities for middle categories abruptly ended, while predic-
tions for the end categories had a more gradual distribution. To illustrate this point, the example in
Chapter 5 is estimated using ologit and mlogit, with predicted probabilities computed for each
case:

. use ordwarm2,clear
(77 & 89 General Social Survey)

. ologit warm yr89 male white age ed prst, nolog
(output omitted )

. predict SDologit Dologit Aologit SAologit
(option p assumed; predicted probabilities)

. label var Dologit "ologit-D"
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. mlogit warm yr89 male white age ed prst, nolog
(output omitted )

. predict SDmlogit Dmlogit Amlogit SAmlogit
(option p assumed; predicted probabilities)

. label var Dmlogit "mlogit-D"

We can plot the predicted probabilities of disagreeing in the two models with the command dotplot
Dologit Dmlogit, ylabel(0,.25,.5,.75), which leads to

 

 

 
ologit-D mlogit-D

0

.25

.5

.75

While the two sets of predictions have a correlation of .92 (computed by the command corr
Dologit Dmlogit), the abrupt truncation of the distribution for the ordered logit model strikes
us as substantively unrealistic.

6.6.3 Individual predicted probabilities with prvalue

Predicted probabilities for individuals with specified characteristics can be computed with prvalue.
For example, we might compute the probabilities of each occupational category to compare non-
whites and whites who are average on education and experience:

. mlogit occ white ed exper, basecategory(5) nolog
(output omitted )

. quietly prvalue, x(white 0) rest(mean) save

. prvalue, x(white 1) rest(mean) dif

mlogit: Change in Predictions for occ

Predicted probabilities for each category:

Current Saved Difference
Pr(y=Menial|x): 0.0860 0.2168 -0.1309
Pr(y=BlueCol|x): 0.1862 0.1363 0.0498
Pr(y=Craft|x): 0.2790 0.4387 -0.1597
Pr(y=WhiteCol|x): 0.1674 0.0877 0.0797
Pr(y=Prof|x): 0.2814 0.1204 0.1611

white ed exper
Current= 1 13.094955 20.501484

Saved= 0 13.094955 20.501484
Diff= 1 0 0
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This example also illustrates how to use prvalue to compute differences between two sets of prob-
abilities. Our first call of prvalue is done quietly, but we save the results. The second call uses
the dif option, and the output compares the results for the first and second set of values computed.

6.6.4 Tables of predicted probabilities with prtab

If you want predicted probabilities for all combinations of a set of categorical independent variables,
prtab is useful. For example, we might want to know how white and nonwhite respondents differ
in their probability of having a menial job by years of education:

. label def lwhite 0 NonWhite 1 White

. label val white lwhite

. prtab ed white, novarlbl outcome(1)

mlogit: Predicted probabilities of outcome 1 (Menial) for occ

white
ed NonWhite White

3 0.2847 0.1216
6 0.2987 0.1384
7 0.2988 0.1417
8 0.2963 0.1431
9 0.2906 0.1417

10 0.2814 0.1366
11 0.2675 0.1265
12 0.2476 0.1104
13 0.2199 0.0883
14 0.1832 0.0632
15 0.1393 0.0401
16 0.0944 0.0228
17 0.0569 0.0120
18 0.0310 0.0060
19 0.0158 0.0029
20 0.0077 0.0014

white ed exper
x= .91691395 13.094955 20.501484

Tip: outcome() option In this example, we use the outcome() option to restrict the output to a
single outcome category. Without this option, prtab will produce a separate table for each
outcome category.

The table produced by prtab shows the substantial differences between whites and nonwhites in the
probabilities of having menial jobs and how these probabilities are affected by years of education.
However, given the number of categories for ed, plotting these predicted probabilities with prgen
is probably a more useful way to examine the results.
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6.6.5 Graphing predicted probabilities with prgen

Predicted probabilities can be plotted using the same methods considered for the ordinal regression
model. After estimating the model, we use prgen to compute the predicted probabilities for whites
with average working experience as education increases from 6 years to 20 years:

. prgen ed, x(white=1) from(6) to(20) generate(wht) ncases(15)

mlogit: Predicted values as ed varies from 6 to 20.

white ed exper
x= 1 13.094955 20.501484

Here is what the options specify:

x(white=1) sets white to 1. Since the rest() option is not included, all other variables are set
to their means by default.

from(6) and to(20) set the minimum and maximum values over which ed is to vary. The default
is to use the variable’s minimum and maximum values.

ncases(15) indicates that 15 evenly spaced values of ed between 6 and 20 are to be generated.
We chose 15 for the number of values from 6 to 20 inclusive.

gen(wht) specifies the root name for the new variables generated by prgen. For example, the
variable whtx contains values of ed; the p-variables (e.g., whtp2) contain the predicted prob-
abilities for each outcome; and the s-variables contain the summed probabilities. A list of
these variables should make this clear:

. describe wht*

storage display value
variable name type format label variable label

whtx float %9.0g Changing value of ed
whtp1 float %9.0g pr(Menial) [1]
whts1 float %9.0g pr(y<=1)
whtp2 float %9.0g pr(BlueCol) [2]
whts2 float %9.0g pr(y<=2)
whtp3 float %9.0g pr(Craft) [3]
whts3 float %9.0g pr(y<=3)
whtp4 float %9.0g pr(WhiteCol) [4]
whts4 float %9.0g pr(y<=4)
whtp5 float %9.0g pr(Prof) [5]
whts5 float %9.0g pr(y<=5)

The same thing can be done to compute predicted probabilities for nonwhites:

. prgen ed, x(white=0) from(6) to(20) generate(nwht) ncases(15)

mlogit: Predicted values as ed varies from 6 to 20.

white ed exper
x= 0 13.094955 20.501484
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Plotting probabilities for one outcome and two groups

The variables nwhtp1 and whtp1 contain the predicted probabilities of having menial jobs for non-
whites and whites. Plotting these provides clearer information than the results of prtab given above:

. label var whtp1 "Whites"

. label var nwhtp1 "Nonwhites"

. set textsize 125

. graph whtp1 nwhtp1 nwhtx, b2("Years of Education") l1("Pr(Menial Job)") gap(3) /*
> */ ylabel(0,.25,.50) yscale(0,.5) xscale(6,20) s(OS) connect(ss) border

These commands produce the following graph:
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Years of Education

 Whites  Nonwhites

6 20

0

.25

.5

Graphing probabilities for all outcomes for one group

Even though nominal outcomes are not ordered, plotting the summed probabilities can be a useful
way to show predicted probabilities for all outcome categories. To illustrate this, we construct a
graph to show how education affects the probability of each occupation for whites (a similar graph
could be plotted for nonwhites). This is done using the roots# variables created by prgen, which
provide the probability of being in an outcome less than or equal to some value. For example, the
label for whts3 is pr(y<=3), which indicates that all nominal categories coded as 3 or less are
added together. To plot these probabilities, the first thing we do is change the variable labels to the
name of the highest category in the sum, which makes the graph clearer (as you will see below):

. label var whts1 "Menial"

. label var whts2 "Blue Collar"

. label var whts3 "Craft"

. label var whts4 "White Collar"

To create the summed plot, we use the following commands:
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. set textsize 125

. graph whts1 whts2 whts3 whts4 whtx, b2("Whites: Years of Education") gap(3) /*
*/ l1("Summed Probability") xlabel(6 8 to 20) ylabel(0,.25,.50,.75,1) /*
*/ yscale(0,1) xscale(6,20) s(OdST) connect(ssss) border

which produce
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The graph plots the four summed probabilities against whtx, where standard options for graph are
used. This graph is not ideal, but before revising it, let’s make sure we understand what is being
plotted. The lowest line with circles, labeled “Menial” in the key, plots the probability of having a
menial job for a given year of education. This is the same information as plotted in our prior graph
for whites. The next line with small diamonds, labeled “Blue Collar” in the key, plots the sum of the
probability of having a menial job or a blue collar job. Thus, the area between the line with circles
and the line with diamonds is the probability of having a blue collar job, and so on.

Unfortunately, this graph is not as effective as we would like, and we cannot improve it with
Stata 7 (although this is about to change with new graphics commands that are under development by
StataCorp; check www.stata.com for the latest news). Accordingly, we illustrate a useful approach
for customizing a graph. First, we saved it as a Windows Metafile using the command translate
@Graph 06prsum.wmf, replace (see Chapter 2 for details). Next, we loaded it into a graphics
package that can read and edit these files (e.g., Adobe’s Illustrator, Microsoft PowerPoint). Using
the graphic editing commands, we create a much clearer graph:
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Whites: Years of Education
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0

.25

.5

.75

1

Professional

S
um

m
ed

 P
ro

ba
bi

lit
y Craft

White Collar

Menial

Blue Collar

6.6.6 Changes in predicted probabilities

Marginal and discrete change can be used in the same way as in models for ordinal outcomes. As
before, both can be computed using prchange.

Marginal change is defined as

∂ Pr (y = m | x)
∂xk

= Pr (y = m | x)

βk,m|J −
J∑

j=1

βk,j|J Pr(y = j | x)


Since this equation combines all of the βk,j|J ’s, the value of the marginal change depends on the
levels of all variables in the model. Further, as the value of xk changes, the sign of the marginal
can change. For example, at one point the marginal effect of education on having a craft occupation
could be positive, while at another point the marginal effect could be negative.

Discrete change is defined as

∆ Pr (y = m | x)
∆xk

= Pr (y = m | x, xk = xE) − Pr (y = m | x, xk = xS)

where the magnitude of the change depends on the levels of all variables and the size of the change
that is being made. The J discrete change coefficients for a variable (one for each outcome category)
can be summarized by computing the average of the absolute values of the changes across all of the
outcome categories,

∆ =
1
J

J∑
j=1

∣∣∣∣∆ Pr (y = j | x)
∆xk

∣∣∣∣
where the absolute value is taken because the sum of the changes without taking the absolute value
is necessarily zero.
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Computing marginal and discrete change with prchange

Discrete and marginal changes are computed with prchange (the full syntax for which is provided
in Chapter 3). For example,

. mlogit occ white ed exper, basecategory(5)
(output omitted )

. prchange

mlogit: Changes in Predicted Probabilities for occ

white
Avg|Chg| Menial BlueCol Craft WhiteCol

0->1 .11623582 -.13085523 .04981799 -.15973434 .07971004

Prof
0->1 .1610615

ed
Avg|Chg| Menial BlueCol Craft WhiteCol

Min->Max .39242268 -.13017954 -.70077323 -.15010394 .02425591
-+1/2 .05855425 -.02559762 -.06831616 -.05247185 .01250795
-+sd/2 .1640657 -.07129153 -.19310513 -.14576758 .03064777

MargEfct .29474295 -.02579097 -.06870635 -.05287415 .01282041

Prof
Min->Max .95680079

-+1/2 .13387768
-+sd/2 .37951647

MargEfct .13455107

exper
Avg|Chg| Menial BlueCol Craft WhiteCol

Min->Max .12193559 -.11536534 -.18947365 .03115708 .09478889
-+1/2 .00233425 -.00226997 -.00356567 .00105992 .0016944
-+sd/2 .03253578 -.03167491 -.04966453 .01479983 .02360725

MargEfct .01167136 -.00226997 -.00356571 .00105992 .00169442

Prof
Min->Max .17889298

-+1/2 .00308132
-+sd/2 .04293236

MargEfct .00308134

Menial BlueCol Craft WhiteCol Prof
Pr(y|x) .09426806 .18419114 .29411051 .16112968 .26630062

white ed exper
x= .916914 13.095 20.5015

sd(x)= .276423 2.94643 13.9594

The first thing to notice is the output labeled Pr(y | x), which is the predicted probabilities at the
values set by x() and rest(). Marginal change is listed in the rows MargEfct. For variables
that are not binary, discrete change is reported over the entire range of the variable (reported as
Min->Max), for changes of one unit centered around the base values (reported as -+1/2), and for
changes of one standard deviation centered around the base values (reported as -+sd/2). If the
uncentered option is used, the changes begin at the value specified by x() or rest() and increase
one unit or one standard deviation from there. For binary variables, the discrete change from 0 to 1
is the only appropriate quantity and is the only quantity that is presented. Looking at the results for
white above, we can see that for someone who is average in education and experience, the predicted
probability of having a professional job is .16 higher for whites than nonwhites. The average change
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200 Chapter 6. Models for Nominal Outcomes

is listed in the column Avg | Chg |. For example, for white, ∆ = 0.12; the average absolute
change in the probability of various occupational categories for being white as opposed to nonwhite
is .12.

Marginal change with mfx compute

The marginal change can also be computed using mfx compute, where the at() option is used
to set values of the independent variables. Like prchange, mfx compute sets all values of the
independent variables to their means by default. As noted in Chapter 5, mfx compute does not
allow you to compute effects only for a subset of variables in the model. Also, we must estimate the
marginal effects for one outcome at a time, using the predict(outcome(#)) option to specify the
outcome for which we want marginal effects:

. mfx compute, predict(outcome(1))

Marginal effects after mlogit
y = Pr(occ==1) (predict, outcome(1))

= .09426806

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

white* -.1308552 .08915 -1.47 0.142 -.305592 .043882 .916914
ed -.025791 .00688 -3.75 0.000 -.039269 -.012312 13.0950

exper -.00227 .00126 -1.80 0.071 -.004737 .000197 20.5015

(*) dy/dx is for discrete change of dummy variable from 0 to 1

These results are for the Menial category (occ==1). Estimates for exper and ed match the results
in the MargEfct rows of the prchange output above. Meanwhile, for the binary variable white,
the discrete change from 0 to 1 is presented, which also matches the corresponding result from
prchange. An advantage of mfx compute is that standard errors for the effects are also provided;
a disadvantage is that mfx compute can take a long time to produce results after mlogit, especially
if the number of observations and independent variables is large.

6.6.7 Plotting discrete changes with prchange and mlogview

One difficulty with nominal outcomes is the large number of coefficients that need to be considered:
one for each variable times the number of outcome categories minus one. To help you sort out
all of this information, discrete change coefficients can be plotted using our program mlogview.
After estimating the model with mlogit and computing discrete changes with prchange, executing
mlogview opens the dialog box:2

(Continued on next page)

2StataCorp recently increased the limits for the number of options that can be contained in a dialog box. Accordingly,
future versions of mlogview are likely to have additional options, and the dialog box you get could look different.
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Dialog boxes are easier to use than to explain. So, as we describe various features, the best advice
is to generate the dialog box shown above and experiment.

Selecting variables If you click and hold on a button, you can select a variable to be plotted.
The same variable can be plotted more than once, for example, showing the effects of different
amounts of change.

Selecting the amount of change The radio buttons allow you to select the type of discrete change
coefficient to plot for each selected variable: +1 selects coefficients for a change of one unit;
+SD selects coefficients for a change of one standard deviation; 0/1 selects changes from 0 to
1; and Don’t Plot is self explanatory.

Making a plot Even though there are more options to explain, you should try plotting your selec-
tions by clicking on DC Plot, which produces a graph. The command mlogview works by
generating the syntax for the command mlogplot, which actually draws the plot. In the Re-
sults Window, you will see the mlogplot command that was used to generate your graph (full
details on mlogplot are given in Section 6.6.9). If there is an error in the options you select,
the error message will appear in the Results Window.

Assuming everything has worked, we generate the following graph:

 Change in Predicted Probabilty for occ
 -.16  -.12  -.08  -.04  0  .04  .08  .12  .16

 M  B C  W  P

 M B  C  W  P

 M B C W P

 white-0/1

 ed

 exper
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The graph immediately shows how a unit increase in each variable affects the probability of each
outcome. While it appears that the effects of being white are the largest, changes of one unit in
education and (especially) experience are often too small to be as informative. It would make more
sense to look at the effects of a standard deviation change in these variables. To do this, we return
to the dialog box and click on the radio button +SD. Before we see what this does, let’s consider
several other options that can be used.

Adding labels The box Note allows you to enter text that will be placed at the top of the graph.
Clicking the box for Use variable labels replaces the names of the variables on the left axis
with the variable labels associated with each variable. When you do this, you may find that
the labels are too long. If so, you can use the label variable command to change them.

Tic marks The values for the tic marks are determined by specifying the minimum and maximum
values to plot and the number of tic marks. For example, we could specify a plot from −.2 to
.4 with 7 tick marks. This will lead to labels every .1 units.

Using some of the features discussed above, our dialog box looks like this:

Clicking on DC Plot produces the following graph:

 Change in Predicted Probabilty for occ
 -.2  -.1  0  .1  .2  .3  .4

 M  B C  W  P

 M B  C  W  P

 M B  C W P

 White Worker-0/1

 Yrs of Education-std

 Yrs of Experience-std

In this figure, you can see that the effects of education are largest, and that those of experience are
smallest. Or, each coefficient can be interpreted individually, such as
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The effects of a standard deviation change in education are largest, with an increase of
over .35 in the probability of having a professional occupation.

The effects of race are also substantial, with average blacks being less likely to enter
blue collar, white collar, or professional jobs than average whites.

Expected changes due to a standard deviation change in experience are much smaller
and show that experience increases the probabilities of more highly skilled occupations.

In using these graphs, keep in mind that different values for discrete change are obtained at different
levels of the variables, which are specified with the x() and rest() options for prchange.

Value labels with mlogview The value labels for the different categories of the dependent variables
must begin with different letters since the plots generated with mlogview use the first letter
of the value label.

6.6.8 Odds ratios using listcoef and mlogview

Discrete change does little to illuminate the dynamics among the outcomes. For example, a decrease
in education increases the probability of both blue collar and craft jobs, but how does it affect the
odds of a person choosing a craft job relative to a blue collar job? To deal with these issues, odds
ratios (also referred to as factor change coefficients) can be used. Holding other variables constant,
the factor change in the odds of outcome m versus outcome n as xk increases by δ equals

Ωm|n (x, xk + δ)
Ωm|n (x, xk)

= eβk,m|nδ

If the amount of change is δ = 1, then the odds ratio can be interpreted as

For a unit change in xk, the odds of m versus n are expected to change by a factor of
exp(βk,m|n), holding all other variables constant.

If the amount of change is δ = sxk
, then the odds ratio can be interpreted as

For a standard deviation change in xk, the odds of m versus n are expected to change
by a factor of exp(βk,m|n × sk), holding all other variables constant.

Listing odds ratios with listcoef

The difficulty in interpreting odds ratios for the MNLM is that to understand the effect of a variable,
you need to examine the coefficients for comparisons among all pairs of outcomes. The standard
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204 Chapter 6. Models for Nominal Outcomes

output from mlogit includes only J − 1 comparisons with the base category. While you could esti-
mate coefficients for all possible comparisons by re-running mlogit with different base categories
(e.g., mlogit occ white ed exper, basecategory(3)), using listcoef is much simpler. For
example, to examine the effects of race, type

. listcoef white, help

mlogit (N=337): Factor Change in the Odds of occ

Variable: white (sd= .276423)

Odds comparing
Group 1 vs Group 2 b z P>|z| e^b e^bStdX

Menial -BlueCol -1.23650 -1.707 0.088 0.2904 0.7105
Menial -Craft -0.47234 -0.782 0.434 0.6235 0.8776
Menial -WhiteCol -1.57139 -1.741 0.082 0.2078 0.6477
Menial -Prof -1.77431 -2.350 0.019 0.1696 0.6123
BlueCol -Menial 1.23650 1.707 0.088 3.4436 1.4075
BlueCol -Craft 0.76416 1.208 0.227 2.1472 1.2352
BlueCol -WhiteCol -0.33488 -0.359 0.720 0.7154 0.9116
BlueCol -Prof -0.53780 -0.673 0.501 0.5840 0.8619
Craft -Menial 0.47234 0.782 0.434 1.6037 1.1395
Craft -BlueCol -0.76416 -1.208 0.227 0.4657 0.8096
Craft -WhiteCol -1.09904 -1.343 0.179 0.3332 0.7380
Craft -Prof -1.30196 -2.011 0.044 0.2720 0.6978
WhiteCol-Menial 1.57139 1.741 0.082 4.8133 1.5440
WhiteCol-BlueCol 0.33488 0.359 0.720 1.3978 1.0970
WhiteCol-Craft 1.09904 1.343 0.179 3.0013 1.3550
WhiteCol-Prof -0.20292 -0.233 0.815 0.8163 0.9455
Prof -Menial 1.77431 2.350 0.019 5.8962 1.6331
Prof -BlueCol 0.53780 0.673 0.501 1.7122 1.1603
Prof -Craft 1.30196 2.011 0.044 3.6765 1.4332
Prof -WhiteCol 0.20292 0.233 0.815 1.2250 1.0577

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

The odds ratios of interest are in the column labeled e^b. For example, the odds ratio for the effect
of race on having a professional versus a menial job is 5.90, which can be interpreted as

The odds of having a professional occupation relative to a menial occupation are 5.90
times greater for whites than for blacks, holding education and experience constant.

Plotting odds ratios

However, examining all of the coefficients for even a single variable with only five dependent cat-
egories is complicated. An odds ratio plot makes it easy to quickly see patterns in results for even
a complex MNLM (see Long 1997, Chapter 6 for full details). To explain how to interpret an odds
ratio plot, we begin with some hypothetical output from a MNLM with three outcomes and three
independent variables:
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Logit Coefficient for
Comparison x1 x2 x3

B | A βB|A −0.693 0.693 0.347
exp

(
βB|A

)
0.500 2.000 1.414

p 0.04 0.01 0.42

C | A βC|A 0.347 −0.347 0.693
exp

(
βC|A

)
1.414 0.707 2.000

p 0.21 0.04 0.37

C | B βC|B 1.040 −1.040 0.346
exp

(
βC|B

)
2.828 0.354 1.414

p 0.02 0.03 0.21

These coefficients were constructed to have some fixed relationships among categories and variables:

• The effects of x1 and x2 on B | A (which you can read as B versus A) are equal but of
opposite size. The effect of x3 is half as large.

