


Chapter 1 discusses the scope of econometrics and raises general issues that result
from the application of econometric methods. Section 1.3 examines the kinds of
data sets that are used in business, economics, and other social sciences. Section

1.4 provides an intuitive discussion of the difficulties associated with the inference of
causality in the social sciences.

1.1 WHAT IS ECONOMETRICS?

Imagine that you are hired by your state government to evaluate the effectiveness of a
publicly funded job training program. Suppose this program teaches workers various
ways to use computers in the manufacturing process. The twenty-week program offers
courses during nonworking hours. Any hourly manufacturing worker may participate,
and enrollment in all or part of the program is voluntary. You are to determine what, if
any, effect the training program has on each worker’s subsequent hourly wage.

Now suppose you work for an investment bank. You are to study the returns on dif-
ferent investment strategies involving short-term U.S. treasury bills to decide whether
they comply with implied economic theories.

The task of answering such questions may seem daunting at first. At this point,
you may only have a vague idea of the kind of data you would need to collect. By the
end of this introductory econometrics course, you should know how to use econo-
metric methods to formally evaluate a job training program or to test a simple eco-
nomic theory.

Econometrics is based upon the development of statistical methods for estimating
economic relationships, testing economic theories, and evaluating and implementing
government and business policy. The most common application of econometrics is the
forecasting of such important macroeconomic variables as interest rates, inflation rates,
and gross domestic product. While forecasts of economic indicators are highly visible
and are often widely published, econometric methods can be used in economic areas
that have nothing to do with macroeconomic forecasting. For example, we will study
the effects of political campaign expenditures on voting outcomes. We will consider the
effect of school spending on student performance in the field of education. In addition,
we will learn how to use econometric methods for forecasting economic time series.
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Econometrics has evolved as a separate discipline from mathematical statistics
because the former focuses on the problems inherent in collecting and analyzing nonex-
perimental economic data. Nonexperimental data are not accumulated through con-
trolled experiments on individuals, firms, or segments of the economy. (Nonexperimental
data are sometimes called observational data to emphasize the fact that the researcher
is a passive collector of the data.) Experimental data are often collected in laboratory
environments in the natural sciences, but they are much more difficult to obtain in the
social sciences. While some social experiments can be devised, it is often impossible,
prohibitively expensive, or morally repugnant to conduct the kinds of controlled experi-
ments that would be needed to address economic issues. We give some specific exam-
ples of the differences between experimental and nonexperimental data in Section 1.4.

Naturally, econometricians have borrowed from mathematical statisticians when-
ever possible. The method of multiple regression analysis is the mainstay in both fields,
but its focus and interpretation can differ markedly. In addition, economists have
devised new techniques to deal with the complexities of economic data and to test the
predictions of economic theories.

1.2 STEPS IN EMPIRICAL ECONOMIC ANALYSIS

Econometric methods are relevant in virtually every branch of applied economics. They
come into play either when we have an economic theory to test or when we have a rela-
tionship in mind that has some importance for business decisions or policy analysis. An
empirical analysis uses data to test a theory or to estimate a relationship.

How does one go about structuring an empirical economic analysis? It may seem
obvious, but it is worth emphasizing that the first step in any empirical analysis is the
careful formulation of the question of interest. The question might deal with testing a
certain aspect of an economic theory, or it might pertain to testing the effects of a gov-
ernment policy. In principle, econometric methods can be used to answer a wide range
of questions.

In some cases, especially those that involve the testing of economic theories, a for-
mal economic model is constructed. An economic model consists of mathematical
equations that describe various relationships. Economists are well-known for their
building of models to describe a vast array of behaviors. For example, in intermediate
microeconomics, individual consumption decisions, subject to a budget constraint, are
described by mathematical models. The basic premise underlying these models is util-
ity maximization. The assumption that individuals make choices to maximize their well-
being, subject to resource constraints, gives us a very powerful framework for creating
tractable economic models and making clear predictions. In the context of consumption
decisions, utility maximization leads to a set of demand equations. In a demand equa-
tion, the quantity demanded of each commodity depends on the price of the goods, the
price of substitute and complementary goods, the consumer’s income, and the individ-
ual’s characteristics that affect taste. These equations can form the basis of an econo-
metric analysis of consumer demand.

Economists have used basic economic tools, such as the utility maximization frame-
work, to explain behaviors that at first glance may appear to be noneconomic in nature.
A classic example is Becker’s (1968) economic model of criminal behavior.
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E X A M P L E  1 . 1
( E c o n o m i c  M o d e l  o f  C r i m e )

In a seminal article, Nobel prize winner Gary Becker postulated a utility maximization frame-
work to describe an individual’s participation in crime. Certain crimes have clear economic
rewards, but most criminal behaviors have costs. The opportunity costs of crime prevent the
criminal from participating in other activities such as legal employment. In addition, there
are costs associated with the possibility of being caught and then, if convicted, the costs
associated with incarceration. From Becker’s perspective, the decision to undertake illegal
activity is one of resource allocation, with the benefits and costs of competing activities
taken into account.

Under general assumptions, we can derive an equation describing the amount of time
spent in criminal activity as a function of various factors. We might represent such a func-
tion as

y � f (x1,x2,x3,x4,x5,x6,x7), (1.1)

where

y � hours spent in criminal activities

x1 � “wage” for an hour spent in criminal activity

x2 � hourly wage in legal employment

x3 � income other than from crime or employment

x4 � probability of getting caught

x5 � probability of being convicted if caught

x6 � expected sentence if convicted

x7 � age

Other factors generally affect a person’s decision to participate in crime, but the list above
is representative of what might result from a formal economic analysis. As is common in
economic theory, we have not been specific about the function f(�) in (1.1). This function
depends on an underlying utility function, which is rarely known. Nevertheless, we can use
economic theory—or introspection—to predict the effect that each variable would have on
criminal activity. This is the basis for an econometric analysis of individual criminal activity.

Formal economic modeling is sometimes the starting point for empirical analysis,
but it is more common to use economic theory less formally, or even to rely entirely on
intuition. You may agree that the determinants of criminal behavior appearing in equa-
tion (1.1) are reasonable based on common sense; we might arrive at such an equation
directly, without starting from utility maximization. This view has some merit,
although there are cases where formal derivations provide insights that intuition can
overlook.
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Here is an example of an equation that was derived through somewhat informal
reasoning.

E X A M P L E  1 . 2
( J o b  T r a i n i n g  a n d  W o r k e r  P r o d u c t i v i t y )

Consider the problem posed at the beginning of Section 1.1. A labor economist would like
to examine the effects of job training on worker productivity. In this case, there is little need
for formal economic theory. Basic economic understanding is sufficient for realizing that
factors such as education, experience, and training affect worker productivity. Also, econ-
omists are well aware that workers are paid commensurate with their productivity. This sim-
ple reasoning leads to a model such as

wage � f (educ,exper, training) (1.2)

where wage is hourly wage, educ is years of formal education, exper is years of workforce
experience, and training is weeks spent in job training. Again, other factors generally affect
the wage rate, but (1.2) captures the essence of the problem.

After we specify an economic model, we need to turn it into what we call an econo-
metric model. Since we will deal with econometric models throughout this text, it is
important to know how an econometric model relates to an economic model. Take equa-
tion (1.1) as an example. The form of the function f (�) must be specified before we can
undertake an econometric analysis. A second issue concerning (1.1) is how to deal with
variables that cannot reasonably be observed. For example, consider the wage that a
person can earn in criminal activity. In principle, such a quantity is well-defined, but it
would be difficult if not impossible to observe this wage for a given individual. Even
variables such as the probability of being arrested cannot realistically be obtained for a
given individual, but at least we can observe relevant arrest statistics and derive a vari-
able that approximates the probability of arrest. Many other factors affect criminal
behavior that we cannot even list, let alone observe, but we must somehow account for
them.

The ambiguities inherent in the economic model of crime are resolved by specify-
ing a particular econometric model:

crime � �0 + �1wagem + �2othinc � �3 freqarr � �4 freqconv

� �5avgsen � �6age � u,
(1.3)

where crime is some measure of the frequency of criminal activity, wagem is the wage
that can be earned in legal employment, othinc is the income from other sources (assets,
inheritance, etc.), freqarr is the frequency of arrests for prior infractions (to approxi-
mate the probability of arrest), freqconv is the frequency of conviction, and avgsen is
the average sentence length after conviction. The choice of these variables is deter-
mined by the economic theory as well as data considerations. The term u contains unob-
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served factors, such as the wage for criminal activity, moral character, family back-
ground, and errors in measuring things like criminal activity and the probability of
arrest. We could add family background variables to the model, such as number of sib-
lings, parents’ education, and so on, but we can never eliminate u entirely. In fact, deal-
ing with this error term or disturbance term is perhaps the most important component
of any econometric analysis.

The constants �0, �1, …, �6 are the parameters of the econometric model, and they
describe the directions and strengths of the relationship between crime and the factors
used to determine crime in the model.

A complete econometric model for Example 1.2 might be

wage � �0 � �1educ � �2exper � �3training � u, (1.4)

where the term u contains factors such as “innate ability,” quality of education, family
background, and the myriad other factors that can influence a person’s wage. If we 
are specifically concerned about the effects of job training, then �3 is the parameter of
interest.