• The effects of x1 and x2 on C | A are half as large (and in opposite directions) as the effects
on B | A, while the effect of x3 is in the same direction but twice as large.

In the odds ratio plot, the independent variables are each represented on a separate row, and the
horizontal axis indicates the relative magnitude of the β coefficients associated with each outcome.
Here is the plot, where the letters correspond to the outcome categories:

 Factor Change Scale Relative to Category A

 Logit Coefficient Scale Relative to Category A 

 .5 

 -.69

 .63 

 -.46

 .79 

 -.23

 1 

 0

 1.26 

 .23

 1.59 

 .46
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 .69

 B  C A

 B C  A

 B  C A

 x1

 x2

 x3

The plot reveals a great deal of information, which we now summarize.

Sign of coefficients If a letter is to the right of another letter, increases in the independent variable
make the outcome to the right more likely. Thus, relative to outcome A, an increase in x1 makes it
more likely that we will observe outcome C and less likely that will observe outcome B. This corre-
sponds to the positive sign of the β1,C|A coefficient and the negative sign of the β1,B|A coefficient.
The signs of these coefficients are reversed for x2 and, accordingly, the odds ratio plot for x2 is a
mirror image of that for x1.
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Magnitude of effects The distance between a pair of letters indicates the magnitude of the effect.
For both x1 and x2, the distance between A and B is twice the distance between A and C, which
reflects that βB|A is twice as large as βC|A for both variables. For x3, the distance between A and
B is half the distance between A and C, reflecting that β3,C|A is twice as large as β3,B|A.

The additive relationship The additive relationships among coefficients shown in Equation 6.1
are also fully reflected in this graph. For any of the independent variables, βC|A = βB|A + βC|B .
Accordingly, the distance from A to C is the sum of the distances from A to B and B to C.

The base category The additive scale on the bottom axis measures the value of the βk,m|n’s. The
multiplicative scale on the top axis measures the exp

(
βk,m|n

)
’s. The reason why theA’s are stacked

on top of one another is that the plot uses A as its base category for graphing the coefficients. The
choice of base category is arbitrary. We could have used outcome B instead. If we had, the rows
of the graph would be shifted to the left or right so that the B’s lined up. Doing this leads to the
following graph:

 Factor Change Scale Relative to Category B

 Logit Coefficient Scale Relative to Category B 
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Creating odds ratio plots These graphs can be created using mlogview after running mlogit.
Using our example and after changing a few options, we obtain the dialog box:
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Clicking on OR Plot leads to

 Factor Change Scale Relative to Category Prof

 Logit Coefficient Scale Relative to Category Prof 
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 -2.2

 .19 

 -1.65

 .33 

 -1.1

 .58 

 -.55

 1 

 0

 1.73 

 .55

 M  B C  W  P

 M B  C  W  P

 M B  C W P
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Several things are immediately apparent. The effect of experience is the smallest, although increases
in experience make it more likely that one will be in a craft, white collar, or professional occupation
relative to a menial or blue collar one. We also see that education has the largest effects; as expected,
increases in education increase the odds of having a professional job relative to any other type.

Adding significance levels The current graph does not reflect statistical significance. This is added
by drawing a line between categories for which there is not a significant coefficient. The lack of
statistical significance is shown by a connecting line, suggesting that those two outcomes are “tied
together.” You can add the significance level to the plot with the Connect if box on the dialog box.
For example, if we enter .1 in this box and uncheck the “pack odds ratio plot” box, we obtain

 Factor Change Scale Relative to Category Prof

 Logit Coefficient Scale Relative to Category Prof 
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In order to make the connecting lines clear, vertical spacing is added to the graph. This vertical
spacing has no meaning and is only used to make the lines clearer. The graph shows that race orders
occupations from menial to craft to blue collar to white collar to professional, but the connecting
lines show that none of the adjacent categories are significantly differentiated by race. Being white
increases the odds of being a craft worker relative to having a menial job, but the effect is not
significant. However, being white significantly increases the odds of being a blue collar worker, a
white collar worker, or a professional relative to having a menial job. The effects of ed and exper
can be interpreted similarly.
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Adding discrete change In Chapter 4, we emphasized that while the factor change in the odds
is constant across the levels of all variables, the discrete change gets larger or smaller at different
values of the variables. For example, if the odds increase by a factor of 10 but the current odds are
1 in 10,000, then the substantive impact is small. But, if the current odds were 1 in 5, the impact is
large. Information on the discrete change in probability can be incorporated in the odds ratio graph
by making the size of the letter proportional to the discrete change in the odds (specifically, the area
of the letter is proportional to the size of the discrete change). This can be added to our graph very
simply. First, after estimating the MNLM, run prchange at the levels of the variables that you want.
Then, enter mlogview to open the dialog box. Set any of the options, and then click the OR+DC
Plot button:

 Factor Change Scale Relative to Category Prof

 Logit Coefficient Scale Relative to Category Prof 
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With a little practice, you can create and interpret these graphs very quickly.

6.6.9 Using mlogplot∗

The dialog box mlogview does not actually draw the plots, but only sends the options you se-
lect to mlogplot which creates the graph. Once you click a plot button in mlogview, the neces-
sary mlogplot command, including options, appears in the Results Window. This is done because
mlogview invokes a dialog box and so cannot be used effectively in a do-file. But, once you cre-
ate a plot using the dialog box, you can copy the generated mlogplot command from the Results
Window and paste it into a do-file. This should be clear by looking at the following screenshot:

(Continued on next page)
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The dialog box with selected options appears in the upper left. After clicking on the OR Plot button,
the graph in the upper right appeared along with the following command in the Results Window:

. mlogplot white ed exper, std(0ss) p(.1) min(-2.75) max(.55) or ntics(7)

If you enter this command from the Command Window or run it from a do-file, the same graph
would be generated. The full syntax for mlogplot is described in Appendix A.

6.6.10 Plotting estimates from matrices with mlogplot∗

You can also use mlogplot to construct odds ratio plots (but not discrete change plots) using coef-
ficients that are contained in matrices. For example, you can plot coefficients from published papers
or generate examples like those we used above. To do this, you must construct matrices containing
the information to be plotted and add the option matrix to the command. The easiest way to see
how this is done is with an example, followed by details on each matrix. The commands

. matrix mnlbeta = (-.693, .693, .347 \ .347, -.347, .693 )

. matrix mnlsd = (1, 2, 4)

. global mnlname = "x1 x2 x3"

. global mnlcatnm = "B C A"

. global mnldepnm "depvar"

. mlogplot, matrix std(uuu) vars(x1 x2 x3) packed

create the following plot:
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 Factor Change Scale Relative to Category A

 Logit Coefficient Scale Relative to Category A 
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Options for using matrices with mlogplot

matrix indicates that the coefficients to be plotted are contained in matrices.

vars(variable-list) contains the names of the variables to be plotted. This list must contain names
from mnlname, described next, but does not need to be in the same order as in mnlname. The
list can contain the same name more than once and can select a subset of the names from
mnlname.

Global macros and matrices used by mlogplot

mnlname is a string containing the names of the variables corresponding to the columns of the
matrix mnlbeta. For example, global mnlname = "x1 x2 x3".

mnlbeta is a matrix with the β’s, where element (i, j) is the coefficient βj,i|b. That is, rows i are for
different contrasts; columns j are for variables. For example, matrix mnlbeta = (-.693,
.693, .347 \ .347, -.347, .693). Since constant terms are not plotted, they are not
included in mnlbeta.

mnlsd is a vector with the standard deviations for the variables listed in mnlname. For example,
matrix mnlsd = (1, 2, 4). If you do not want to view standardized coefficients, this
matrix can be made all 1s.

mnlcatnm is a string with labels for the outcome categories with each label separated by a space.
For example, global mnlcatnm = "B C A". The first label corresponds to the first row of
mnlbeta, the second to the second, and so on. The label for the base category is last.

Example

Suppose that you want to compare the logit coefficients estimated from two groups, such as whites
and nonwhites from the example used in this chapter. We begin by estimating the logit coefficients
for whites:
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. use nomocc2, clear
(1982 General Social Survey)

. mlogit occ ed exper if white==1, base(5) nolog

Multinomial regression Number of obs = 309
LR chi2(8) = 154.60
Prob > chi2 = 0.0000

Log likelihood = -388.21313 Pseudo R2 = 0.1660

occ Coef. Std. Err. z P>|z| [95% Conf. Interval]

Menial
ed -.8307514 .1297238 -6.40 0.000 -1.085005 -.5764973

exper -.0338038 .0192045 -1.76 0.078 -.071444 .0038364
_cons 10.34842 1.779603 5.82 0.000 6.860465 13.83638

BlueCol
ed -.9225522 .1085452 -8.50 0.000 -1.135297 -.7098075

exper -.031449 .0150766 -2.09 0.037 -.0609987 -.0018994
_cons 12.27337 1.507683 8.14 0.000 9.318368 15.22838

Craft
ed -.6876114 .0952882 -7.22 0.000 -.8743729 -.50085

exper -.0002589 .0131021 -0.02 0.984 -.0259385 .0254207
_cons 9.017976 1.36333 6.61 0.000 6.345897 11.69005

WhiteCol
ed -.4196403 .0956209 -4.39 0.000 -.6070539 -.2322268

exper .0008478 .0147558 0.06 0.954 -.0280731 .0297687
_cons 4.972973 1.421146 3.50 0.000 2.187578 7.758368

(Outcome occ==Prof is the comparison group)

Next, we compute coefficients for nonwhites:

. mlogit occ ed exper if white==0, base(5) nolog

Multinomial regression Number of obs = 28
LR chi2(8) = 17.79
Prob > chi2 = 0.0228

Log likelihood = -32.779416 Pseudo R2 = 0.2135

occ Coef. Std. Err. z P>|z| [95% Conf. Interval]

Menial
ed -.7012628 .3331146 -2.11 0.035 -1.354155 -.0483701

exper -.1108415 .0741488 -1.49 0.135 -.2561705 .0344876
_cons 12.32779 6.053743 2.04 0.042 .4626714 24.19291

BlueCol
ed -.560695 .3283292 -1.71 0.088 -1.204208 .0828185

exper -.0261099 .0682348 -0.38 0.702 -.1598477 .1076279
_cons 8.063397 6.008358 1.34 0.180 -3.712768 19.83956

Craft
ed -.882502 .3359805 -2.63 0.009 -1.541012 -.2239924

exper -.1597929 .0744172 -2.15 0.032 -.305648 -.0139378
_cons 16.21925 6.059753 2.68 0.007 4.342356 28.09615

WhiteCol
ed -.5311514 .369815 -1.44 0.151 -1.255976 .1936728

exper -.0520881 .0838967 -0.62 0.535 -.2165227 .1123464
_cons 7.821371 6.805367 1.15 0.250 -5.516904 21.15965

(Outcome occ==Prof is the comparison group)
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The two sets of coefficients for ed are placed in mnlbeta:

. matrix mnlbeta = (-.8307514, -.9225522, -.6876114, -.4196403 \ /*
> */ -.7012628, -.560695 , -.882502 , -.5311514)

Notice that the rows of the matrix correspond to the variables (i.e., ed for whites and ed for non-
whites) since this was the easiest way to enter the coefficients. For mlogplot, the columns need to
correspond to variables, so we transpose the matrix:

. matrix mnlbeta = mnlbeta´

We assign names to the columns using mnlname and to the rows using mnlcatnm (where the last
element is the name of the reference category):

. global mnlname = "White NonWhite"

. global mnlcatnm = "Menial BlueCol Craft WhiteCol Prof"

We named the coefficients for ed for whites, White, and the coefficients for ed for nonwhites,
NonWhite, since this will make the plot clearer. Next, we compute the standard deviation of ed:

. sum ed

Variable Obs Mean Std. Dev. Min Max

ed 337 13.09496 2.946427 3 20

and enter the information into mnlsd:

matrix mnlsd = (2.946427,2.946427)

The same value is entered twice since we want to use the overall standard deviation in education for
both groups. To create the plot, we use the command

. mlogplot, vars(White NonWhite) packed /*
> */ or matrix std(ss) note("Racial Differences in Effects of Education")

which leads to

 Racial Differences in Effects of Education

 Factor Change Scale Relative to Category Prof

 Logit Coefficient Scale Relative to Category Prof 
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Given the limitations of our dataset (e.g., there were only 28 cases in the logit for nonwhites) and our
simple model, these results do not represent serious research on racial differences in occupational
outcomes, but they do illustrate the flexibility of the mlogplot command.
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6.7 The conditional logit model

In the multinomial logit model, we estimate how individual-specific variables affect the likelihood
of observing a given outcome. For example, we considered how individual characteristics such
as education and experience affect a person’s occupation. In the conditional logit model (CLM),
alternative-specific variables that vary by outcome and individual are used to predict the outcome
that is chosen. Consider the following examples:

• The dependent variable is the mode of transportation that an individual uses to get to work:
car, bus (of any color), or train (e.g., Hensher 1986). We are interested in the effect of time:
we think that how long it would take a person to get to work for a given alternative might
affect her probability of selecting the alternative. We want to estimate the effect of time on
the respondent’s choice, but the amount of time for a given mode of travel is different for each
respondent.

• The dependent variable is the type of car an individual purchases: European, American, or
Japanese (see [R] clogit). We are interested in the effect of the number of dealerships in the
buyer’s city: we think that the more dealerships that sell cars of a given type, the more likely it
is that buyers will purchase cars of that type. We want to estimate the effect of the number of
dealerships, but the number of dealerships of each type in the buyer’s city varies for different
buyers (since they live in different cities).

• The dependent variable is which candidate a respondent votes for in a multiparty election (see,
e.g., Alvarez and Nagler 1998). For example, in 1992, the major candidates were Clinton,
Bush, and Perot. We are interested in the effect of the distance between the respondent and
the candidate on particular issues (e.g., taxation, defense, gun control). We want to estimate
how distance on different issues affects vote choice, but the distance from each candidate to
the respondent varies for each respondent.

The conditional logit model (CLM) allows us to estimate how nominal outcomes are affected by
characteristics of the outcomes that vary across individuals. In the CLM, the predicted probability of
observing outcome m is given by

Pr (yi = m | zi) =
exp (zimγ)∑J
j=1 exp (zijγ)

for m = 1 to J (6.2)

where zim contains values of the independent variables for outcome m for individual i. In the
example of the CLM that we use, there are three choices for transportation: train, bus, and car.
Suppose that we consider a single independent variable, where zim is the amount of time it would
take respondent i to travel using mode of transportation m. Then, γ is a single parameter indicating
the effect of time on the probability of choosing one mode over another. In general, for each variable
zk, there are J values of the variable for each individual, but only the single parameter γk.
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6.7.1 Data arrangement for conditional logit

Estimating the CLM in Stata requires that the data be arranged differently than for the other models
we consider in this book, which we illustrate with an example from Greene and Hensher (1997).
We have data on 152 groups of people traveling for their vacation, choosing between three modes
of travel: train, bus or car. The group is indicated by the variable id. For each group of travelers,
there are three rows of data corresponding to the three choices faced by each group. Accordingly,
we have N × J = 152 × 3 = 456 observations. For each group, the first observation is for the
option of taking a train; the second for taking a bus; and the third for taking a car. Two dummy
variables are used to indicate the mode of travel corresponding to a given row of data. Variable
train is 1 if the observation contains information about taking the train, else train is 0. bus is
1 if the observation contains information about taking a bus, else 0. If both train and bus are 0,
the observation has information about driving a car. The actual choice made for a group is indicated
with the dummy variable choice equal to 1 if the person took the mode of travel corresponding to
a specific observation. For example, let’s look at the first two groups (i.e., six records):

. use travel2.dta, clear

(Greene & Hensher 1997 data on travel mode choice)

. list id mode train bus time invc choice in 1/6, nodisplay

id mode train bus time invc choice

1. 1 Train 1 0 406 31 0

2. 1 Bus 0 1 452 25 0

3. 1 Car 0 0 180 10 1

4. 2 Train 1 0 398 31 0

5. 2 Bus 0 1 452 25 0

6. 2 Car 0 0 255 11 1

Both groups traveled by car, as indicated by choice, which equals 1 in the third observation for
each group. The variable time indicates how long a group thinks it will take them to travel using
a given mode of transportation. Thus, time is an alternative-specific variable. For the first group,
we can see that their trip would take 406 minutes by train, 452 minutes by bus, and 180 minutes
by car. We might expect that the longer the time required, the less likely a person is to choose a
particular mode of transportation. Similarly, the variable invc contains the in-vehicle cost of the
trip: we might expect that the higher the cost of traveling by some mode, the less likely a person is
to choose that mode. While many datasets with alternative-specific variables are already arranged in
this way, later we talk about commands for setting up your data.

6.7.2 Estimating the conditional logit model

The syntax for clogit is

clogit depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

]
, group(varname)[

level(#) or
]
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Options

group(varname) is required and specifies the variable that identifies the different groups of obser-
vations in the dataset. In our example, the group variable is id, which identifies the different
respondents.

level(#) specifies the level, in percent, for confidence intervals. The default is 95 percent.

or requests that odds ratios exp (γ̂k) be reported instead of γ̂k.

Example of the clogit model

For our transportation example, the dependent variable is choice, a binary variable indicating which
mode of transportation was actually chosen. The independent variables include the J − 1 dummy
variables train and bus that identify each alternative mode of transportation and the alternative-
specific variables time and invc. To estimate the model, we use the option group(id) to specify
that the id variable identifies the groups in the sample:

. clogit choice train bus time invc, group(id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 456
LR chi2(4) = 172.06
Prob > chi2 = 0.0000

Log likelihood = -80.961135 Pseudo R2 = 0.5152

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

train 2.671238 .453161 5.89 0.000 1.783059 3.559417
bus 1.472335 .4007151 3.67 0.000 .6869475 2.257722

time -.0191453 .0024509 -7.81 0.000 -.0239489 -.0143417
invc -.0481658 .0119516 -4.03 0.000 -.0715905 -.0247411

6.7.3 Interpreting results from clogit

Using odds ratios

In the results that we just obtained, the coefficients for time and invc are negative. This indicates
that the longer it takes to travel by a given mode, the less likely that mode is to be chosen. Similarly,
the more it costs, the less likely a mode is to be chosen. More specific interpretations are possible
by using listcoef to transform the estimates into odds ratios:

. listcoef

clogit (N=456): Factor Change in Odds

Odds of: 1 vs 0

choice b z P>|z| e^b

train 2.67124 5.895 0.000 14.4579
bus 1.47233 3.674 0.000 4.3594

time -0.01915 -7.812 0.000 0.9810
invc -0.04817 -4.030 0.000 0.9530
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For the alternative-specific variables, time and invc, the odds ratios are the multiplicative effect of
a unit change in a given independent variable on the odds of any given mode of travel. For example,

Increasing the time of travel by one minute for a given mode of transportation decreases
the odds of using that mode of travel by a factor of .98 (2%), holding the values for the
other alternatives constant.

That is, if the time it take to travel by car increases by one minute while the time it takes to travel by
train and bus remain constant, the odds of traveling by car decrease by 2 percent.

The odds ratios for the alternative-specific constants bus and train indicate the relative like-
lihood of selecting these alternatives versus travelling by car (the omitted category), assuming that
cost and time are the same for all modes. For example,

If cost and time were equal, individuals would be 4.36 times more likely to travel by
bus than by car, and they would be 14.46 times more likely to travel by train than by
car.

Using predicted probabilities

While the SPost commands prvalue, prtab, prcounts, and prgen do not work with clogit,
you can use Stata’s predict to compute predicted probabilities for each alternative for each group
in the sample, where the predicted probabilities sum to 1 for each group. For example,

. predict prob
(option pc1 assumed; conditional probability for single outcome within group)

The message in parentheses indicates that by default conditional probabilities are being computed.
To see what was done, let’s list the variables in the model along with the predicted probabilities for
the first group:

. list train bus time invc choice prob in 1/3, nodisplay

train bus time invc choice prob
1. 1 0 406 31 0 .0642477
2. 0 1 452 25 0 .0107205
3. 0 0 180 10 1 .9250318

The predicted probability of traveling by car (the option chosen) is .93, while the predicted proba-
bility of traveling by train is only .06. In this case, the choice corresponds to choosing the cheapest
and quickest mode of transportation. If we consider another observation where train was chosen,

. list train bus time invc choice prob in 16/18, nodisplay

train bus time invc choice prob
16. 1 0 385 20 1 .5493771
17. 0 1 452 13 0 .0643481
18. 0 0 284 12 0 .3862748

we see that the probability of choosing train was estimated to be .55, while the probability of driving
was .39. In this case, the respondent chose to travel by train even though it was neither cheapest nor
fastest.
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6.7.4 Estimating the multinomial logit model using clogit∗

Any multinomial logit model can be estimated using clogit by expanding the dataset (explained
below) and respecifying the independent variables as a set of interactions. This is of more than
academic interest for two reasons. First, it opens up the possibility of mixed models that include
both individual-specific and alternative-specific variables (see Section 6.7.5). Second, it is possible
to impose constraints on parameters in clogit that are not possible with mlogit (see mclgen and
mclest by Hendrickx (2000) for further details).

Setting up the data

To illustrate how this is done, we show how to use clogit to estimate the model of occupational
attainment that we used to illustrate mlogit earlier in the chapter. The first step in rearranging the
data is to create one record for each outcome:

. use nomocc2, clear
(1982 General Social Survey)

. gen id = _n

. expand 5
(1348 observations created)

The command gen id = n creates an id number that is equal to the observation’s row number.
The expand n command creates n duplicate observations for each current observation. We need 5
observations per individual since there are 5 alternatives. Next, we sort the data so that observations
with the same id value are adjacent. This is necessary so that we can use the mod(modulo) function
to generate variable alt with values 1 through 5 corresponding to the codings for the different
values of occ (our dependent variable):

. sort id

. gen alt = mod(_n, 5)

. replace alt = 5 if alt == 0
(337 real changes made)

The values of alt are then used to create the four dummy variables for the different occupational
types, leaving professional as the reference category (alt==5).

. gen menial = (alt==1)

. gen bluecol = (alt==2)

. gen craft = (alt==3)

. gen whitecol = (alt==4)

Finally, we generate a new variable choice that equals 1 if choice==alt and equals 0 otherwise.
That is, choice indicates the occupation attained:

. gen choice = (occ==alt)
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For the first two individuals (which is 10 observations),

. list id menial bluecol craft whitecol choice in 1/10

id menial bluecol craft whitecol choice
1. 1 1 0 0 0 1
2. 1 0 1 0 0 0
3. 1 0 0 1 0 0
4. 1 0 0 0 1 0
5. 1 0 0 0 0 0
6. 2 1 0 0 0 1
7. 2 0 1 0 0 0
8. 2 0 0 1 0 0
9. 2 0 0 0 1 0
10. 2 0 0 0 0 0

Creating interactions

Next, we create interactions by multiplying each of the four dummy variables by each of the inde-
pendent variables white, ed, and exper:

. gen whiteXm = white*menial

. gen whiteXbc = white*bluecol

. gen whiteXc = white*craft

. gen whiteXwc = white*whitecol

. gen edXm = ed*menial

. gen edXbc = ed*bluecol

. gen edXc = ed*craft

. gen edXwc = ed*whitecol

. gen experXm = exper*menial

. gen experXbc = exper*bluecol

. gen experXc = exper*craft

. gen experXwc = exper*whitecol

To see what this does, we list the interactions with ed:

. list menial bluecol craft whitecol edXm edXbc edXc edXwc in 1/5, nodisplay

menial bluecol craft whitecol edXm edXbc edXc edXwc
1. 1 0 0 0 11 0 0 0
2. 0 1 0 0 0 11 0 0
3. 0 0 1 0 0 0 11 0
4. 0 0 0 1 0 0 0 11
5. 0 0 0 0 0 0 0 0

The trick is that the interaction of ed with the indicator variable for a given outcome is only equal to
ed in the record corresponding to that outcome (see Long 1997, 181 for details on the mathematics
involved).
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Estimating the model

These interactions are then included as independent variables for clogit, where we order the terms
in the same way as the output from mlogit on page 177.

. clogit choice whiteXm edXm experXm menial whiteXbc edXbc experXbc bluecol /*
> */ whiteXc edXc experXc craft whiteXwc edXwc experXwc whitecol, group(id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 1685
LR chi2(16) = 231.16
Prob > chi2 = 0.0000

Log likelihood = -426.80048 Pseudo R2 = 0.2131

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

whiteXm -1.774306 .7550518 -2.35 0.019 -3.254181 -.2944322
edXm -.7788519 .1146287 -6.79 0.000 -1.00352 -.5541839

experXm -.0356509 .018037 -1.98 0.048 -.0710027 -.0002991
menial 11.51833 1.849346 6.23 0.000 7.89368 15.14298

whiteXbc -.5378027 .7996015 -0.67 0.501 -2.104993 1.029387
edXbc -.8782767 .1005441 -8.74 0.000 -1.075339 -.6812139

experXbc -.0309296 .0144086 -2.15 0.032 -.0591699 -.0026894
bluecol 12.25956 1.668135 7.35 0.000 8.990079 15.52905
whiteXc -1.301963 .6474136 -2.01 0.044 -2.57087 -.0330555

edXc -.6850365 .089299 -7.67 0.000 -.8600593 -.5100138
experXc -.0079671 .0127054 -0.63 0.531 -.0328693 .0169351

craft 10.42698 1.517934 6.87 0.000 7.451883 13.40207
whiteXwc -.2029212 .8693059 -0.23 0.815 -1.906729 1.500887

edXwc -.4256943 .0922188 -4.62 0.000 -.6064398 -.2449487
experXwc -.001055 .0143582 -0.07 0.941 -.0291966 .0270865
whitecol 5.279722 1.683999 3.14 0.002 1.979146 8.580299

Since the estimated parameters are identical to those produced by mlogit earlier, their interpretation
is also the same.

6.7.5 Using clogit to estimate mixed models∗

The MNLM has individual-specific variables, such as an individual’s income. For individual-specific
variables, the value of a variable does not differ across outcomes, but we want to estimate J − 1
parameters for each individual-specific variable. The CLM has alternative-specific variables, such
as the time it takes to get to work with a given mode of transportation. For alternative-specific
variables, values varied across alternatives, but we estimate a single parameter for the effect of the
variable. An interesting possibility is combining the two in a single model, referred to as a mixed
model. For example, in explaining the choices people make about mode of transportation, we might
want to know if wealthier people are more likely to drive than take the bus.

To create a mixed model, we combine the formulas for the MNLM and the CLM (see Long 1997,
178–182 and Powers and Xie 2000, 242–245):

Pr(yi = m | xi, zi) =
exp(zimγ + xiβm)∑J
j=1 exp(zijγ + xiβj)

where β1 = 0 (6.3)
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As in the CLM, zim contains values of the alternative-specific variables for outcome m and indi-
vidual i, and γ contains the effects of the alternative-specific variables. As in the multinomial logit
model, xi contains individual-specific independent variables for individual i, and βm contains coef-
ficients for the effects on outcome m relative to the base category.

This mixed model can be estimated using clogit. For the alternative-specific variables the data
are set up in the same way as for the conditional logit model above. For individual-specific variables,
interaction terms are created as illustrated in the last section. To illustrate this approach, we add two
individual-specific variables to our model of travel demand: hhinc is household income and psize
is the number of people who will be traveling together. First we create the interactions:

. use travel2, clear
(Greene & Hensher 1997 data on travel mode choice)

. gen hincXbus = hinc*bus

. gen hincXtrn = hinc*train

. gen sizeXbus = psize*bus

. gen sizeXtrn = psize*train

Then we estimate the model with clogit:

. clogit choice train bus time invc hincXbus hincXtrn sizeXbus sizeXtrn, group(
> id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 456
LR chi2(8) = 178.97
Prob > chi2 = 0.0000

Log likelihood = -77.504846 Pseudo R2 = 0.5359

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

train 3.499641 .7579659 4.62 0.000 2.014055 4.985227
bus 2.486465 .8803643 2.82 0.005 .7609827 4.211947
time -.0185035 .0025035 -7.39 0.000 -.0234103 -.0135966
invc -.0402791 .0134851 -2.99 0.003 -.0667095 -.0138488

hincXbus -.0080174 .0200322 -0.40 0.689 -.0472798 .031245
hincXtrn -.0342841 .0158471 -2.16 0.031 -.0653438 -.0032243
sizeXbus -.5141037 .4007012 -1.28 0.199 -1.299464 .2712563
sizeXtrn -.0038421 .3098074 -0.01 0.990 -.6110533 .6033692

To interpret these results, we can again transform the coefficients into odds ratios using listcoef:

. listcoef

clogit (N=456): Factor Change in Odds

Odds of: 1 vs 0

choice b z P>|z| e^b

train 3.49964 4.617 0.000 33.1036
bus 2.48647 2.824 0.005 12.0187
time -0.01850 -7.391 0.000 0.9817
invc -0.04028 -2.987 0.003 0.9605

hincXbus -0.00802 -0.400 0.689 0.9920
hincXtrn -0.03428 -2.163 0.031 0.9663
sizeXbus -0.51410 -1.283 0.199 0.5980
sizeXtrn -0.00384 -0.012 0.990 0.9962
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6.7 The conditional logit model 221

The interpretation for the individual-specific variables is the same as the interpretation of odds ratios
in the MNLM. For example, a unit increase in income decreases the odds of traveling by train versus
traveling by car by a factor of .97. Similarly, each additional member of the travelling party decreases
the odds of traveling by bus versus traveling by car by a factor of .60.

Note We have only considered the conditional logit model in the context of choices among an
unordered set of alternatives. The possible uses of clogit are much broader. The Stata
Reference Manual entry for clogit contains additional examples and references.
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7 Models for Count Outcomes

Count variables indicate how many times something has happened. While the use of regression
models for counts is relatively recent, even a brief survey of recent applications illustrates how
common these outcomes are and the importance of this class of models. Examples include the
number of patients, hospitalizations, daily homicides, international conflicts, beverages consumed,
industrial injuries, new companies, and arrests by police, to name only a few.

While the linear regression model has often been applied to count outcomes, this can result
in inefficient, inconsistent, and biased estimates. Even though there are situations in which the
LRM provides reasonable results, it is much safer to use models specifically designed for count
outcomes. Four such models are considered in this chapter: Poisson regression (PRM), negative
binomial regression (NBRM), and variations of these models for zero-inflated counts (ZIP and ZINB).
As with earlier chapters, we begin with a quick review of the statistical model, consider issues of
testing and fit, and then discuss methods of interpretation. These discussions are intended as a review
for those who are familiar with the models. For further details, see Long (1997) or Cameron and
Trivedi (1998, the definitive work in this area). As always, you can obtain sample do-files and data
files by downloading the spostst4 package (see Chapter 1 for details).

7.1 The Poisson distribution

The univariate Poisson distribution is fundamental to understanding regression models for counts.
Accordingly, we start by exploring this distribution. Let y be a random variable indicating the
number of times an event has occurred. If y has a Poisson distribution, then

Pr(y | µ) =
e−µµy

y!
for y = 0, 1, 2, . . .

where µ > 0 is the sole parameter defining the distribution. The easiest way to get a sense of
this distribution is to compare the plot of the predicted probability for different values of the rate
parameter µ (labeled as mu in the graph):
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The plot illustrates four characteristics of the Poisson distribution that are important for understand-
ing regression models for counts:

1. µ is the mean of the distribution. As µ increases, the mass of the distribution shifts to the right.

2. µ is also the variance. Thus, Var(y) = µ, which is known as equidispersion. In real data,
many count variables have a variance greater than the mean, which is called overdispersion.

3. As µ increases, the probability of a zero count decreases. For many count variables, there are
more observed zeros than predicted by the Poisson distribution.

4. As µ increases, the Poisson distribution approximates a normal distribution. This is shown by
the distribution for µ = 10.5.

7.1.1 Fitting the Poisson distribution with poisson

To illustrate the models in this chapter, we use data from Long (1990) on the number of publications
produced by Ph.D. biochemists. The variables considered are

. use couart2, clear
(Academic Biochemists / S Long)

(Continued on next page)
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7.1 The Poisson distribution 225

. describe

Contains data from couart2.dta
obs: 915 Academic Biochemists / S Long

vars: 6 15 Jan 2001 15:23
size: 14,640 (99.7% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

art byte %9.0g Articles in last 3 yrs of PhD
fem byte %9.0g sexlbl Gender: 1=female 0=male
mar byte %9.0g marlbl Married: 1=yes 0=no
kid5 byte %9.0g Number of children < 6
phd float %9.0g PhD prestige
ment float %9.0g Article by mentor in last 3 yrs

Sorted by: art

. summarize

Variable Obs Mean Std. Dev. Min Max

art 915 1.692896 1.926069 0 19
fem 915 .4601093 .4986788 0 1
mar 915 .6622951 .473186 0 1

kid5 915 .495082 .76488 0 3
phd 915 3.103109 .9842491 .755 4.62

ment 915 8.767212 9.483915 0 76.99998

A useful place to begin when analyzing a count outcome is to compare the observed distribution
to a Poisson distribution that has the same mean. The command poisson estimates the Poisson
regression model that is presented in Section 7.2. Here we use poisson without any independent
variables in order to fit a univariate Poisson distribution with a mean equal to that of our outcome
variable art. That is, we estimate the model:

µ = exp (β0)

The results are:

. poisson art, nolog

Poisson regression Number of obs = 915
LR chi2(0) = -0.00
Prob > chi2 = .

Log likelihood = -1742.5735 Pseudo R2 = -0.0000

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .5264408 .0254082 20.72 0.000 .4766416 .57624

Since β̂0 = .5264, µ̂ = exp (.5264) = 1.6929, which is the same as the estimated mean of art
obtained with summarize earlier. To compute the observed probabilities for each count and the
predictions from counts drawn from a Poisson distribution with this mean, we use prcounts, which
is part of SPost.
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226 Chapter 7. Models for Count Outcomes

7.1.2 Computing predicted probabilities with prcounts

For poisson and other models for count outcomes, prcounts extends the features of predict by
computing the predicted rate and predicted probabilities of each count from 0 to the specified maxi-
mum for every observation. Optionally, prcounts creates variables with observed probabilities and
sample averages of predicted probabilities for each count; these variables can be used to construct
plots to assess the fit of count models, as shown in Section 7.5.1.

Syntax

prcounts name
[
if exp

] [
in range

] [
, max(max) plot

]
where name is a prefix to the new variables that are generated. name cannot be the name of an
existing variable.

Options

max(#) is the maximum count for which predicted probabilities should be computed. The default
is 9. For example, with max(2) predictions for Pr (y = 0), Pr (y = 1), and Pr (y = 2) are
computed.

plot specifies that variables for plotting expected counts should be generated. If this option is not
used, only predictions for individual observations are computed.

if and in restrict the sample for which predictions are made. By default, prcounts computes
predicted values for all observations in memory. To restrict the computations to the estimation
sample, you should add the condition: if e(sample)==1.

Variables generated

The following variables are generated, where name represents the prefix specified with prcounts. y
is the count variable and each prediction is conditional on the independent variables in the regression.
If there are no independent variables, as in our current example, the values are unconditional.

namerate predicted rate or count E (y).

nameprk predicted probability Pr(y = k) for k = 0 to max. By default, max= 9.

nameprgt predicted probability Pr(y >max).

namecuk predicted cumulative probability Pr(y ≤ k) for k = 0 to max. By default, max= 9.

When the plot option is specified, max+1 observations (for counts 0 through max) are generated
for the following variables:

nameval the value k of the count y ranging from 0 to max.
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7.1 The Poisson distribution 227

nameobeq the observed probability Pr (y = k). These values are the same as the ones you could
obtain by running tabulate on the count variable (e.g., tabulate art).

nameoble the observed cumulative probability Pr (y ≤ k) .

namepreq the average predicted probability Pr (y = k) .

nameprle the average predicted cumulative probability Pr (y ≤ k) .

Which observations are used to compute the averages? By default, prcounts computes aver-
ages for all observations in memory, which could include observations that were not used
in the estimation. For example, if your model was poisson art if fem==1, then the av-
erages computed by prcounts would be based on all observations, including those where
fem is not 1. To restrict the averages to the sample used in estimation, you need to add the
condition if e(sample)==1. For example, prcounts isfem if e(sample)==1, plot.

7.1.3 Comparing observed and predicted counts with prcounts

If the plot option was used with prcounts, it is simple to construct a graph that compares the
observed probabilities for each value of the count variable to the predicted probabilities from fitting
the Poisson distribution. For example,

. prcounts psn, plot max(9)

. label var psnobeq "Observed Proportion"

. label var psnpreq "Poisson Prediction"

. label var psnval "# of Articles"

. list psnval psnobeq psnpreq in 1/10

psnval psnobeq psnpreq
1. 0 .3005464 .1839859
2. 1 .2688525 .311469
3. 2 .1945355 .2636423
4. 3 .0918033 .148773
5. 4 .073224 .0629643
6. 5 .0295082 .0213184
7. 6 .0185792 .006015
8. 7 .0131148 .0014547
9. 8 .0010929 .0003078

10. 9 .0021858 .0000579

The listed values are the observed and predicted probabilities for observing scientists with 0 through
9 publications. These can be plotted with graph:

. graph psnobeq psnpreq psnval, c(ll) gap(3) l2("Probability") s(OT) /*
> */ yscale(0,.4) ylabel(0 .1 to .4) xlabel(0 1 to 9)
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This leads to the following graph:
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The graph clearly shows that the fitted Poisson distribution (represented by �’s) under-predicts 0s
and over-predicts counts 1, 2, and 3. This pattern of over- and under-prediction is characteristic of
fitting a count model that does not take into account heterogeneity among sample members in their
rate µ. Since fitting the univariate Poisson distribution assumes that all scientists have the same rate
of productivity, which is clearly unrealistic, our next step is to allow heterogeneity in µ based on
observed characteristics of the scientists.

Advanced: plotting Poisson distributions Earlier we plotted the Poisson distribution for four val-
ues of µ. The trick to doing this is to construct artificial data with a given mean rate of
productivity. Here are the commands we used to generate the graph on page 224:

. clear

. set obs 25

. gen ya = .8

. poisson ya, nolog

. prcounts pya, plot max(20)

. gen yb = 1.5

. poisson yb, nolog

. prcounts pyb, plot max(20)

. gen yc = 2.9

. poisson yc, nolog

. prcounts pyc, plot max(20)
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7.2 The Poisson regression model 229

. gen yd = 10.5

. poisson yd, nolog

. prcounts pyd, plot max(20)

. label var pyapreq "mu=0.8"

. label var pybpreq "mu=1.5"

. label var pycpreq "mu=2.9"

. label var pydpreq "mu=10.5"

. label var pyaval "y=# of Events"

. set textsize 125

. graph pyapreq pybpreq pycpreq pydpreq pyaval, c(llll) gap(3) /*
*/ l2("Probability") yscale(0,.5) ylabel(0 .1 to .5) xlabel(0 2 to 20)

7.2 The Poisson regression model

The Poisson regression model (PRM) extends the Poisson distribution by allowing each observation
to have a different value of µ. More formally, the PRM assumes that the observed count for obser-
vation i is drawn from a Poisson distribution with mean µi, where µi is estimated from observed
characteristics. This is sometimes referred to as incorporating observed heterogeneity, and leads to
the structural equation:

µi = E (yi | xi) = exp (xiβ)

Taking the exponential of xβ forces µ to be positive, which is necessary since counts can only
be 0 or positive. To see how this works, consider the PRM with a single independent variable,
µ = exp (α+ βx), which can be plotted as1

1This and similar graphs cannot be created using Stata 7.
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230 Chapter 7. Models for Count Outcomes

In this graph the mean µ, shown by the curved line, increases as x increases. For each value of µ,
the distribution around the mean is shown by the dots which should be thought of as coming out
of the page and which represent the probability of each count. Interpretation of the model involves
assessing how changes in the independent variables affect the conditional mean and the probabilities
of various counts. Details on interpretation are given after we consider estimation.

7.2.1 Estimating the PRM with poisson

The Poisson regression model is estimated with the command:

poisson depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, level(#) nolog

table cluster(varname) irr exposure(varname) robust
]

In our experience, poisson converges quickly and difficulties are rarely encountered.

Variable lists

depvar is the dependent variable. poisson does not require this to be an integer. But, if you have
noninteger values, you obtain the warning:

Note: you are responsible for interpretation of non-count dep variable.

indepvars is a list of independent variables. If indepvars is not included, a model with only an
intercept is estimated, which corresponds to fitting a univariate Poisson distribution, as shown
in the last section.

Specifying the estimation sample

if and in qualifiers can be used to restrict the estimation sample. For example, if you want
to estimate a model for only women, you could specify poisson art mar kid5 phd ment if
fem==1.

Listwise Deletion Stata excludes observations in which there are missing values for any of the
variables in the model. Accordingly, if two models are estimated using the same data but have
different independent variables, it is possible to have different samples. We recommend that you use
mark and markout (discussed in Chapter 3) to explicitly remove observations with missing data.

Weights

poisson can be used with fweights, pweights, and iweights. See Chapter 3 for details.
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7.2 The Poisson regression model 231

Options

nolog suppresses the iteration history.

level(#) specifies the level of the confidence interval for estimated parameters. By default, a 95%
interval is used. You can change the default level, say, to a 90% interval, with the command set
level 90.

irr reports estimated coefficients transformed to incidence rate ratios defined as exp (β). These are
discussed in Section 7.2.3.

exposure(varname) specifies a variable indicating the amount of time during which an observation
was “at risk” of the event occurring. Details are given in an example below.

robust requests that robust variance estimates be used. See Chapter 3 for details.

cluster(varname) specifies that the observations are independent across the groups specified by
unique values of varname but not necessarily within the groups. When cluster() is specified,
robust standard errors are automatically used. See Chapter 3 for details.

7.2.2 Example of estimating the PRM

If scientists who differ in their rates of productivity are combined, the univariate distribution of arti-
cles will be overdispersed (i.e., the variance is greater than the mean). Differences among scientists
in their rates of productivity could be due to factors such as gender, marital status, number of young
children, prestige of the graduate program, and the number of articles written by a scientist’s mentor.
To account for these differences, we add these variables as independent variables:

. use couart2, clear
(Academic Biochemists / S Long)

. poisson art fem mar kid5 phd ment, nolog

Poisson regression Number of obs = 915
LR chi2(5) = 183.03
Prob > chi2 = 0.0000

Log likelihood = -1651.0563 Pseudo R2 = 0.0525

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2245942 .0546138 -4.11 0.000 -.3316352 -.1175532
mar .1552434 .0613747 2.53 0.011 .0349512 .2755356

kid5 -.1848827 .0401272 -4.61 0.000 -.2635305 -.1062349
phd .0128226 .0263972 0.49 0.627 -.038915 .0645601

ment .0255427 .0020061 12.73 0.000 .0216109 .0294746
_cons .3046168 .1029822 2.96 0.003 .1027755 .5064581

The way in which you interpret a count model depends on whether you are interested in the expected
value of the count variable or in the distribution of counts. If interest is in the expected count, several
methods can be used to compute the change in the expectation for a change in an independent
variable. If interest is in the distribution of counts or perhaps just the probability of a specific count,
the probability of a count for a given level of the independent variables can be computed. Each of
these methods is now considered.
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232 Chapter 7. Models for Count Outcomes

7.2.3 Interpretation using the rate µ

In the PRM,

µ = E (y | x) = exp (xβ)

Changes in µ for changes in the independent variable can be interpreted in a variety of ways.

Factor Change in E(y | x)

Perhaps the most common method of interpretation is the factor change in the rate. If we define
E (y | x, xk) as the expected count for a given x where we explicitly note the value of xk, and
define E (y | x, xk + δ) as the expected count after increasing xk by δ units, then

E (y | x, xk + δ)
E (y | x, xk)

= eβkδ (7.1)

Therefore, the parameters can be interpreted as

For a change of δ in xk, the expected count increases by a factor of exp(βk×δ), holding
all other variables constant.

For example,

Factor change: For a unit change in xk, the expected count changes by a factor of
exp(βk), holding all other variables constant.

Standardized factor change: For a standard deviation change in xk, the expected count
changes by a factor of exp(βk × sk), holding all other variables constant.

Incidence Rate Ratio In some discussions of count models, µ is referred to as the incidence rate
and Equation 7.1 for δ = 1 is called the incidence rate ratio. These coefficients can be computed
by adding the option irr to the estimation command. Alternatively, they are computed with our
listcoef, which is illustrated below.

Percent change in E(y | x)

Alternatively, the percentage change in the expected count for a δ unit change in xk, holding other
variables constant, can be computed as

100 × E (y | x,xk + δ) −E (y | x,xk)
E (y | x,xk)

= 100 × [exp (βk × δ) − 1]
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7.2 The Poisson regression model 233

Example of factor and percent change

Factor change coefficients can be computed using listcoef:

. poisson art fem mar kid5 phd ment, nolog
(output omitted )

. listcoef fem ment, help

poisson (N=915): Factor Change in Expected Count

Observed SD: 1.926069

art b z P>|z| e^b e^bStdX SDofX

fem -0.22459 -4.112 0.000 0.7988 0.8940 0.4987
ment 0.02554 12.733 0.000 1.0259 1.2741 9.4839

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in expected count for unit increase in X

e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X

For example, the coefficients for fem and ment can be interpreted as

Being a female scientist decreases the expected number of articles by a factor of .80,
holding all other variables constant.

For a standard deviation increase in the mentor’s productivity, roughly 9.5 articles, a
scientist’s mean productivity increases by a factor of 1.27, holding other variables con-
stant.

To compute percent change, we add the option percent:

. listcoef fem ment, percent help

poisson (N=915): Percentage Change in Expected Count

Observed SD: 1.926069

art b z P>|z| % %StdX SDofX

fem -0.22459 -4.112 0.000 -20.1 -10.6 0.4987
ment 0.02554 12.733 0.000 2.6 27.4 9.4839

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
% = percent change in expected count for unit increase in X

%StdX = percent change in expected count for SD increase in X
SDofX = standard deviation of X
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234 Chapter 7. Models for Count Outcomes

For example, the percent change coefficients for fem and ment can be interpreted as

Being a female scientist decreases the expected number of articles by 20 percent, hold-
ing all other variables constant.

For every additional article by the mentor, a scientist’s predicted mean productivity
increases by 2.6 percent, holding other variables constant.

The standardized percent change coefficient can be interpreted as

For a standard deviation increase in the mentor’s productivity, a scientist’s mean pro-
ductivity increases by 27 percent, holding all other variables constant.

Marginal change in E(y | x)

Another method of interpretation is the marginal change in E (y | x):

∂E (y | x)
∂xk

= E (y | x)βk

For βk > 0, the larger the current value of E (y | x), the larger the rate of change; for βk < 0,
the smaller the rate of change. The marginal with respect of xk depends on both βk and E (y | x).
Thus, the value of the marginal depends on the levels of all variables in the model. In practice, this
measure is often computed with all variables held at their means.

Example of marginal change using prchange

Since the marginal is not appropriate for binary independent variables, we only request the change
for the continuous variables phd and ment. The marginal effects are in the column that is labeled
MargEfct:

. prchange phd ment, rest(mean)

poisson: Changes in Predicted Rate for art

min->max 0->1 -+1/2 -+sd/2 MargEfct

phd 0.0794 0.0200 0.0206 0.0203 0.0206

ment 7.9124 0.0333 0.0411 0.3910 0.0411

exp(xb): 1.6101

fem mar kid5 phd ment

x= .460109 .662295 .495082 3.10311 8.76721

sd(x)= .498679 .473186 .76488 .984249 9.48392
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Example of marginal change using mfx compute

By default, mfx compute computes the marginal change with variables held at their means:

. mfx compute

Marginal effects after poisson
y = predicted number of events (predict)

= 1.6100936

variable dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

fem* -.3591461 .08648 -4.15 0.000 -.528643 -.189649 .460109
mar* .2439822 .09404 2.59 0.009 .059671 .428293 .662295
kid5 -.2976785 .06414 -4.64 0.000 -.423393 -.171964 .495082
phd .0206455 .04249 0.49 0.627 -.062635 .103926 3.10311
ment .0411262 .00317 12.97 0.000 .034912 .04734 8.76721

(*) dy/dx is for discrete change of dummy variable from 0 to 1

The estimated marginals for phd and ment match those given above. For dummy variables, mfx
computes the discrete change as the variable changes from 0 to 1, a topic we now consider.

Discrete change in E(y | x)

It is also possible to compute the discrete change in the expected count for a change in xk from xS

to xE ,
∆E (y | x)

∆xk
= E (y | x, xk = xE) − E (y | x, xk = xS)

which can be interpreted as

For a change in xk from xS to xE , the expected count changes by ∆E (y | x) /∆xk,
holding all other variables at the specified values.

As was the case in earlier chapters, the discrete change can be computed in a variety of ways de-
pending on your purpose:

1. The total possible effect of xk is found by letting xk change from its minimum to its maximum.

2. The effect of a binary variable xk is computed by letting xk change from 0 to 1. This is the
quantity computed by mfx compute for binary variables.

3. The uncentered effect of a unit change in xk at the mean is computed by changing from
xk to xk + 1. The centered discrete change is computed by changing from (xk − 1/2) to
(xk + 1/2).

4. The uncentered effect of a standard deviation change in xk at the mean is computed by chang-
ing from xk to xk + sk. The centered change is computed by changing from (xk − sk/2) to
(xk + sk/2).
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236 Chapter 7. Models for Count Outcomes

5. The uncentered effect of a change of δ units in xk from xk to xk + δ. The centered change is
computed by changing from (xk − δ/2) to (xk + δ/2).

Discrete changes are computed with prchange. By default changes are computed centered around
the values specified with x() and rest(). To compute changes that begin at the specified values,
such as a change from xk to xk+1, you must specify the uncentered option. By default, prchange
computes results for changes in the independent variables of 1 unit and a standard deviation. With
the delta(#) option, you can request changes of # units. When using discrete change, remember
that the magnitude of the change in the expected count depends on the levels of all variables in the
model.

Example of discrete change using prchange

In this example, we set all variables to their mean:

. prchange fem ment, rest(mean)

poisson: Changes in Predicted Rate for art

min->max 0->1 -+1/2 -+sd/2 MargEfct
fem -0.3591 -0.3591 -0.3624 -0.1804 -0.3616

ment 7.9124 0.0333 0.0411 0.3910 0.0411

exp(xb): 1.6101

fem mar kid5 phd ment
x= .460109 .662295 .495082 3.10311 8.76721

sd(x)= .498679 .473186 .76488 .984249 9.48392

Examples of interpretation are

Being a female scientist decreases the expected productivity by .36 articles, holding all
other variables at their means.

A standard deviation increase in the mentor’s articles increases the scientist’s rate of
productivity by .39, holding all other variables at their mean.

To illustrate the use of the uncentered option, suppose that we want to know the effect of a change
from 1 to 2 young children:

. prchange kid5, uncentered x(kid5=1)

poisson: Changes in Predicted Rate for art

min->max 0->1 +1 +sd MargEfct
kid5 -0.7512 -0.2978 -0.2476 -0.1934 -0.2711

exp(xb): 1.4666

fem mar kid5 phd ment
x= .460109 .662295 1 3.10311 8.76721

sd(x)= .498679 .473186 .76488 .984249 9.48392

The rate of productivity decreases by .25 as the number of young children increases from 1 to 2. To
examine the effect of a change from 1 to 3 children, we add the delta() option:
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7.2 The Poisson regression model 237

. prchange kid5, uncentered x(kid5=1) delta(2)

poisson: Changes in Predicted Rate for art

(Note: delta = 2)

min->max 0->1 +delta +sd MargEfct
kid5 -0.7512 -0.2978 -0.4533 -0.1934 -0.2711

exp(xb): 1.4666

fem mar kid5 phd ment
x= .460109 .662295 1 3.10311 8.76721

sd(x)= .498679 .473186 .76488 .984249 9.48392

The results shows a decrease of .45 in the expected number of articles as the number of young
children increases from 1 to 3.

7.2.4 Interpretation using predicted probabilities

The estimated parameters can also be used to compute predicted probabilities using the following
formula:

P̂r(y = m | x) =
e−xβ̂

(
xβ̂

)m

m!
Predicted probabilities at specified values can be computed using prvalue. Predictions at the ob-
served values for all observations can be made using prcounts, or prgen can be used to compute
predictions that can be plotted. These commands are now illustrated.

Example of predicted probabilities using prvalue

prvalue computes predicted probabilities for values of the independent variables specified with
x() and rest(). For example, to compare the predicted probabilities for married and unmarried
women without young children, we first compute the predicted counts for single women without
children by specifying x(mar=0 fem=1 kid5=0) and rest(mean). We suppress the output with
quietly but save the results for later use:

. * single women without children

. quietly prvalue, x(mar=0 fem=1 kid5=0) rest(mean) save

Next, we compute the predictions for married women without children and use the dif option to
compare these results to those we just saved:

. * compared to married women without children

. prvalue, x(mar=1 fem=1 kid5=0) rest(mean) dif

poisson: Change in Predictions for art

Predicted rate: 1.6471 95% CI [1.4895 , 1.8213]
Saved: 1.4102

Difference: .23684
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Predicted probabilities:

Current Saved Difference
Pr(y=0|x): 0.1926 0.2441 -0.0515
Pr(y=1|x): 0.3172 0.3442 -0.0270
Pr(y=2|x): 0.2613 0.2427 0.0186
Pr(y=3|x): 0.1434 0.1141 0.0293
Pr(y=4|x): 0.0591 0.0402 0.0188
Pr(y=5|x): 0.0195 0.0113 0.0081
Pr(y=6|x): 0.0053 0.0027 0.0027
Pr(y=7|x): 0.0013 0.0005 0.0007
Pr(y=8|x): 0.0003 0.0001 0.0002
Pr(y=9|x): 0.0000 0.0000 0.0000

fem mar kid5 phd ment
Current= 1 1 0 3.1031093 8.7672131

Saved= 1 0 0 3.1031093 8.7672131
Diff= 0 1 0 0 0

The results show that married women are less likely to have 0 or 1 publications, and more likely to
have higher counts. Overall, their rate of productivity is .24 higher.

To examine the effects of the number of young children, we can use a series of calls to prvalue,
where the brief option limits the amount of output:

. prvalue, x(mar=1 fem=1 kid5=0) rest(mean) brief

Predicted probabilities:

Pr(y=0|x): 0.1926 Pr(y=1|x): 0.3172
Pr(y=2|x): 0.2613 Pr(y=3|x): 0.1434
Pr(y=4|x): 0.0591 Pr(y=5|x): 0.0195
Pr(y=6|x): 0.0053 Pr(y=7|x): 0.0013
Pr(y=8|x): 0.0003 Pr(y=9|x): 0.0000

. prvalue, x(mar=1 fem=1 kid5=1) rest(mean) brief

Predicted probabilities:

Pr(y=0|x): 0.2544 Pr(y=1|x): 0.3482
Pr(y=2|x): 0.2384 Pr(y=3|x): 0.1088
Pr(y=4|x): 0.0372 Pr(y=5|x): 0.0102
Pr(y=6|x): 0.0023 Pr(y=7|x): 0.0005
Pr(y=8|x): 0.0001 Pr(y=9|x): 0.0000

. prvalue, x(mar=1 fem=1 kid5=2) rest(mean) brief

Predicted probabilities:

Pr(y=0|x): 0.3205 Pr(y=1|x): 0.3647
Pr(y=2|x): 0.2075 Pr(y=3|x): 0.0787
Pr(y=4|x): 0.0224 Pr(y=5|x): 0.0051
Pr(y=6|x): 0.0010 Pr(y=7|x): 0.0002
Pr(y=8|x): 0.0000 Pr(y=9|x): 0.0000

. prvalue, x(mar=1 fem=1 kid5=3) rest(mean) brief

Predicted probabilities:

Pr(y=0|x): 0.3883 Pr(y=1|x): 0.3673
Pr(y=2|x): 0.1737 Pr(y=3|x): 0.0548
Pr(y=4|x): 0.0130 Pr(y=5|x): 0.0025
Pr(y=6|x): 0.0004 Pr(y=7|x): 0.0001
Pr(y=8|x): 0.0000 Pr(y=9|x): 0.0000

These values could be presented in a table or plotted, but overall it is clear that the probabilities of a
zero count increase as the number of young children increases.
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7.2 The Poisson regression model 239

Example of predicted probabilities using prgen

The command prgen computes a series of predictions by holding all variables but one constant and
allowing that variable to vary. The resulting predictions can then be plotted. In this example we
plot the predicted probability of not publishing for married men and married women with different
numbers of children. First we compute the predictions for women using the prefix fprm to indicate
female predictions from the PRM:

. prgen kid5, x(fem=1 mar=1) rest(mean) from(0) to(3) gen(fprm) n(4)

poisson: Predicted values as kid5 varies from 0 to 3.

fem mar kid5 phd ment
x= 1 1 .49508197 3.1031093 8.7672125

Next, we compute predictions for men, using the prefix mprm:

. prgen kid5, x(fem=0 mar=1) rest(mean) from(0) to(3) gen(mprm) n(4)

poisson: Predicted values as kid5 varies from 0 to 3.

fem mar kid5 phd ment
x= 0 1 .49508197 3.1031093 8.7672125

In both calls of prgen we requested four values with the n(4) option. This creates predictions for
0, 1, 2, and 3 children. To plot these predictions, we begin by adding value labels to the newly
generated variables. Then, we use the now familiar graph command:

. label var fprmp0 "Married Women"

. label var mprmp0 "Married Men"

. label var mprmx "Number of Children"

. graph fprmp0 mprmp0 mprmx, c(ll) s(OS) ylab(0,.1 to .4) yline(.1,.2,.3) /*
> */ xlab(0,1,2,3) gap(3) l2(Probability of No Articles)

This leads to the following graph, where the points marked with �’s and ©’s are placed at the tic
marks for the number of children:
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240 Chapter 7. Models for Count Outcomes

If you compare the values plotted for women to those computed with prvalue in the prior section,
you will see that they are exactly the same, just computed in a different way.

Example of predicted probabilities using prcounts

prcounts computes predictions for all observations in the dataset. In addition, the predictions are
averaged across observations:

Pr(y = m) =
1
N

N∑
i=1

P̂r(yi = m | xi)

To illustrate how this command can be used to compare predictions from different models, we begin
by fitting a univariate Poisson distribution and computing predictions with prcounts:

. poisson art, nolog

Poisson regression Number of obs = 915
LR chi2(0) = -0.00
Prob > chi2 = .

Log likelihood = -1742.5735 Pseudo R2 = -0.0000

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .5264408 .0254082 20.72 0.000 .4766416 .57624

. prcounts psn, plot max(9)

. label var psnpreq "Univariate Poisson Dist."

Since we specified the plot option and the prefix psn, the command prcounts created a new
variable called psnpreq that contains the average predicted probabilities of counts 0 through 9 from
a univariate Poisson distribution. We then estimate the PRM with independent variables and again
compute predictions with prcounts:

. poisson art fem mar kid5 phd ment, nolog

Poisson regression Number of obs = 915
LR chi2(5) = 183.03
Prob > chi2 = 0.0000

Log likelihood = -1651.0563 Pseudo R2 = 0.0525

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2245942 .0546138 -4.11 0.000 -.3316352 -.1175532
mar .1552434 .0613747 2.53 0.011 .0349512 .2755356
kid5 -.1848827 .0401272 -4.61 0.000 -.2635305 -.1062349
phd .0128226 .0263972 0.49 0.627 -.038915 .0645601
ment .0255427 .0020061 12.73 0.000 .0216109 .0294746

_cons .3046168 .1029822 2.96 0.003 .1027755 .5064581

. prcounts prm, plot max(9)

. label var prmpreq "PRM"

. label var prmobeq "Observed"
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7.2 The Poisson regression model 241

In addition to the new variable prmpreq, prcounts also generates prmobeq, which contains the
observed probability of counts 0 through 9. Another new variable, prmval, contains the value of the
count. We now plot the values of psnpreq, prmpreq, and prmobeq with prmval on the x-axis:

. graph prmobeq psnpreq prmpreq prmval, /*
> */ c(ll[.]l[-]l) gap(3) l2("Probability of Count") s(oxT) /*
> */ yscale(0,.4) ylabel(0,.1,.2,.3,.4) xlabel(0,1,2,3,4,5,6,7,8,9)

This produces the following graph:
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This graph shows that even though many of the independent variables have significant effects on the
number of articles published, there is only a modest improvement in the predictions made by the
PRM over the univariate Poisson distribution, with somewhat more 0s predicted and slightly fewer
2s and 3s. While this suggests the need for an alternative model, we will first discuss how different
periods of exposure can be incorporated into count models.

7.2.5 Exposure time∗

So far we have implicitly assumed that each observation was “at risk” of an event occurring for the
same amount of time. In terms of our example, this means that for each person in the sample we
counted their articles over the same period of time. Often when collecting data, however, differ-
ent observations have different exposure times. For example, the sample of scientists might have
received their degrees in different years and our outcome might have been total publications from
Ph.D. to the date of the survey. Clearly the amount of time in the career affects the total number of
publications.

Different exposure times can be incorporated quite simply into count models. Let ti be the
amount of time that observation i is at risk. If the rate (i.e., the expected number of observations
for a single unit of time) for that case is µi, then we would expect tiµi to be the expected count
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242 Chapter 7. Models for Count Outcomes

over a period of length ti. Then, assuming only two independent variables for simplicity, our count
equation becomes

µiti = [exp (β0 + β1x1 + β2x2)] × ti

Since t = exp (ln t), the equation can be rewritten as

µiti = exp (β0 + β1x1 + β2x2 + ln ti)

This shows that the effect of different exposure times can be included as the log of the exposure
time with a regression coefficient constrained to equal 1. While we do not have data with different
exposure times, we have artificially constructed three variables to illustrate this issue. profage
is a scientist’s professional age, which corresponds to the time a scientist has been “exposed” to
the possibility of publishing; lnage is the natural log of profage; and totalarts is the total
number of articles during the career (to see how these were created, you can examine the sample file
st4ch7.do). To estimate the model including exposure time, we use the exposure() option:

. poisson totalarts fem mar kid5 phd ment, nolog exposure(profage)

Poisson regression Number of obs = 915
LR chi2(5) = 791.07
Prob > chi2 = 0.0000

Log likelihood = -6129.0542 Pseudo R2 = 0.0606

totalarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2109383 .022453 -9.39 0.000 -.2549454 -.1669313
mar .1051588 .0253274 4.15 0.000 .0555179 .1547996
kid5 -.1507171 .0161878 -9.31 0.000 -.1824445 -.1189897
phd .0542277 .0108399 5.00 0.000 .0329819 .0754736
ment .0205018 .0008338 24.59 0.000 .0188675 .0221361

_cons .2351063 .0426229 5.52 0.000 .151567 .3186457
profage (exposure)

The results can be interpreted using the same methods discussed above.

To show you what the exposure() option is doing, we can obtain the same results by adding
lnage as an independent variable and constraining the coefficient for lnage to 1:

. constraint define 1 lnage=1

. poisson totalarts fem mar kid5 phd ment lnage, nolog constraint(1)

Poisson regression Number of obs = 915
LR chi2(6) = 3228.42
Prob > chi2 = 0.0000

Log likelihood = -6129.0542 Pseudo R2 = 0.2085

totalarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2109383 .022453 -9.39 0.000 -.2549454 -.1669313
mar .1051588 .0253274 4.15 0.000 .0555179 .1547996
kid5 -.1507171 .0161878 -9.31 0.000 -.1824446 -.1189897
phd .0542277 .0108399 5.00 0.000 .0329819 .0754736
ment .0205018 .0008338 24.59 0.000 .0188675 .0221361

lnage 1 . . . . .
_cons .2351063 .0426229 5.52 0.000 .151567 .3186457
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7.3 The negative binomial regression model 243

You can also obtain the same result with offset() instead of exposure(), except that with
offset() you specify a variable that is equal to the log of the exposure time. For example,

. poisson totalarts fem mar kid5 phd ment, nolog offset(lnage)

While the exposure() and offset() are not considered further in this chapter, they can be used
with the other models we discuss.

7.3 The negative binomial regression model

The PRM accounts for observed heterogeneity (i.e., observed differences among sample members)
by specifying the rate µi as a function of observed xk’s. In practice the PRM rarely fits due to
overdispersion. That is, the model underestimates the amount of dispersion in the outcome. The
negative binomial regression model (NBRM) addresses the failure of the PRM by adding a parameter
α that reflects unobserved heterogeneity among observations.2 For example, with three independent
variables, the PRM is

µi = exp (β0 + β1xi1 + β2xi2 + β3xi3)

The NBRM adds an error ε that is assumed to be uncorrelated with the x’s,

µ̃i = exp (β0 + β1xi1 + β2xi2 + β3xi3 + εi)
= exp (β0 + β1xi1 + β2xi2 + β3xi3) exp (εi)
= exp (β0 + β1xi1 + β2xi2 + β3xi3) δi

where the second step follows by basic algebra, and the last step simply defines δ ≡ exp (ε). To
identify the model, we assume that

E (δ) = 1

which corresponds to the assumption E(ε) = 0 in the LRM. With this assumption, it is easy to show
that

E (µ̃) = µE (δ) = µ

Thus, the PRM and the NBRM have the same mean structure. That is, if the assumptions of the
NBRM are correct, the expected rate for a given level of the independent variables will be the same
in both models. However, the standard errors in the PRM will be biased downward, resulting in
spuriously large z-values and spuriously small p-values (Cameron and Trivedi 1986, 31).

The distribution of observations given both the values of the x’s and δ is still Poisson in the
NBRM. That is,

Pr(yi | xi, δi) =
e−µ̃i µ̃yi

i

yi!

Since δ is unknown, we cannot compute Pr (y | x). This is resolved by assuming that δ is drawn
from a gamma distribution (see Long 1997, 231–232 or Cameron and Trivedi 1998, 70–79 for
details). Then we can compute Pr (y | x) as a weighted combination of Pr (y | x, δ) for all values

2The NBRM can also be derived through a process of contagion where the occurrence of an event changes the probability
of further events. That approach is not considered further here.
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244 Chapter 7. Models for Count Outcomes

of δ, where the weights are determined by Pr (δ). The mathematics for this mixing of values of
Pr (y | x, δ) is complex (and not particularly helpful for understanding the interpretation of the
model), but lead to the negative binomial distribution

Pr (y | x) =
Γ
(
y + α−1

)
y!Γ (α−1)

(
α−1

α−1 + µ

)α−1(
µ

α−1 + µ

)y

where Γ is the gamma function.

In the negative binomial distribution, the parameter α determines the degree of dispersion in the
predictions, as illustrated by the following figure:

In both panels the dispersion of predicted counts for a given value of x is larger than in the PRM. In
particular, note the greater probability of a 0 count. Further, the larger value of α in Panel B results
in greater spread in the data. Indeed, if α = 0, the NBRM reduces to the PRM, which turns out to the
be the key to testing for overdispersion. This is discussed in Section 7.3.3.

7.3.1 Estimating the NBRM with nbreg

The NBRM is estimated with the following command:
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7.3 The negative binomial regression model 245

nbreg depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, level(#) nolog

table cluster(varname) irr exposure(varname) robust
]

where the options are the same as those for poisson. Because of differences in how poisson and
nbreg are implemented in Stata, models estimated with nbreg take substantially longer to converge.

7.3.2 Example of estimating the NBRM

Here we use the same example as for the PRM above:

. nbreg art fem mar kid5 phd ment, nolog

Negative binomial regression Number of obs = 915
LR chi2(5) = 97.96
Prob > chi2 = 0.0000

Log likelihood = -1560.9583 Pseudo R2 = 0.0304

art Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2164184 .0726724 -2.98 0.003 -.3588537 -.0739832
mar .1504895 .0821063 1.83 0.067 -.0104359 .3114148

kid5 -.1764152 .0530598 -3.32 0.001 -.2804105 -.07242
phd .0152712 .0360396 0.42 0.672 -.0553652 .0859075

ment .0290823 .0034701 8.38 0.000 .0222811 .0358836
_cons .256144 .1385604 1.85 0.065 -.0154294 .5277174

/lnalpha -.8173044 .1199372 -1.052377 -.5822318

alpha .4416205 .0529667 .3491069 .5586502

Likelihood ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

The output is similar to that of poisson, with the exception of the results at the bottom of the output,
which initially can be confusing. While the model was defined in terms of the parameter α, nbreg
estimates ln (α) with the estimate given in the line /lnalpha. This is done because estimating
ln (α) forces the estimated α to be positive. The value of α̂ is given on the next line. z-values are
not given since they require special treatment, as discussed in Section 7.3.3.

Comparing the PRM and NBRM using outreg

We can use outreg to combine the results from poisson and nbreg:

. poisson art fem mar kid5 phd ment, nolog
(output omitted )

. outreg using 07prmnbrm, replace

. nbreg art fem mar kid5 phd ment, nolog
(output omitted )

. outreg using 07prmnbrm, append xstats
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246 Chapter 7. Models for Count Outcomes

The option xstats requests that auxiliary parameters be included in the table, which in the case of
nbreg leads to the estimate of α being included. After some modifications to the output of outreg,
we obtain

PRM NBRM
Gender: 1=female 0=male -0.225 -0.216

(4.11)** (2.98)**
Married: 1=yes 0=no 0.155 0.150

(2.53)* (1.83)
Number of children < 6 -0.185 -0.176

(4.61)** (3.32)**
PhD prestige 0.013 0.015

(0.49) (0.42)
Article by mentor 0.026 0.029

in last 3 yrs (12.73)** (8.38)**
Constant 0.305 0.256

(2.96)** (1.85)
lnalpha -0.817

(6.81)**

Observations 915 915
Absolute value of z-statistics in parentheses
* significant at 5% level; ** significant at 1% level

The estimates of the corresponding parameters from the PRM and the NBRM are close, but the
z-values for the NBRM are consistently smaller than those for the PRM. This is the expected conse-
quence of overdispersion. outreg includes the estimate of lnalpha along with a z-value. But, as
the next section shows, you should not use this to test for overdispersion.

7.3.3 Testing for overdispersion

If there is overdispersion, estimates from the PRM are inefficient with standard errors that are biased
downward, even if the model includes the correct variables. Accordingly, it is important to test for
overdispersion. Since the NBRM reduces to the PRM when α = 0, we can test for overdispersion by
testing H0: α = 0. There are two points to keep in mind in making this test. First, nbreg estimates
ln (α) rather than α. A test of H0: ln (α) = 0 corresponds to testing H0: α = 1, which is not the
test we want. Second, since α must be greater than or equal to 0, the asymptotic distribution of α̂
when α = 0 is only half of a normal distribution. That is, all values less than 0 have a probability of
0. This requires an adjustment to the usual significance level of the test.

To test the hypothesis H0: α = 0, Stata provides a LR test that is listed after the estimates of the
parameters.

Likelihood ratio test of alpha=0: chibar2(01) = 180.20 Prob > =chibar2 = 0.000

Since this output is different than that from lrtest, it is worth clarifying what it means. The test
statistic chibar2(01) is computed by the same formula shown in Chapter 3:

G2 = 2 (lnLNBRM − lnLPRM)
= 2 (−1560.96 −−1651.06) = 180.2
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7.3 The negative binomial regression model 247

The significance level of the test is adjusted to account for the truncated sampling distribution of
α̂. For details, you can click on chibar2(01), which will be listed in blue in the Results Window
(recall that blue means that you can click for further information). In our example, the results are
very significant and provide strong evidence of overdispersion. You can summarize this by saying
that

Since there is significant evidence of overdispersion (G2 = 180.2, p < .01), the nega-
tive binomial regression model is preferred to the Poisson regression model.

7.3.4 Interpretation using the rate µ

Since the mean structure for the NBRM is identical to that for the PRM, the same methods of inter-
pretation based on E (y | x) can be used based on the equation

E (y | x, xk + δ)
E (y | x, xk)

= eβkδ

This leads to the interpretation that

For a change of δ in xk, the expected count increases by a factor of exp(βk×δ), holding
all other variables constant.

Factor and percent change coefficients can be obtained using listcoef. For example,

. listcoef fem ment, help

nbreg (N=915): Factor Change in Expected Count

Observed SD: 1.926069

art b z P>|z| e^b e^bStdX SDofX

fem -0.21642 -2.978 0.003 0.8054 0.8977 0.4987
ment 0.02908 8.381 0.000 1.0295 1.3176 9.4839

ln alpha -0.81730
alpha 0.44162 SE(alpha) = 0.05297

LR test of alpha=0: 180.20 Prob>=LRX2 = 0.000

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in expected count for unit increase in X

e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X
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. listcoef fem ment, help percent

nbreg (N=915): Percentage Change in Expected Count

Observed SD: 1.926069

art b z P>|z| % %StdX SDofX

fem -0.21642 -2.978 0.003 -19.5 -10.2 0.4987
ment 0.02908 8.381 0.000 3.0 31.8 9.4839

ln alpha -0.81730
alpha 0.44162 SE(alpha) = 0.05297

LR test of alpha=0: 180.20 Prob>=LRX2 = 0.000

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
% = percent change in expected count for unit increase in X

%StdX = percent change in expected count for SD increase in X
SDofX = standard deviation of X

These coefficients can be interpreted as

Being a female scientist decreases the expected number of articles by a factor of .81,
holding all other variables constant. Equivalently, being a female scientist decreases the
expected number of articles by 19.5 percent, holding all other variables constant.

For every additional article by the mentor, a scientist’s expected mean productivity in-
creases by 3.0 percent, holding other variables constant.

For a standard deviation increase in the mentor’s productivity, a scientist’s expected
mean productivity increases by 32 percent, holding all other variables constant.

Interpretations for marginal and discrete change can be computed and interpreted using the methods
discussed for the PRM.

7.3.5 Interpretation using predicted probabilities

The methods from the PRM can also be used for interpreting predicted probabilities. The only
difference is that the predicted probabilities are computed with the formula

P̂r (y | x) =
Γ
(
y + α−1

)
y!Γ (α−1)

(
α̂−1

α̂−1 + µ̂

)α̂−1(
µ̂

α̂−1 + µ̂

)y

where µ̂ = exp
(
xβ̂

)
. As before, predicted probabilities can be computed using prchange, prgen,

prcounts, and prvalue. Since there is nothing new in how to use these commands, we provide
only two examples that are designed to illustrate key differences and similarities between the PRM
and the NBRM. First, we use prvalue to compute predicated values for an “average” respondent.
For the PRM,
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7.3 The negative binomial regression model 249

. quietly poisson art fem mar kid5 phd ment

. prvalue

poisson: Predictions for art

Predicted rate: 1.6101 95% CI [1.5286 , 1.6959]

Predicted probabilities:

Pr(y=0|x): 0.1999 Pr(y=1|x): 0.3218
Pr(y=2|x): 0.2591 Pr(y=3|x): 0.1390
Pr(y=4|x): 0.0560 Pr(y=5|x): 0.0180
Pr(y=6|x): 0.0048 Pr(y=7|x): 0.0011
Pr(y=8|x): 0.0002 Pr(y=9|x): 0.0000

fem mar kid5 phd ment
x= .46010929 .66229508 .49508197 3.1031093 8.7672125

and for the NBRM,

. quietly nbreg art fem mar kid5 phd ment

. prvalue

nbreg: Predictions for art

Predicted rate: 1.602
Predicted probabilities:

Pr(y=0|x): 0.2978 Pr(y=1|x): 0.2794
Pr(y=2|x): 0.1889 Pr(y=3|x): 0.1113
Pr(y=4|x): 0.0607 Pr(y=5|x): 0.0315
Pr(y=6|x): 0.0158 Pr(y=7|x): 0.0077
Pr(y=8|x): 0.0037 Pr(y=9|x): 0.0018

fem mar kid5 phd ment
x= .46010929 .66229508 .49508197 3.1031093 8.7672125

The first thing to notice is that the predicted rate is nearly identical for both models: 1.610 versus
1.602. This illustrates that even with overdispersion (which there is in this example), the estimates
from the PRM are consistent. But, substantial differences emerge when we examine predicted proba-
bilities: P̂rPRM (y = 0 | x) = 0.200 compared to P̂rNBRM (y = 0 | x) = 0.298. We also find higher
probabilities in the NBRM for larger counts. For example, P̂rNBRM (y = 5 | x) = 0.0315 compared
to P̂rPRM (y = 5 | x) = 0.0180. These probabilities reflect the greater dispersion in the NBRM
compared to the PRM.

Another way to see the greater probability for 0 counts in the NBRM is to plot the probability of
0s as values of an independent variable change. This is done with prgen:

. quietly nbreg art fem mar kid5 phd ment, nolog

. prgen ment, rest(mean) f(0) t(50) gen(nb) n(20)

nbreg: Predicted values as ment varies from 0 to 50.

fem mar kid5 phd ment
x= .46010929 .66229508 .49508197 3.1031093 8.7672125

. quietly poisson art fem mar kid5 phd ment
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250 Chapter 7. Models for Count Outcomes

. prgen ment, rest(mean) f(0) t(50) gen(psn) n(20)

poisson: Predicted values as ment varies from 0 to 50.

fem mar kid5 phd ment
x= .46010929 .66229508 .49508197 3.1031093 8.7672125

. label var psnp0 "Pr(0) for PRM"

. label var nbp0 "Pr(0) for NBRM"

. graph psnp0 nbp0 nbx, c(ll) ylab(0,.1,.2,.3,.4) yline(.1,.2,.3) /*
> */ gap(3) l1("Probability of a Zero Count")

which leads to the following graph:
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The probability of having zero publications is computed when each variable except the mentor’s
number of articles is held at its mean. For both models, the probability of a zero decreases as
the mentor’s articles increase. But, the proportion of predicted zeros is significantly higher for the
NBRM. Since both models have the same expected number of publications, the higher proportion
of predicted zeros for the NBRM is offset by the higher proportion of larger counts that are also
predicted by this model.

7.4 Zero-inflated count models

The NBRM improves upon the underprediction of zeros in the PRM by increasing the conditional
variance without changing the conditional mean, which was illustrated by the output from prvalue
in the prior section. Zero-inflated count models, introduced by Lambert (1992), respond to the
failure of the PRM model to account for dispersion and excess zeros by changing the mean structure
to allow zeros to be generated by two distinct processes. To make this clearer, consider our example
of scientific productivity. The PRM and NBRM assume that every scientist has a positive probability
of publishing any given number of papers. The probability differs across individuals according
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7.4 Zero-inflated count models 251

to their characteristics, but all scientists have some probability of publishing. Substantively, this
is unrealistic because some scientists are not potential publishers. For example, they could hold
positions, perhaps in industry, where publishing is not allowed. Zero-inflated models allow for this
possibility and, in the process, they increase the conditional variance and the probability of zero
counts.

The zero-inflated model assumes that there are two latent (i.e., unobserved) groups. An individ-
ual in the Always-0 Group (Group A) has an outcome of 0 with a probability of 1, while an individual
in the Not Always-0 Group (Group ˜A) might have a zero count, but there is a nonzero probability
that she has a positive count. This process is developed in three steps: Step 1) Model membership
into the latent groups; Step 2) Model counts for those in Group ˜A; and Step 3) Compute observed
probabilities as a mixture of the probabilities for the two groups.

Step 1: Membership in Group A Let A = 1 if someone is in Group A, else A = 0. Group
membership is a binary outcome that can be modeled using the logit or probit model of Chapter 4,

ψi = Pr (Ai = 1 | zi) = F (ziγ) (7.2)

where ψi is the probability of being in Group A for individual i. The z-variables are referred to as
inflation variables since they serve to inflate the number of 0s as shown below. To illustrate Equation
7.2, assume that two variables affect the probability of an individual being in Group A and that we
model this with a logit equation:

ψi =
exp (γ0 + γ1z1 + γ2z2)

1 + exp (γ0 + γ1z1 + γ2z2)

If we had an observed variable indicating group membership, this would be a standard, binary re-
gression model. But, since group membership is a latent variable, we do not know whether an
individual is in Group A or Group ˜A.

Step 2: Counts for those in Group ˜A Among those who are not always zero, the probability
of each count (including zeros) is determined by either a Poisson or a negative binomial regression.
Notice that in the equations that follow we are conditioning both on the xk’s and on A = 0. Also
note that the xk’s are not necessarily the same as the inflation variables zk in the first step (although
the two sets of variables can be the same). For the zero-inflated Poisson (ZIP) model, we have

Pr(yi | xi, Ai = 0) =
e−µiµyi

i

yi!

or, for the zero inflated negative binomial (ZINB) model,

Pr (yi | xi, Ai = 0) =
Γ
(
yi + α−1

)
yi!Γ (α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)yi

In both equations, µi = exp (xiβ). If we knew which observations were in Group ˜A, these equa-
tions would define the PRM and the NBRM. But, here the equations only apply to those observations
in Group ˜A, and we do not have an observed variable indicating group membership.
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252 Chapter 7. Models for Count Outcomes

Step 3: Mixing Groups A and ˜A The simplest way to understand the mixing is to start with an
example. Suppose that retirement status is indicated by r = 1 for retired folks and r = 0 for those
not retired, where

Pr (r = 1) = .2
Pr (r = 0) = 1 − .2 = .8

Let y indicate living in a warm climate, with y = 1 for yes and y = 0 for no. Suppose that the
conditional probabilities are

Pr (y = 1 | r = 1) = .5
Pr (y = 1 | r = 0) = .3

so that people are more likely to live in a warm climate if they are retired. What is the probability of
living in a warm climate for the population as a whole? The answer is a mixture of the probabilities
for the two groups weighted by the proportion in each group:

Pr (y = 1) = [Pr (r = 1) × Pr (y = 1 | r = 1)]
+ [Pr (r = 0) × Pr (y = 1 | r = 0)]

= [.2 × .5] + [.8 × .3] = .34

In other words, the two groups are mixed according to their proportions in the population to deter-
mine the overall rate. The same thing is done for the zero-inflated models.

The proportion in each group is defined by

Pr (Ai = 1) = ψi

Pr (Ai = 0) = 1 − ψi

and the probabilities of a zero within each group are

Pr (yi = 0 | Ai = 1,xi, zi) = 1 by definition of the A Group

Pr (yi = 0 | Ai = 0,xi, zi) = outcome of PRM or NBRM.

Then, the overall probability of a 0 count is

Pr (yi = 0 | xi, zi) = [ψi × 1] + [(1 − ψi) × Pr (yi = 0 | xi, Ai = 0)]
= ψi + [(1 − ψi) × Pr (yi = 0 | xi, Ai = 0)]

For outcomes other than 0,

Pr (yi = k | xi, zi) = [ψi × 0] + [(1 − ψi) × Pr (yi = k | xi, Ai = 0)]
= (1 − ψi) × Pr (yi = k | xi, Ai = 0)

where we use the assumption that the probability of a positive count in Group A is 0.

Expected counts are computed in a similar fashion:

E (y | x, z) = [0 × ψ] + [µ× (1 − ψ)]
= µ (1 − ψ)

Since 0 ≤ ψ ≤ 1, the expected value will be smaller than µ, which shows that the mean structure in
zero-inflated models differs from that in the PRM or NBRM.
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7.4 Zero-inflated count models 253

7.4.1 Estimation of zero-inflated models with zinb and zip

The ZIP and ZINB models are estimated with the zip and zinb commands. The syntax is

zip depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, inflate(indepvars2)

level(#) probit vuong nolog irr robust cluster(varname)

exposure(varname)
]

zinb depvar
[
indepvars

] [
weight

] [
if exp

] [
in range

] [
, inflate(indepvars2)

level(#) probit vuong nolog irr robust cluster(varname)

exposure(varname)
]

Variable lists

depvar is the dependent variable, which must be a count variable.

indepvars is a list of independent variables that determine counts among those who are not always
zeros. If indepvars is not included, a model with only an intercept is estimated.

indepvars2 is a list of inflation variables that determine if you are in the Always-0 Group or the
Not Always-0 Group.

indepvars and indepvars2 can be the same variables, but they do not have to be.

Options

Here we only consider options that differ from those in earlier models for this chapter.

probit specifies that the model determining the probability of being in the Always-0 Group versus
the Not Always-0 Group is to be a binary probit model. By default, a binary logit model is used.

vuong requests a Vuong (1989) test of the ZIP model versus the PRM, or of the ZINB versus the
NBRM. Details are given in Section 7.5.2.

7.4.2 Example of estimating the ZIP and ZINB models

The output from zip and zinb are very similar, so here we show only the output for zinb:

. zinb art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog

Zero-inflated negative binomial regression Number of obs = 915
Nonzero obs = 640
Zero obs = 275

Inflation model = logit LR chi2(5) = 67.97
Log likelihood = -1549.991 Prob > chi2 = 0.0000
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art Coef. Std. Err. z P>|z| [95% Conf. Interval]

art
fem -.1955068 .0755926 -2.59 0.010 -.3436655 -.0473481
mar .0975826 .084452 1.16 0.248 -.0679402 .2631054
kid5 -.1517325 .054206 -2.80 0.005 -.2579744 -.0454906
phd -.0007001 .0362696 -0.02 0.985 -.0717872 .0703869
ment .0247862 .0034924 7.10 0.000 .0179412 .0316312

_cons .4167466 .1435962 2.90 0.004 .1353032 .69819

inflate
fem .6359327 .8489175 0.75 0.454 -1.027915 2.299781
mar -1.499469 .93867 -1.60 0.110 -3.339228 .3402907
kid5 .6284274 .4427825 1.42 0.156 -.2394104 1.496265
phd -.0377153 .3080086 -0.12 0.903 -.641401 .5659705
ment -.8822932 .3162277 -2.79 0.005 -1.502088 -.2624984

_cons -.1916864 1.322821 -0.14 0.885 -2.784368 2.400995

/lnalpha -.9763565 .1354679 -7.21 0.000 -1.241869 -.7108443

alpha .376681 .0510282 .288844 .4912293

The top set of coefficients, labeled art at the left margin, correspond to the NBRM for those in
the Not Always-0 Group. The lower set of coefficients, labeled inflate, correspond to the binary
model predicting group membership.

7.4.3 Interpretation of coefficients

When interpreting zero inflated models, it is easy to be confused by the direction of the coefficients.
listcoef makes interpretation simpler. For example, consider the results for the ZINB:

. zinb art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog
(output omitted )

. listcoef, help

zinb (N=915): Factor Change in Expected Count

Observed SD: 1.926069

Count Equation: Factor Change in Expected Count for Those Not Always 0

art b z P>|z| e^b e^bStdX SDofX

fem -0.19551 -2.586 0.010 0.8224 0.9071 0.4987
mar 0.09758 1.155 0.248 1.1025 1.0473 0.4732
kid5 -0.15173 -2.799 0.005 0.8592 0.8904 0.7649
phd -0.00070 -0.019 0.985 0.9993 0.9993 0.9842
ment 0.02479 7.097 0.000 1.0251 1.2650 9.4839

ln alpha -0.97636
alpha 0.37668 SE(alpha) = 0.05103

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in expected count for unit increase in X

e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X
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Binary Equation: Factor Change in Odds of Always 0

Always0 b z P>|z| e^b e^bStdX SDofX

fem 0.63593 0.749 0.454 1.8888 1.3732 0.4987
mar -1.49947 -1.597 0.110 0.2232 0.4919 0.4732

kid5 0.62843 1.419 0.156 1.8747 1.6172 0.7649
phd -0.03772 -0.122 0.903 0.9630 0.9636 0.9842

ment -0.88229 -2.790 0.005 0.4138 0.0002 9.4839

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

The top half of the output, labeled Count Equation, contains coefficients for the factor change in
the expected count for those in the Not Always-0 Group. This group comprises those scientists who
have the opportunity to publish. The coefficients can be interpreted in the same way as coefficients
from the PRM or the NBRM. For example,

Among those who have the opportunity to publish, being a woman decreases the ex-
pected rate of publication by a factor of .91, holding all other factors constant.

The bottom half, labeled Binary Equation, contains coefficients for the factor change in the odds
of being in the Always-0 Group compared to the Not Always-0 Group. These can be interpreted just
as the coefficients for a binary logit model. For example,

Being a woman increases the odds of not having the opportunity to publish by a factor
of 1.89, holding all other variables constant.

As we found in this example, when the same variables are included in both equations, the signs
of the corresponding coefficients from the binary equation are often in the opposite direction of the
coefficients for the count equation. This often makes substantive sense since the binary process is
predicting membership in the group that always has zero counts, so a positive coefficient implies
lower productivity. The count process predicts number of publications so that a negative coefficient
would indicate lower productivity.

7.4.4 Interpretation of predicted probabilities

For the ZIP model,
P̂r (y = 0 | x, z) = ψ̂ +

(
1 − ψ̂

)
e−µ̂

where µ̂ = exp
(
xβ̂

)
and ψ̂ = F (zγ̂). The predicted probability of a positive count applies only

to the 1 − ψ̂ observations in the Not Always-0 Group:

P̂r(y | x) =
(
1 − ψ̂

) e−µ̂i µ̂y

y!
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Similarly, for the ZINB model,

P̂r (y = 0 | x, z) = ψ̂ +
(
1 − ψ̂

)( α̂−1

α̂−1 + µ̂i

)α̂−1

And the predicted probability for a positive count is

P̂r(y | x) =
(
1 − ψ̂

) Γ
(
y + α̂−1

)
y! Γ (α̂−1)

(
α̂−1

α̂−1 + µ̂

)α̂−1(
µ̂

α̂−1 + µ̂

)y

The probabilities can be computed with prvalue, prcounts, and prgen.

Predicted probabilities with prvalue

prvalue works in the same way for zip and zinb as it did for earlier count models, although the
output is slightly different. Suppose we want to compare the predicted probabilities for a married
female scientist with young children who came from a weak graduate program to those for a married
male from a strong department with a productive mentor:

. quietly prvalue, x(fem=0 mar=1 kid5=3 phd=3 ment=10) save

. prvalue, x(fem=1 mar=1 kid5=3 phd=1 ment=0) dif

zinb: Change in Predictions for art

Predicted rate: .27174 Saved: 1.3563
Difference: -1.0845

Predicted probabilities:

Current Saved Dif
Pr(y=0|x,z): 0.9290 0.3344 0.5945
Pr(y=1|x): 0.0593 0.3001 -0.2408
Pr(y=2|x): 0.0101 0.1854 -0.1754
Pr(y=3|x): 0.0015 0.0973 -0.0958
Pr(y=4|x): 0.0002 0.0465 -0.0463
Pr(y=5|x): 0.0000 0.0209 -0.0209
Pr(y=6|x): 0.0000 0.0090 -0.0090
Pr(y=7|x): 0.0000 0.0038 -0.0038
Pr(y=8|x): 0.0000 0.0015 -0.0015
Pr(y=9|x): 0.0000 0.0006 -0.0006

Pr(Always0|z): 0.6883 0.0002 0.6882

x values for count equation

fem mar kid5 phd ment
Current= 1 1 3 1 0

Saved= 0 1 3 3 10
Diff= 1 0 0 -2 -10

z values for binary equation

fem mar kid5 phd ment
Current= 1 1 3 1 0

Saved= 0 1 3 3 10
Diff= 1 0 0 -2 -10
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There are two major differences in the output of prvalue for zip and zinb compared to other count
models. First, levels of both the x variables from the count equation and the z variables from the
binary equation are listed. In this example, they are the same variables, but they could be different.
Second, there are two probabilities of 0 counts. For example, for our female scientists, prvalue
lists Pr(y=0 | x,z): 0.9290, which is the probability of having no publications, either because
a scientist does not have the opportunity to publish or because a scientist is a potential publisher
who by chance did not publish. The quantity Pr(Always0 | z): 0.6883 is the probability of not
having the opportunity to publish. Thus, most of the 0s for women are due to being in the group that
never publishes. The remaining probabilities listed are the probabilities of observing each count of
publications for the specified set of characteristics.

Predicted probabilities with prgen

prgen is used to plot predictions. In this case, we examine the two sources of 0s. First, we call
prgen to compute the predicted values to be plotted:

. prgen ment, rest(mean) f(0) t(20) gen(zinb) n(21)

zinb: Predicted values as ment varies from 0 to 20.

base x values for count equation:

fem mar kid5 phd ment
x= .46010929 .66229508 .49508197 3.1031093 8.7672125

base z values for binary equation:

fem mar kid5 phd ment
z= .46010929 .66229508 .49508197 3.1031093 8.7672125

prgen created two probabilities for 0 counts: zinbp0 contains the probability of a 0 count from
both the count and the binary equation. zinball0 is the probability due to observations being in the
Always-0 group. We use generate zinbnb0 = zinbp0 - zinball0 to compute the probability
of 0s from the count portion of the model:

. gen zinbnb0 = zinbp0 - zinball0
(894 missing values generated)

. label var zinbp0 "0s from Both Equations"

. label var zinball0 "0s from Binary Equation"

. label var zinbnb0 "0s from Count Equation"

. label var zinbx "Mentor´s Publications"

These are plotted with the command

. graph zinball0 zinbnb0 zinbp0 zinbx, s(OTS) c(sss) gap(3) xlabel(0,5 to 20) /*
> */ l2(Probability of Zero) ylabel(0,.05 to .65)

which produces the following graph:

(Continued on next page)
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The curve marked with o’s is a probability curve just like those shown in Chapter 4 for binary
models. The curve marked with �’s shows the probability of 0s from a series of negative binomial
distributions each with different rate parameters µ determined by the level of mentor’s publications.
The overall probability of a zero count is the sum of the two curves, which is shown by the line with
�’s.

7.5 Comparisons among count models

There are two methods that can be used to compare the results of the PRM, NBRM, ZIP, and ZINB
models.

7.5.1 Comparing mean probabilities

One way to compare these models is to compare predicted probabilities across models. First, we
compute the mean predicted probability. For example, in the PRM,

PrPRM(y = m) =
1
N

N∑
i=1

P̂rPRM(yi = m | xi)

This is simply the average across all observations of the probability of each count. The difference
between the observed probabilities and the mean prediction can be computed as

∆PrPRM(y = m) = P̂rObserved(y = m) − PrPRM(y = m)

This can be done for each model and then plotted. The commands are
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. quietly poisson art fem mar kid5 phd ment, nolog

. quietly prcounts prm, plot max(9)

. label var prmpreq "Predicted: PRM"

. label var prmobeq "Observed"

. quietly nbreg art fem mar kid5 phd ment, nolog

. quietly prcounts nbrm, plot max(9)

. label var nbrmpreq "Predicted: NBRM"

. quietly zip art fem mar kid5 phd ment, /*

> */ inf(fem mar kid5 phd ment) vuong nolog

. quietly prcounts zip, plot max(9)

. label var zippreq "Predicted: ZIP"

. quietly zinb art fem mar kid5 phd ment, /*

> */ inf(fem mar kid5 phd ment) vuong nolog

. quietly prcounts zinb, plot max(9)

. label var zinbpreq "Predicted: ZINB"

. * create deviations

. gen obs = prmobeq

(905 missing values generated)

. gen dprm = obs - prmpreq

(905 missing values generated)

. label var dprm "PRM"

. gen dnbrm = obs - nbrmpreq

(905 missing values generated)

. label var dnbrm "NBRM"

. gen dzip = obs - zippreq

(905 missing values generated)

. label var dzip "ZIP"

. gen dzinb = obs - zinbpreq

(905 missing values generated)

. label var dzinb "ZINB"

. graph dprm dnbrm dzip dzinb prmval, s(OSTx) c(llll) gap(3) /*

> */ l2(Observed-Predicted) ylabel(-.10,-.05 to .10) /*

> */ xlabel(0 1 to 9) yline(0)

which leads to the following graph:
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Points above 0 on the y-axis indicate more observed counts than predicted; those below 0 indicate
more predicted counts than observed. The graph shows that only the PRM has a problem predicting
the average number of 0s. Among the other models, the ZIP does less well, predicting too many 1s
and too few 2s and 3s. The NBRM and ZINB do about equally well. Based on these results, we might
prefer the NBRM because it is simpler.

7.5.2 Tests to compare count models

Plotting predictions is only an informal method of assessing the fit of a count model. More formal
testing can be done with an LR test of overdispersion and a Vuong test to compare two models.

LR tests of α

Since the NBRM reduces to the PRM when α= 0, the PRM and NBRM can be compared by testing
H0: α = 0. As shown in Section 7.3.3, we find that

Likelihood ratio test of alpha=0: chibar2(01) = 180.20 Prob > =chibar2 = 0.000

which provides strong evidence for preferring the NBRM over the PRM.

Since the ZIP and ZINB models are also nested, the same LR test can be applied to compare them.
While Stata does not compute this for you, it is simple to do. First we estimate the ZIP model:

. quietly zip art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) vuong nolog

. scalar llzip = e(ll)
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The command scalar llzip = e(ll) saves the log likelihood that was left in memory by zip.
Next we do the same thing for zinb and compute the difference between the two log likelihoods:

. quietly zinb art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog

. scalar llzinb = e(ll)

. scalar lr = -2*(llzip-llzinb)

The following commands can be used to compute the p-value. Note that if you do this with your
own model, you need to substitute the value of lnalpha which is listed as part of the output for
zinb:

. scalar pvalue = chiprob(1,lr)/2

. scalar lnalpha = -.9763565

. if (lnalpha < -20) { scalar pvalue= 1 }

. di as text "Likelihood ratio test comparing ZIP to ZINB: " as res %8.3f lr /*
> */ as text " Prob>=" as res %5.3f pvalue

The first line is the standard way to compute the p-value for a chi-squared test with one degree of
freedom, except that we divide by 2. This is because α cannot be negative, as we discussed earlier
with regard to comparing the poisson and nbreg models (Gutierrez, Carter, and Drukker 2001).
The next line assigns the estimated value of lnα to a scalar. If this value is very close to 0, we
conclude that the p-value is 1. The last line simply prints the result:

Likelihood ratio test comparing ZIP to ZINB: 109.564 Prob>=0.000

We conclude that the ZINB significantly improves the fit over the ZIP model.

Vuong test of non-nested models

Greene (1994) points out that PRM and ZIP are not nested. For the ZIP model to reduce to the PRM,
it is necessary for ψ to equal zero. This does not occur when γ = 0 since ψ = F (z0) = .5.
Similarly, the NBRM and the ZINB are not nested. Consequently, Greene proposes using a test by
Vuong (1989, 319) for non-nested models. This test considers two models, where P̂r1 (yi | xi) is the
predicted probability of observing y in the first model and P̂r2 (yi | xi) is the predicted probability
for the second model. Defining

mi = ln

[
P̂r1 (yi | xi)

P̂r2 (yi | xi)

]
let m be the mean and let sm be the standard deviation of mi. The Vuong statistic to test the
hypothesis that E(m) = 0 equals

V =
√
N m

sm

V has an asymptotic normal distribution. If V > 1.96, the first model is favored; if V < −1.96, the
second model is favored.

For zip, the vuong option computes the Vuong statistic comparing the ZIP model to the PRM;
for zinb it compares ZINB to NBRM. For example,
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262 Chapter 7. Models for Count Outcomes

. zip art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) vuong nolog
(output omitted )

Vuong Test of Zip vs. Poisson: Std. Normal = 4.18 Pr> Z = 0.0000

The significant, positive value of V supports the ZIP model over the PRM. If you use listcoef you
get more guidance in interpreting the result:

. listcoef, help

zip (N=915): Factor Change in Expected Count

(output omitted )

Vuong Test = 4.18 (p=0.000) favoring ZIP over PRM.

For the ZINB,

. listcoef, help

zinb (N=915): Factor Change in Expected Count
(output omitted )

Vuong Test = 2.24 (p=0.012) favoring ZINB over NBRM.

While it is possible to compute a Vuong statistic to compare other pairs of models, such as ZIP and
NBRM, these are currently not available in Stata.

Overall, these tests provide evidence that the ZINB model fits the data best. However, when
fitting a series of models without any theoretical rationale, it is easy to overfit the data. In our
example, the most compelling evidence for the ZINB is that it makes substantive sense. Within
science, there are some scientists who for structural reasons cannot publish, but for other scientists,
the failure to publish in an given period is a matter of chance. This is the basis of the zero inflated
models. The negative binomial version of the model seems preferable to the Poisson version, since
it is likely that there are unobserved sources of heterogeneity that differentiate the scientists. In sum,
the ZINB makes substantive sense and fits the data well.
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8 Additional Topics

In this final chapter, we discuss some disparate topics that were not covered in the preceding chap-
ters. We begin by considering complications on the right hand side of the model: nonlinearities,
interactions, and nominal or ordinal variables coded as a set of dummy variables. While the same
principles of interpretation apply in these cases, several tricks are necessary for computing the ap-
propriate quantities. Next, we discuss briefly what is required if you want to modify SPost to work
with other estimation commands. The final section discusses a menagerie of Stata “tricks” that we
find useful for working more efficiently in Stata.

8.1 Ordinal and nominal independent variables

When an independent variable is categorical, it should be entered into the model as a set of binary,
indicator variables. While our example uses an ordinal variable, the discussion applies equally to
nominal independent variables, with one exception that is clearly noted.

8.1.1 Coding a categorical independent variable as a set of dummy vari-
ables

A categorical independent variable with J categories can be included in a regression model as a set
of J − 1 dummy variables. In this section, we use a binary logit model to analyze factors affecting
whether a scientist has published. The outcome is a dummy variable hasarts that is equal to 1 if
the scientist has one or more publications and equals 0 otherwise. In our analysis in the last chapter,
we included the independent variable ment, which we treated as continuous. But, suppose instead
that the data were from a survey in which the mentor was asked to indicate whether he or she had 0
articles (none), 1 to 3 articles (few), 4 to 9 (some), 10 to 20 (many), or more than 20 articles (lots).
The resulting variable, which we call mentord, has the following frequency distribution:1

(Continued on next page)

1Details on creating mentord from the data in couart2.dta are located in st4ch8.do, which is part of the spostrm4
package. For details, when you are in Stata and on-line, type net search spostrm4.
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264 Chapter 8. Additional Topics

. tab mentord, missing

Ordinal
measure of

mentor´s
articles Freq. Percent Cum.

None 90 9.84 9.84
Few 201 21.97 31.80

Some 324 35.41 67.21
Many 213 23.28 90.49
Lots 87 9.51 100.00

Total 915 100.00

We can convert mentord into a set of dummy variables using a series of generate commands.
Since the dummy variables are used to indicate in which category an observation belongs, they are
often referred to as indicator variables. First we construct none to indicate that the mentor had no
publications:

. gen none = (mentord == 0) if mentord ~= .

Expressions in Stata equal 1 if true and 0 if false. Accordingly, gen none = (mentord==0) creates
none equal to 1 for scientists whose mentor had no publications and equal to 0 otherwise. Although
we do not have any missing values for mentord, it is a good habit to always add an if condition
so that missing values continue to be missing (remember that a missing value is treated by Stata
as positive infinity when evaluating expressions). This is done by adding if mentord~=. to the
command. We use tab to verify that none was constructed correctly:

. tab none mentord, missing

Ordinal measure of mentor´s articles
none None Few Some Many Lots Total

0 0 201 324 213 87 825
1 90 0 0 0 0 90

Total 90 201 324 213 87 915

In the same way, we create indicator variables for the other categories of mentord:

. gen few = (mentord == 1) if mentord ~= .

. gen some = (mentord == 2) if mentord ~= .

. gen many = (mentord == 3) if mentord ~= .

. gen lots = (mentord == 4) if mentord ~= .

Note You can also construct indictor variables using xi or tabulate’s gen() option. For further
information, type help xi and help tabulate.

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



8.1 Ordinal and nominal independent variables 265

8.1.2 Estimation and interpretation with categorical independent
variables

Since mentord has J = 5 categories, we must include J −1 = 4 indicator variables as independent
variables in our model. To see why one of the indicators must be dropped, consider our example.
If you know that none, few, some, and many are all 0, it must be the case that lots equals 1
since a person has to be in one of the five categories. Another way to think of this is to note
that none+few+some+many+lots= 1 so that including all J categories would lead to perfect
collinearity. If you include all five indicator variables, Stata automatically drops one of them. For
example,

. logit hasarts fem mar kid5 phd none few some many lots, nolog
note: lots dropped due to collinearity

Logit estimates Number of obs = 915
(output omitted )

The category that is excluded is the reference category, since the coefficients for the included
indicators are interpreted relative to the excluded category which serves as a point of reference.
Which category you exclude is arbitrary, but with an ordinal independent variable it is generally
easier to interpret the results when you exclude an extreme category. For nominal categories, it
is often useful to exclude the most important category. For example, we estimate a binary logit,
excluding the indicator variable none:

. logit hasarts fem mar kid5 phd few some many lots, nolog

Logit estimates Number of obs = 915
LR chi2(8) = 73.80
Prob > chi2 = 0.0000

Log likelihood = -522.46467 Pseudo R2 = 0.0660

hasarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2579293 .1601187 -1.61 0.107 -.5717562 .0558976
mar .3300817 .1822141 1.81 0.070 -.0270514 .6872147

kid5 -.2795751 .1118578 -2.50 0.012 -.4988123 -.0603379
phd .0121703 .0802726 0.15 0.879 -.145161 .1695017
few .3859147 .2586461 1.49 0.136 -.1210223 .8928517

some .9602176 .2490498 3.86 0.000 .4720889 1.448346
many 1.463606 .2829625 5.17 0.000 .9090099 2.018203
lots 2.335227 .4368715 5.35 0.000 1.478975 3.19148
_cons -.0521187 .3361977 -0.16 0.877 -.7110542 .6068167

Logit models can be interpreted in terms of factor changes in the odds, which we compute using
listcoef:

(Continued on next page)
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. listcoef

logit (N=915): Factor Change in Odds

Odds of: Arts vs NoArts

hasarts b z P>|z| e^b e^bStdX SDofX

fem -0.25793 -1.611 0.107 0.7726 0.8793 0.4987
mar 0.33008 1.812 0.070 1.3911 1.1690 0.4732
kid5 -0.27958 -2.499 0.012 0.7561 0.8075 0.7649
phd 0.01217 0.152 0.879 1.0122 1.0121 0.9842
few 0.38591 1.492 0.136 1.4710 1.1734 0.4143
some 0.96022 3.856 0.000 2.6123 1.5832 0.4785
many 1.46361 5.172 0.000 4.3215 1.8568 0.4228
lots 2.33523 5.345 0.000 10.3318 1.9845 0.2935

The effect of an indicator variable can be interpreted in the same way that we interpreted dummy
variables in Chapter 4, but with comparisons being relative to the reference category. For example,
the odds ratio of 10.33 for lots can be interpreted as

The odds of a scientist publishing are 10.3 times larger if his or her mentor had lots of
publications compared to no publications, holding other variables constant.

or, equivalently:

If a scientist’s mentor has lots of publications as opposed to no publications, the odds
of a scientist publishing are 10.3 times larger, holding other variables constant.

The odds ratios for the other indicators can be interpreted in the same way.

8.1.3 Tests with categorical independent variables

The basic ideas and commands for tests that involve categorical independent variables are the same
as those used in prior chapters. But, since the tests involve some special considerations, we review
them here.

Testing the effect of membership in one category versus the reference category

When a set of indicator variables are included in a regression, a test of the significance of the co-
efficient for any indicator variable is a test of whether being in that category compared to being in
the reference category affects the outcome. For example, the coefficient for few can be used to test
whether having a mentor with few publications compared to having a mentor with no publications
significantly affects the scientist’s publishing. In our example, z = 1.492 and p = 0.136, so we
conclude that

The effect of having a mentor with a few publications compared to none is not signifi-
cant using a two-tailed test (z = 1.492, p = 0.14).

Often the significance of an indicator variable is reported without mentioning the reference category.
For example, the test of many could be reported as
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8.1 Ordinal and nominal independent variables 267

Having a mentor with a many publications significantly affects a scientist’s productivity
(z = 5.17, p < .01).

Here, the comparison is implicitly being made to mentors with no publications. Such interpretations
should only be used if you are confident that the implicit comparison will be apparent to the reader.

Testing the effect of membership in two non-reference categories

What if neither of the categories that we wish to compare is the reference category? A simple
solution is to re-estimate the model with a different reference category. For example, to test the
effect of having a mentor with some articles compared to a mentor with many publications, we can
re-estimate the model using some as the reference category:

. logit hasarts fem mar kid5 phd none few many lots, nolog

Logit estimates Number of obs = 915
LR chi2(8) = 73.80
Prob > chi2 = 0.0000

Log likelihood = -522.46467 Pseudo R2 = 0.0660

hasarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.2579293 .1601187 -1.61 0.107 -.5717562 .0558976
mar .3300817 .1822141 1.81 0.070 -.0270514 .6872147

kid5 -.2795751 .1118578 -2.50 0.012 -.4988123 -.0603379
phd .0121703 .0802726 0.15 0.879 -.145161 .1695017

none -.9602176 .2490498 -3.86 0.000 -1.448346 -.4720889
few -.5743029 .1897376 -3.03 0.002 -.9461818 -.2024241

many .5033886 .2143001 2.35 0.019 .0833682 .9234091
lots 1.37501 .3945447 3.49 0.000 .6017161 2.148303
_cons .9080989 .3182603 2.85 0.004 .2843202 1.531878

The z-statistics for the mentor indicator variables are now tests comparing a given category to that
of the mentor having some publications.

Advanced: lincom Notice that for the model that excludes some, the estimated coefficient for
many equals the difference between the coefficients for many and some in the earlier model
that excluded none. This suggests that instead of re-estimating the model, we could have used
lincom to estimate βmany − βsome:

. lincom many-some

( 1) - some + many = 0.0

hasarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .5033886 .2143001 2.35 0.019 .0833682 .9234091

The result is identical to that obtained by re-estimating the model with a different base cate-
gory.
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Testing that a categorical independent variable has no effect

For an omnibus test of a categorical variable, our null hypothesis is that the coefficients for all of
the indicator variables are zero. In our model where none is the excluded variable, the hypothesis
to test is

H0: βfew = βsome = βlots = βmany = 0

This hypothesis can be tested with an LR test by comparing the model with the four indicators to the
model that drops the four indicator variables:

. logit hasarts fem mar kid5 phd few some many lots, nolog
(output omitted )

. lrtest, saving(0)

. logit hasarts fem mar kid5 phd, nolog
(output omitted )

. lrtest, using(0)
Logit: likelihood-ratio test chi2(4) = 58.32

Prob > chi2 = 0.0000

We conclude that

The effect of the mentor’s productivity is significant at the .01 level (LRX2 = 58.32,
df = 4, p < .01).

Alternatively, a Wald test can be used, although the LR test is generally preferred:

. logit hasarts fem mar kid5 phd few some many lots, nolog
(output omitted )

. test few some many lots

( 1) few = 0.0
( 2) some = 0.0
( 3) many = 0.0
( 4) lots = 0.0

chi2( 4) = 51.60
Prob > chi2 = 0.0000

which leads to the same conclusion as the LR test.

Note that exactly the same results would be obtained for either test if we had used a different
reference category and tested, for example,

H0: βnone = βfew = βlots = βmany = 0

Testing whether treating an ordinal variable as interval loses information

Ordinal independent variables are often treated as interval in regression models. For example, rather
than include the four indicator variables that were created from mentord, we might simply include
only mentord in our model:
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. logit hasarts fem mar kid5 phd mentord, nolog

Logit estimates Number of obs = 915
LR chi2(5) = 72.73
Prob > chi2 = 0.0000

Log likelihood = -522.99932 Pseudo R2 = 0.0650

hasarts Coef. Std. Err. z P>|z| [95% Conf. Interval]

fem -.266308 .1598617 -1.67 0.096 -.5796312 .0470153
mar .3329119 .1823256 1.83 0.068 -.0244397 .6902635

kid5 -.2812119 .1118409 -2.51 0.012 -.500416 -.0620078
phd .0100783 .0802174 0.13 0.900 -.147145 .1673016

mentord .5429222 .0747143 7.27 0.000 .3964848 .6893595
_cons -.1553251 .3050814 -0.51 0.611 -.7532736 .4426234

The advantage of this approach is that interpretation is simpler, but to take advantage of this sim-
plicity you must make the strong assumption that successive categories of the ordinal independent
variable are equally spaced. For example, it implies that an increase from no publications by the
mentor to a few publications involves an increase of the same amount of productivity as an increase
from a few to some, from some to many, and from many to lots of publications.

Accordingly, before treating an ordinal independent variable as if it were interval, you should
test whether this leads to a loss of information about the association between the independent and
dependent variable. A likelihood ratio test can be computed by comparing the model with only
mentord to the model that includes both the ordinal variable (mentord) and all but two of the
indicator variables. In the example below, we add some, many, and lots, but including any three of
the indicators leads to the same results. If the categories of the ordinal variables are equally spaced,
then the coefficients of the J − 2 indicator variables should all be 0. For example,

. logit hasarts fem mar kid5 phd mentord, nolog
(output omitted )

. lrtest, saving(0)

. logit hasarts fem mar kid5 phd mentord some many lots, nolog
(output omitted )

. lrtest, saving(1)

. lrtest, model(0) using(1)
Logit: likelihood-ratio test chi2(3) = 1.07

Prob > chi2 = 0.7845

We conclude that the indicator variables do not add additional information to the model (LRX2 =
1.07, df = 3, p = .78). If the test was significant, we would have evidence that the categories of
mentord are not evenly spaced and so one should not treat mentord as interval. A Wald test can
also be computed, leading to the same conclusion:

. logit hasarts fem mar kid5 phd mentord some many lots, nolog
(output omitted )

. test some many lots

( 1) some = 0.0
( 2) many = 0.0
( 3) lots = 0.0

chi2( 3) = 1.03
Prob > chi2 = 0.7950
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8.1.4 Discrete change for categorical independent variables

There are a few tricks that you must be aware of when computing discrete change for categorical
independent variables. To show how this is done, we will compute the change in the probability of
publishing for those with a mentor with few publications compared to a mentor with no publications.
There are two ways to compute this discrete change. The first way is easier, but the second is more
flexible.

Computing discrete change with prchange

The easy way is to use prchange, where we set all of the indicator variables to 0:

. logit hasarts fem mar kid5 phd few some many lots, nolog
(output omitted )

. prchange few, x(some=0 many=0 lots=0)

logit: Changes in Predicted Probabilities for hasarts

min->max 0->1 -+1/2 -+sd/2 MargEfct
few 0.0957 0.0957 0.0962 0.0399 0.0965

NoArts Arts
Pr(y|x) 0.4920 0.5080

fem mar kid5 phd few some many lots
x= .460109 .662295 .495082 3.10311 .219672 0 0 0

sd(x)= .498679 .473186 .76488 .984249 .414251 .478501 .422839 .293489

We conclude that

Having a mentor with a few publications compared to none increases a scientist’s prob-
ability of publishing by .10, holding all other variables at their mean.

Even though we say “holding all other variables at their mean”, which is clear within the context of
reporting substantive results, the key to getting the right answer from prchange is holding all of the
indicator variables at 0, not at their mean. It does not make sense to change few from 0 to 1 when
some, many, and lots are at their means.

Computing discrete change with prvalue

A second approach to computing discrete change is to use a pair of calls to prvalue. The advantage
of this approach is that it works in situations where prchange does not. For example, how does
the predicted probability change if we compare a mentor with a few publications to a mentor with
some publications, holding all other variables constant? This involves computing probabilities as
we move from few=1 and some=0, to few=0 and some=1. We cannot compute this with prchange
since two variables are changing at the same time. Instead, we use two calls to prvalue:2

2Alternatively, we could have re-estimated the model adding none and excluding either few or some, and then used
prchange.
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. quietly prvalue, x(few=1 some=0 many=0 lots=0) save

. prvalue, x(few=0 some=1 many=0 lots=0) dif

logit: Change in Predictions for hasarts

Current Saved Difference
Pr(y=Arts|x): 0.7125 0.5825 0.1300
Pr(y=NoArts|x): 0.2875 0.4175 -0.1300

fem mar kid5 phd few some
Current= .46010929 .66229508 .49508197 3.1031093 0 1

Saved= .46010929 .66229508 .49508197 3.1031093 1 0
Diff= 0 0 0 0 -1 1

many lots
Current= 0 0

Saved= 0 0
Diff= 0 0

Because we have used the save and dif options, the difference in the predicted probability (i.e.,
discrete change) is reported. When we use the save and dif options, we usually add quietly to
the first prvalue since all of the information is listed by the second prvalue.

8.2 Interactions

Interaction terms are commonly included in regression models when the effect of an independent
variable is thought to vary depending on the value of another independent variable. To illustrate
how interactions are used, we extend the example from Chapter 5, where the dependent variable is
a respondent’s level of agreement that a working mother can establish as warm a relationship with
her children as mothers who do not work.

It is possible that the effect of education on attitudes towards working mothers varies by gender.
To allow this possibility, we add the interaction of education (ed) and gender (male) by adding the
variable maleXed = male×ed. In estimating this model, we find that

. use ordwarm2.dta, clear
(77 & 89 General Social Survey)

. gen maleXed = male*ed

. ologit warm age prst yr89 white male ed maleXed, nolog

Ordered logit estimates Number of obs = 2293
LR chi2(7) = 305.30
Prob > chi2 = 0.0000

Log likelihood = -2843.1198 Pseudo R2 = 0.0510

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0212523 .0024775 -8.58 0.000 -.0261082 -.0163965
prst .0052597 .0033198 1.58 0.113 -.001247 .0117664
yr89 .5238686 .0799287 6.55 0.000 .3672111 .680526
white -.3908743 .1184189 -3.30 0.001 -.622971 -.1587776
male -.1505216 .3176105 -0.47 0.636 -.7730268 .4719836

ed .0976341 .0226886 4.30 0.000 .0531651 .142103
maleXed -.047534 .0251183 -1.89 0.058 -.0967649 .001697
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_cut1 -2.107903 .3043008 (Ancillary parameters)
_cut2 -.2761098 .2992857
_cut3 1.621787 .3018749

The interaction is marginally significant (p = .06) for a two-tailed Wald test. Alternatively, we can
compute an LR test

. ologit warm age prst yr89 white male ed, nolog
(output omitted )

. lrtest, saving(0)

. ologit warm age prst yr89 white male ed maleXed, nolog
(output omitted )

. lrtest, saving(1)

. lrtest, model(0) using(1)
Ologit: likelihood-ratio test chi2(1) = 3.59

Prob > chi2 = 0.0583

which leads to the same conclusion.

8.2.1 Computing gender differences in predictions with interactions

What if we want to compute the difference between men and women in the predicted probabilities for
the outcome categories? Gender differences are reflected in two ways in the model. First, we want
to change male from 0 to 1 to indicate women versus men. If this was the only variable affected
by changing the value of male, we could use prchange. But, when the value of male changes,
this necessarily changes the value of maleXed (except in the case when ed is 0). For women,
maleXed=male×ed= 0×ed= 0, while for men, maleXed=male×ed= 1×ed=ed. Accordingly,
we must examine the change in the outcome probabilities when two variables change, so prvalue
must be used. We start by computing the predicted values for women, which requires fixing male=0
and maleXed=0:

. prvalue, x(male=0 maleXed=0) rest(mean) save

ologit: Predictions for warm

Pr(y=SD|x): 0.0816
Pr(y=D|x): 0.2754
Pr(y=A|x): 0.4304
Pr(y=SA|x): 0.2126

age prst yr89 white male ed
x= 44.935456 39.585259 .39860445 .8765809 0 12.218055

maleXed
x= 0

Next, we compute the predicted probability for men, where male=1 and maleXed equals the average
value of education (since for men, maleXed=male×ed= 1×ed=ed). The value for maleXed can
be obtained by computing the mean of ed:
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. sum ed

Variable Obs Mean Std. Dev. Min Max

ed 2293 12.21805 3.160827 0 20

. global meaned = r(mean)

summarize returns the mean to r(mean). The command global meaned = r(mean) assigns
the mean of ed to the global macro meaned. In the prvalue command, we specify x(male=1
maleXed=$meaned), where $meaned tells Stata to substitute the value contained in the global
macro:

. prvalue, x(male=1 maleXed=$meaned) dif

ologit: Change in Predictions for warm

Current Saved Difference
Pr(y=SD|x): 0.1559 0.0816 0.0743
Pr(y=D|x): 0.3797 0.2754 0.1044
Pr(y=A|x): 0.3494 0.4304 -0.0811
Pr(y=SA|x): 0.1150 0.2126 -0.0976

age prst yr89 white male ed
Current= 44.935456 39.585259 .39860445 .8765809 1 12.218055

Saved= 44.935456 39.585259 .39860445 .8765809 0 12.218055
Diff= 0 0 0 0 1 0

Warning The mean of maleXed does not equal the mean of ed. That is why we could not use the
option: x(male=1 maleXed=mean) and instead had to compute the mean with summarize.

While the trick of using maleXed=$meaned may seem like a lot of trouble to avoid having to type
maleXed=12.21805, it can help you avoid errors and in some cases (illustrated below) it saves a lot
of time.

Substantively, we conclude that the probability of strongly agreeing that working mothers can be
good mothers is .10 higher for woman than men, taking the interaction with education into account
and holding other variables constant at their means. The probability of strongly disagreeing is .07
higher for men than women.

8.2.2 Computing gender differences in discrete change with interactions

We might also be interested in how the predicted outcomes are affected by a change in education
from having a high school diploma (12 years of education) to having a college degree (16 years).
Since the interaction term suggests that the effect of education varies by gender, we must look at the
discrete change separately for men and women. Again, repeated calls to prvalue using the save
and dif options allow us to do this. For women, we hold both male and maleXed to 0 and allow ed
to vary. For men, we hold male to 1 and allow both ed and maleXed to vary. For women, we find
that
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. quietly prvalue, x(male=0 maleXed=0 ed=12) rest(mean) save

. prvalue, x(male=0 maleXed=0 ed=16) rest(mean) dif

ologit: Change in Predictions for warm

Current Saved Difference

Pr(y=SD|x): 0.0579 0.0833 -0.0254

Pr(y=D|x): 0.2194 0.2786 -0.0592

Pr(y=A|x): 0.4418 0.4291 0.0127

Pr(y=SA|x): 0.2809 0.2090 0.0718

age prst yr89 white male ed

Current= 44.935456 39.585259 .39860445 .8765809 0 16

Saved= 44.935456 39.585259 .39860445 .8765809 0 12

Diff= 0 0 0 0 0 4

maleXed

Current= 0

Saved= 0

Diff= 0

For men,

. quietly prvalue, x(male=1 maleXed=12 ed=12) rest(mean) save

. prvalue, x(male=1 maleXed=16 ed=16) rest(mean) dif

ologit: Change in Predictions for warm

Current Saved Difference

Pr(y=SD|x): 0.1326 0.1574 -0.0248

Pr(y=D|x): 0.3558 0.3810 -0.0252

Pr(y=A|x): 0.3759 0.3477 0.0282

Pr(y=SA|x): 0.1357 0.1139 0.0218

age prst yr89 white male ed

Current= 44.935456 39.585259 .39860445 .8765809 1 16

Saved= 44.935456 39.585259 .39860445 .8765809 1 12

Diff= 0 0 0 0 0 4

maleXed

Current= 16

Saved= 12

Diff= 4

The largest difference in the discrete change between the sexes is for the probability of answering
“strongly agree.” For both men and women, an increase in education from 12 years to 16 years
increases the probability of strong agreement, but the increase is .07 for women and only .02 for
men.

8.3 Nonlinear nonlinear models

The models that we consider in this book are nonlinear models in that the effect of a change in an
independent variable on the predicted probability or predicted count depends on the values of all of
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the independent variables. However, the right-hand side of the model includes a linear combination
of variables just like the linear regression model. For example,

Linear Regression: y = β0 + β1x1 + β2x2 + ε

Binary Logit: Pr (y = 1 | x) =
exp (β0 + β1x1 + β2x2 + ε)

1 + exp (β0 + β1x1 + β2x2 + ε)

In the terminology of the generalized linear model, we would say that both models have the same
linear predictor: β0 + β1x1 + β2x2. In the linear regression model, this leads to predictions that
are linear surfaces. For example, with one independent variable the predictions are a line, with two
a plane, and so on. In the binary logit model, the prediction is a curved surface, as illustrated in
Chapter 4.

8.3.1 Adding nonlinearities to linear predictors

Nonlinearities in the LRM can be introduced by adding transformations on the right hand side. For
example, in the model

y = α+ β1x+ β2x
2 + ε

we include x and x2 to allow predictions that are a quadratic form. For example, if the estimated
model is ŷ = 1 + −.1x+ .1x2, then the plot is far from linear:

y

x
0 25 50 75 100

0

250

500

750

1000

In the same fashion, nonlinearities can be added to the right hand side of the models for categorical
outcomes that we have been considering. What may seem odd is that adding nonlinearities to a
nonlinear model can sometimes make the predictions more linear.
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8.3.2 Discrete change in nonlinear nonlinear models

In the model of labor force participation from Chapter 4, we included a woman’s age as an inde-
pendent variable. Often when age is used in a model, terms for both the age and age-squared are
included to allow for diminishing (or increasing) effects of an additional year of age. First, we esti-
mate the model without age squared and compute the effect of a change in age from 30 to 50 for an
average respondent:

. use binlfp2,clear
(Data from 1976 PSID-T Mroz)

. logit lfp k5 k618 wc hc lwg inc age, nolog
(output omitted )

. prchange age, x(age=30) delta(20) uncentered

logit: Changes in Predicted Probabilities for lfp

(Note: delta = 20)

min->max 0->1 +delta +sd MargEfct
age -0.4372 -0.0030 -0.2894 -0.1062 -0.0118

NotInLF inLF
Pr(y|x) 0.2494 0.7506

k5 k618 wc hc lwg inc age
x= .237716 1.35325 .281541 .391766 1.09711 20.129 30

sd(x)= .523959 1.31987 .450049 .488469 .587556 11.6348 8.07257

Notice that we have taken advantage of the delta() and uncentered options (see Chapter 3). We
find that the predicted probability of a woman working decreases by .29 as age increases from 30 to
50, with all other variables at the mean. Now we add age-squared to the model:

. gen age2 = age*age

. logit lfp k5 k618 wc hc lwg inc age age2, nolog

Logit estimates Number of obs = 753
LR chi2(8) = 125.67
Prob > chi2 = 0.0000

Log likelihood = -452.03836 Pseudo R2 = 0.1220

lfp Coef. Std. Err. z P>|z| [95% Conf. Interval]

k5 -1.411597 .2001829 -7.05 0.000 -1.803948 -1.019246
k618 -.0815087 .0696247 -1.17 0.242 -.2179706 .0549531

wc .8098626 .2299065 3.52 0.000 .3592542 1.260471
hc .1340998 .207023 0.65 0.517 -.2716579 .5398575

lwg .5925741 .1507807 3.93 0.000 .2970495 .8880988
inc -.0355964 .0083188 -4.28 0.000 -.0519009 -.0192919
age .0659135 .1188199 0.55 0.579 -.1669693 .2987962
age2 -.0014784 .0013584 -1.09 0.276 -.0041408 .001184

_cons .511489 2.527194 0.20 0.840 -4.44172 5.464698

To test for the joint significance of age and age2, we use a likelihood-ratio test:
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. quietly logit lfp k5 k618 wc hc lwg inc, nolog

. lrtest, saving(0)

. quietly logit lfp k5 k618 wc hc lwg inc age age2, nolog

. lrtest, saving(2)

. lrtest, model(0) using(2)

Logit: likelihood-ratio test chi2(2) = 26.79

Prob > chi2 = 0.0000

We can no longer use prchange to compute the discrete change since we need to change two
variables at the same time. Once again we use a pair of prvalue commands, where we change age
from 30 to 50 and change age2 from 302 (=900) to 502 (=2500). First we compute the prediction
with age at 30:

. global age30 = 30

. global age30sq = $age30*$age30

. quietly prvalue, x(age=$age30 age2=$age30sq) rest(mean) save

Then, we let age equal 50 and compute the difference:

. global age50 = 50

. global age50sq = $age50*$age50

. prvalue, x(age=$age50 age2=$age50sq) rest(mean) dif

logit: Change in Predictions for lfp

Current Saved Difference

Pr(y=inLF|x): 0.4699 0.7164 -0.2465

Pr(y=NotInLF|x): 0.5301 0.2836 0.2465

k5 k618 wc hc lwg inc

Current= .2377158 1.3532537 .2815405 .39176627 1.0971148 20.128965

Saved= .2377158 1.3532537 .2815405 .39176627 1.0971148 20.128965

Diff= 0 0 0 0 0 0

age age2

Current= 50 2500

Saved= 30 900

Diff= 20 1600

We conclude that

An increase in age from 30 to 50 years decreases the probability of being in the labor
force by .25, holding other variables at their mean.

By adding the squared term, we have decreased our estimate of the change. While in this case the
difference is not large, the example illustrates the general point of how to add nonlinearities to the
model.

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



278 Chapter 8. Additional Topics

8.4 Using praccum and forvalues to plot predictions

In prior chapters, we used prgen to generate predicted probabilities over the range of one variable
while holding other variables constant. While prgen is a relatively simple way of generating pre-
dictions for graphs, it can be used only when the specification of the right hand side of the model
is straightforward. When interactions or polynomials are included in the model, graphing the ef-
fects of a change in an independent variable often requires computing changes in the probabilities as
more than one of the variables in the model changes (e.g., age and age2). We created praccum to
handle such situations. The user calculates each of the points to be plotted through a series of calls
to prvalue. Executing praccum immediately after prvalue accumulates these predictions.

The first time praccum is run, the predicted values are saved in a new matrix. Each subsequent
call to praccum adds new predictions to this matrix. When all of the calls to prvalue have been
completed, the accumulated predictions in the matrix can be added as new variables to the dataset
in an arrangement ideal for plotting, just like with prgen. The syntax of praccum is

praccum
[
, xis(value) using(matrixname) saving(matrixname) generate(prefix)

]
where either using() or saving() is required.

Options

xis(value) indicates the value of the x variable associated with the predicted values that are accu-
mulated. For example, this could be the value of age if you wish to plot changes in predicted
values as age changes. You do not need to include the values of variables created as transforma-
tions of this variable. To continue the example, you would not include the value of age squared.

using(matrixname) specifies the name of the matrix where the predictions from the previous call to
prvalue should be added. An error is generated if the matrix does not have the correct number
of columns. This can happen if you try to append values to a matrix generated from calls to
praccum based on a different model. Matrix matrixname will be created if it does not already
exist.

saving(matrixname) specifies that a new matrix should be generated to contain the predicted val-
ues from the previous call to prvalue. You only use this option when you initially create
the matrix. After the matrix is created, you add to it with using(). The difference between
saving() and using() is that saving() will overwrite matrixname if it exists, while using()
will append results to it.

generate(prefix) indicates that new variables are to be added to the current dataset. These variables
begin with prefix and contain the values accumulated in the matrix in prior calls to praccum.

The generality of praccum requires it to be more complicated to use than prgen.

8.4.1 Example using age and age-squared

To illustrate the command, we use praccum to plot the effects of age on labor force participation for
a model in which both age and age-squared are included. First, we compute the predictions from the
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model without age2:

. quietly logit lfp k5 k618 age wc hc lwg inc

. prgen age, from(20) to(60) gen(prage) ncases(9)

logit: Predicted values as age varies from 20 to 60.

k5 k618 age wc hc lwg
x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148

inc
x= 20.128965

. label var pragep1 "Pr(lpf | age)"

This is the same thing we did using prgen in earlier chapters. Next, we estimate the model with
age2 added:

. logit lfp k5 k618 age age2 wc hc lwg inc
(output omitted )

To compute the predictions from this model, we use a series of calls to prvalue. For these predic-
tions, we let age change by 5-year increments from 20 to 60 and age2 increase from 202 (= 400)
to 602 (= 3600). In the first call of praccum, we use the saving() option to declare that mat age
is the matrix that will hold the results. The xis() option is required since it specifies the value for
the x-axis of the graph that will plot these probabilities:

. quietly prvalue, x(age=20 age2=400) rest(mean)

. praccum, saving(mat_age) xis(20)

We execute prvalue quietly to suppress the output, since we are only generating these predictions
in order to save them with praccum. The next set of calls adds new predictions to mat age, as
indicated by the option using():

. quietly prvalue, x(age=25 age2=625) rest(mean)

. praccum, using(mat_age) xis(25)

. quietly prvalue, x(age=30 age2=900) rest(mean)

. praccum, using(mat_age) xis(30)

(and so on )

. quietly prvalue, x(age=55 age2=3025) rest(mean)

. praccum, using(mat_age) xis(55)

The last call includes not only the using() option, but also gen(), which tells praccum to save the
predicted values from the matrix to variables that begin with the specified root, in this case agesq:

. quietly prvalue, x(age=60 age2=3600) rest(mean)

. praccum, using(mat_age) xis(60) gen(agesq)

New variables created by praccum:

Variable Obs Mean Std. Dev. Min Max

agesqx 9 40 13.69306 20 60
agesqp0 9 .4282142 .1752595 .2676314 .7479599
agesqp1 9 .5717858 .1752595 .2520402 .7323686
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To understand what has been done, it helps to look at the new variables that were created:

. list agesqx agesqp0 agesqp1 in 1/10

agesqx agesqp0 agesqp1
1. 20 .2676314 .7323686
2. 25 .2682353 .7317647
3. 30 .2836163 .7163837
4. 35 .3152536 .6847464
5. 40 .3656723 .6343277
6. 45 .4373158 .5626842
7. 50 .5301194 .4698806
8. 55 .6381241 .3618759
9. 60 .7479599 .2520402
10. . . .

The tenth observation is all missing values since we only made nine calls to praccum. Each value
of agesqx reproduces the value specified in xis(). The values of agesqp0 and agesqp1 are the
probabilities of y = 0 and y = 1 that were computed by prvalue. We see that the probability of
observing a 1, that is, being is the labor force, was .73 the first time we executed prvalue with age
at 20; the probability was .25 the last time we executed prvalue with age at 60. Now that these
predictions have been added to the dataset, we can use graph to show how the predicted probability
of being in the labor force changes with age:

. label var agesqp1 "Pr(lpf | age,age2)"

. label var agesqx "Age"

. set textsize 120

. graph pragep1 agesqp1 agesqx, s(OS) c(sss) xlabel(20 25 to 60) /*
> */ gap(3) l1("Pr(Being in the Labor Force)") ylabel(0 .2 to 1)

We are also plotting pragep1, which was computed earlier in this section using prgen. The graph
command leads to the following plot:
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The graph shows that, as age increases from 20 to 60, a woman’s probability of being in the labor
force declines. In the model with only age, the decline is from .85 to .31, while in the model with
age-squared, the decrease is from .73 to .25. Overall, the changes are smaller during younger years
and larger after age 50.

8.4.2 Using forvalues with praccum

The use of praccum is often greatly simplified by Stata’s forvalues command (which was intro-
duced in Stata 7). The forvalues command allows you repeat a set of commands where the only
thing that you vary between successive repetitions is the value of some key number. As a trivial
example, we can use forvalues to have Stata count from 0 to 100 by fives. Enter the following
three lines either interactively or in a do-file:

forvalues count = 0(5)100 {
display `count´
}

In the forvalues statement, count is the name of a local macro that will contain the successive
values of interest (see Chapter 2 if you are unfamiliar with local macros). The combination 0(5)100
indicates that Stata should begin by setting the value of count at 0 and should increase its value by
5 with each repetition until it reaches 100. The { }’s enclose the commands that will be repeated
for each value of count. In this case, all we want to do is display the value of count. This is done
with the command display `count´. To indicate that count is a local macro, we use the pair of
single quote marks (i.e., `count´). The output produced is

0
5
10

(and so on )
95
100

In our earlier example, we graphed the effect of age as it increased from 20 to 60 by 5-year
increments. If we specify forvalues count 20(5)60, Stata will repeatedly execute the code we
enclose in brackets with the value of count updated from 20 to 60 by increments of 5. The following
lines reproduce the results we obtained earlier:

capture matrix drop mage
forvalues count = 20(5)60 {

local countsq = `count´^2
prvalue, x(age=`count´ age2=`countsq´) rest(mean) brief
praccum, using(mage) xis(`count´)

}
praccum, using(mage) gen(agsq)

The command capture matrix drop mage at the beginning will drop the matrix mage if it exists,
but the do-file will not halt with an error if the matrix does not exist. Within the forvalues loop,
count is set to the appropriate value of age, and we use the local command to create the local
macro countsq that contains the square of count. After the all the predictions have been computed
and accumulated to matrix mage, we make a last call to praccum in which we use the generate()
option to specify the stem of names of the new variables to be generated.
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8.4.3 Using praccum for graphing a transformed variable

praccum can also be used when an independent variable is a transformation of the original variable.
For example, you might want to include the natural log of age as independent variable rather than
age. Such a model can be easily estimated:

. gen ageln = ln(age)

. logit lfp k5 k618 ageln wc hc lwg inc
(output omitted )

As in the last example, we use forvalues to execute a series of calls to prvalue and praccum to
generate predictions:

capture matrix drop mat_ln
forvalues count = 20(5)60 {

local countln = ln(`count´)
prvalue, x(ageln=`countln´) rest(mean) brief
praccum, using(mat_ln) xis(`count´)

}
praccum, using(mat_ln) gen(ageln)

We use a local to compute the log of age, the value of which is passed to prvalue with the option
x(ageln=`countln´). But, in praccum we specify xis(`count´) not xis(`countln´). This
is because we want to plot the probability against age in its original units. The saved values can
then be plotted:

. label var agelnp1 "Pr(lpf | log of age)"

. set textsize 120

. graph pragep1 agesqp1 agelnp1 agesqx, s(OST) c(sss) xlabel(20 25 to 60) /*
> */ gap(3) l1("Pr(Being in the Labor Force)") ylabel(0 .2 to 1)

which leads to
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8.4.4 Using praccum to graph interactions

Earlier in this chapter we examined an ordinal regression model of support for working mothers
that included an interaction between a respondent’s sex and education. Another way to examine the
effects of the interaction is to plot the effect of education on the predicted probability of strongly
agreeing for men and women separately. First, we estimate the model:

. use ordwarm2.dta, clear
(77 & 89 General Social Survey)

. gen maleXed = male*ed

. ologit warm age prst yr89 white male ed maleXed
(output omitted )

Next, we compute the predicted values of strongly agreeing as education increases for women who
are average on all other characteristics. This is done using forvalues to make a series of calls to
prvalue and praccum. For women, maleXed is always 0 since male is 0:

forvalues count = 8(2)20 {
quietly prvalue, x(male=0 ed=`count´ maleXed=0) rest(mean)
praccum, using(mat_f) xis(`count´)

}
praccum, using(mat_f) gen(pfem)

In the successive calls to prvalue, only the variable ed is changing. Accordingly, we could have
used prgen. For the men, however, we must use praccum since both ed and maleXed change
together:

forvalues count = 8(2)20 {
quietly prvalue, x(male=1 ed=`count´ maleXed=`count´) rest(mean)
praccum, using(mat_m) xis(`count´)

}
praccum, using(mat_m) gen(pmal)

New variables created by praccum:

Variable Obs Mean Std. Dev. Min Max

pmalx 7 14 4.320494 8 20
pmalp1 7 .1462868 .0268927 .1111754 .1857918
pmalp2 7 .3669779 .0269781 .3273872 .4018448
pmalp3 7 .3607055 .0301248 .317195 .40045
pmalp4 7 .1260299 .0237202 .0951684 .1609874
pmals1 7 .1462868 .0268927 .1111754 .1857918
pmals2 7 .5132647 .0537622 .4385626 .5876365
pmals3 7 .8739701 .0237202 .8390126 .9048315
pmals4 7 1 2.25e-08 .9999999 1

Years of education, as it has been specified with xis(), is stored in pfemx and pmalx. These
variables are identical since we used the same levels for both men and women. The probabilities
for women are contained in the variables pfempk, where k is the category value; for models for
ordered or count data, the variables pfemsk store the cumulative probabilities Pr (y ≤ k). The
corresponding predictions for men are contained in pmalpk and pmalsk. All that remains is to clean
up the variable labels and plot the predictions:
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. label var pfemp4 "Pr(SA | female)"

. label var pmalp4 "Pr(SA | male)"

. label var pfemx "Education in Years"

. set textsize 120

. graph pfemp4 pmalp4 pfemx, s(OS) c(ss)xlabel(8 10 to 20) /*
> */ ylabel(0 .1 to .4) gap(3) l1("Pr(Strongly Agreeing)")

which produces the following plot:
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For all levels of education, women are more likely to strongly agree that working mothers can be
good mothers than are men, holding other variables to their mean. This difference between men and
women is much larger at higher levels of education than at lower levels.

8.5 Extending SPost to other estimation commands

The commands in SPost only work with some of the many estimation commands available in Stata.
If you try to use our commands after estimating other types of models, you will be told that the
SPost command does not work for the last model estimated. Over the past year as we developed
these commands, we have received numerous inquiries about whether we can modify SPost to
work with additional estimation commands. While we would like to accommodate such requests,
extensions are likely to be made mainly to estimation commands that we are using in our own work.
There are two reasons for this. First, our time is limited. Second, we want to be sure that we fully
understand the specifics of each model before we incorporate it into SPost. Still, users who know
how to program in Stata are welcome to extend our programs to work with other models. Keep in
mind, however, that we can only provide limited support. While we have attempted to write each

This book is for use by faculty, students, staff, and guests of UCLA, and is not to be distributed,

either electronically or in printed form, to others.



8.6 Using Stata more efficiently 285

command to make it as simple as possible to expand, some of the programs are complex and you
will need to be adept at programming in Stata.3

Here are some brief points that may be useful for a programmer wishing to modify our com-
mands. First, our commands make use of ancillary programs that we have also written, all of which
begin with pe (e.g., pebase). As will be apparent as you trace through the logic of one of our ado-
files, extending a command to a new model might require modifications to these ancillary programs
as well. Since the pe*.ado files are used by many different commands, be careful that you do not
make changes that break other commands. Second, our programs use information returned in e()
by the estimation command. Some user-written estimation commands, especially older ones, do not
return the appropriate information in e(), and extending programs to work after these estimation
commands will be extremely difficult.

8.6 Using Stata more efficiently

Our introduction to Stata in Chapter 2 focused on the basics. But, as you use Stata, you will discover
various tricks that make your use of Stata more enjoyable and efficient. While what constitutes a
“good trick” depends on the needs and skills of the particular users, in this section we describe some
things that we have found useful.

8.6.1 profile.do

When Stata is launched, it looks for a do-file called profile.do in the directories listed when you
type sysdir.4 If profile.do is found in one of these directories, Stata runs it. Accordingly, you
can customize Stata by including commands in profile.do. While you should consult Getting
Started with Stata for full details or enter the command help profile, the following examples
show you some things that we find useful. We have added detailed comments within the /* */’s.
The comments do not need to be included in profile.do.

/*
In Stata all data is kept in memory. If you get memory errors when
loading a dataset or while estimating a model, you need more memory.
While you can change the amount of memory from the Command Window,
we find it easier to set it here. Type -help memory- for details.

*/

set memory 30m

/*
Many programs in official Stata and many of our commands use matrices.
Some of our commands, such as -prchange- use a lot of memory. So, we
suggest setting the amount of space for matrices to the largest value
allowed. Type -help matsize- for details.

*/

set matsize 800

3StataCorp offers both introductory and advanced NetCourses in programming; more information on this can be obtained
from www.stata.com.

4The preferred place for the file is in your default data directory (e.g., c:\data).
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/*
Starting with Stata 7, output in log files can be written either as text
(as with earlier versions of Stata), or in SMCL. We find it
easier to save logs as text since they can be more easily printed, copied
to a word processor, and so on. Type -help log- for details.

*/

set logtype text

/*
You can assign commands to function keys F2 through F9. After assigning
a text string to a key, when you press that key, the string is
inserted into the Command Window.

*/

global F8 "set trace on"
global F9 "set trace off"

/*
You can tell Stata what you want your default working directory
to be.

*/

cd d:\statastart

/*
You can also add notes to yourself. Here we post a reminder that
the command -spost- will change the working directory to the directory
where we have the files for this book.

*/

noisily di "spost == cd d:\spost\examples"

8.6.2 Changing screen fonts and window preferences

In Windows, the default font for the Results Window works well on a VGA monitor with 640 by 480
resolution. But, with higher resolution monitors, we prefer a larger font. To change the font, click

on in the upper-left corner of the Results Window. Select the Fonts option and choose a font
you like. You do not need to select one of the fonts that are named “Stata . . . ” since any fixed-width
font will work. In Windows, we are fond of Andale Mono, which is freely available from Microsoft.
The best way to find it is to use an Internet search engine and search for “Andale mono download”.
When we wrote this, the font was available at
www.microsoft.com/typography/fontpack/default.htm.

You can also change the size and position of the windows using the usual methods of clicking and
dragging. After the font is selected and any new placement of windows is done, you can save your
new options to be the defaults with the Preference menu and the Save Windowing Preference
option.

8.6.3 Using ado-files for changing directories

One of the things we like best about Stata is that you can create your own commands using ado-
files. These commands work just like the commands that are part of official Stata, and indeed many
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commands in Stata are written as ado-files. If you are like us, at any one time you are working on
several different projects. We like to keep each project in a different directory. For example, d:\nas
includes research for the National Academy of Sciences, d:\kinsey is a project associated with the
Kinsey Institute, and d:\spost\examples is (you guessed it) for this book. While you can change
to these directories with the cd command, one of us keeps forgetting the names of directories. So,
he writes a simple ado-file

program define spost
cd d:\spost\examples

end

and saves this in his PERSONAL directory as spost.ado. Type sysdir to see what directory is
assigned as the PERSONAL directory. Then, whenever he types spost, his working directory is
immediately changed:

. spost
d:\spost\examples

8.6.4 me.hlp file

Help files in Stata are plain text or SMCL files that end with the .hlp extension. When you type
help command, Stata searches in the same directories used for ado-files until it finds a file called
command.hlp. We have a file called me.hlp that contains information on things we often use but
seldom remember. For example,

.-
help for ^me^
.-

Reset everything ^clear^
---------------- ^discard^

List installed packages ^ado dir^
-----------------------

Axes options ^x/yscale(lo,hi)^
------------ ^x/ylabel()^

^x/ytic()^
^x/yline()^

Connect options ^c()^ ^ .^ do not connect
------------------- ^l^ straight lines

^s^ connect using splines

Symbols ^s()^ ^O^ large circle
------------- ^S^ large square

^T^ large triangle
^o^ small circle
^d^ small diamond
^p^ small plus
^x^ x

^ .^ dot
^i^ invisible

.-
Author: Scott Long
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This file is saved in your PERSONAL directory; typing sysdir will tell you what your PERSONAL
directory is. Then, whenever we are stuck and want to recall this information, we just need to type
help me and it is displayed on our screen.

8.6.5 Scrolling in the Results Window in Windows

After you run a command whose output scrolls off the Results Window, you will notice that a scroll
bar appears on the right side of the window. You can use the scroll bar to scroll through results
that are no longer in the Stata Results Window. While Stata does not allow you to do this with a
keystroke, you can use the scroll wheel found on some mice. We find this very convenient.

8.7 Conclusions

Our goal in writing this book was to make it routine to carry out the complex calculations necessary
for the full interpretation of regression models for categorical outcomes. While we have gone to
great lengths to check the accuracy of our commands and to verify that our instructions are correct,
it is possible that there are still some “bugs” in our programs. If you have a problem, here is what
we suggest:

1. Make sure that you have the most recent version of the Stata executable and ado-file (select
Help→Official Updates from the menus) and the most recent versions of SPost (while on-
line, type net search spostado). This is the most common solution to problems people
send us.

2. Make sure that you do not have another command from someone else with the same name as
one of our commands. If you do, one of them will not work and needs to be removed.

3. Check our FAQ (Frequently Asked Questions) Page located at

www.indiana.edu/˜jsl650/spost.htm

You might find the answer there.

4. Make sure that you do not have anything but letters, numbers, and underscores in your value
labels. Numerous programs in Stata get hung up when value labels include other symbols or
other special characters.

5. Take a look at the sample files in the spostst4 and spostrm4 packages. These can be
obtained when you are on-line and in Stata. Type net search spost and follow the directions
you receive. It is sometimes easiest to figure out how to use a command by seeing how others
use it.

Next, you can contact us with an e-mail to spostsup@indiana.edu. While we cannot guarantee
that we can answer every question we get, we will try to help. The best way to have the problem
solved is to send us a do-file and sample dataset in which the error occurs. It is very hard to figure
out some problems by just seeing the log file. Since you may not want to send your original data due
to size or confidentiality, you can construct a smaller dataset with a subset of variables and cases.
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