For the most part, econometric analysis begins by specifying an econometric model,
without consideration of the details of the model’s creation. We generally follow this
approach, largely because careful derivation of something like the economic model of
crime is time consuming and can take us into some specialized and often difficult areas
of economic theory. Economic reasoning will play a role in our examples, and we will
merge any underlying economic theory into the econometric model specification. In the
economic model of crime example, we would start with an econometric model such as
(1.3) and use economic reasoning and common sense as guides for choosing the vari-
ables. While this approach loses some of the richness of economic analysis, it is com-
monly and effectively applied by careful researchers.

Once an econometric model such as (1.3) or (1.4) has been specified, various
hypotheses of interest can be stated in terms of the unknown parameters. For example,
in equation (1.3) we might hypothesize that wagem, the wage that can be earned in legal
employment, has no effect on criminal behavior. In the context of this particular econo-
metric model, the hypothesis is equivalent to �1 � 0.

An empirical analysis, by definition, requires data. After data on the relevant vari-
ables have been collected, econometric methods are used to estimate the parameters in
the econometric model and to formally test hypotheses of interest. In some cases, the
econometric model is used to make predictions in either the testing of a theory or the
study of a policy’s impact.

Because data collection is so important in empirical work, Section 1.3 will describe
the kinds of data that we are likely to encounter.

1.3 THE STRUCTURE OF ECONOMIC DATA

Economic data sets come in a variety of types. While some econometric methods can
be applied with little or no modification to many different kinds of data sets, the spe-
cial features of some data sets must be accounted for or should be exploited. We next
describe the most important data structures encountered in applied work.
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Cross-Sectional Data

A cross-sectional data set consists of a sample of individuals, households, firms, cities,
states, countries, or a variety of other units, taken at a given point in time. Sometimes
the data on all units do not correspond to precisely the same time period. For example,
several families may be surveyed during different weeks within a year. In a pure cross
section analysis we would ignore any minor timing differences in collecting the data. If
a set of families was surveyed during different weeks of the same year, we would still
view this as a cross-sectional data set.

An important feature of cross-sectional data is that we can often assume that they
have been obtained by random sampling from the underlying population. For exam-
ple, if we obtain information on wages, education, experience, and other characteristics
by randomly drawing 500 people from the working population, then we have a random
sample from the population of all working people. Random sampling is the sampling
scheme covered in introductory statistics courses, and it simplifies the analysis of cross-
sectional data. A review of random sampling is contained in Appendix C.

Sometimes random sampling is not appropriate as an assumption for analyzing
cross-sectional data. For example, suppose we are interested in studying factors that
influence the accumulation of family wealth. We could survey a random sample of fam-
ilies, but some families might refuse to report their wealth. If, for example, wealthier
families are less likely to disclose their wealth, then the resulting sample on wealth is
not a random sample from the population of all families. This is an illustration of a sam-
ple selection problem, an advanced topic that we will discuss in Chapter 17.

Another violation of random sampling occurs when we sample from units that are
large relative to the population, particularly geographical units. The potential problem
in such cases is that the population is not large enough to reasonably assume the obser-
vations are independent draws. For example, if we want to explain new business activ-
ity across states as a function of wage rates, energy prices, corporate and property tax
rates, services provided, quality of the workforce, and other state characteristics, it is
unlikely that business activities in states near one another are independent. It turns out
that the econometric methods that we discuss do work in such situations, but they some-
times need to be refined. For the most part, we will ignore the intricacies that arise in
analyzing such situations and treat these problems in a random sampling framework,
even when it is not technically correct to do so.

Cross-sectional data are widely used in economics and other social sciences. In eco-
nomics, the analysis of cross-sectional data is closely aligned with the applied micro-
economics fields, such as labor economics, state and local public finance, industrial
organization, urban economics, demography, and health economics. Data on individu-
als, households, firms, and cities at a given point in time are important for testing micro-
economic hypotheses and evaluating economic policies.

The cross-sectional data used for econometric analysis can be represented and
stored in computers. Table 1.1 contains, in abbreviated form, a cross-sectional data set
on 526 working individuals for the year 1976. (This is a subset of the data in the file
WAGE1.RAW.) The variables include wage (in dollars per hour), educ (years of educa-
tion), exper (years of potential labor force experience), female (an indicator for gender),
and married (marital status). These last two variables are binary (zero-one) in nature
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and serve to indicate qualitative features of the individual. (The person is female or not;
the person is married or not.) We will have much to say about binary variables in
Chapter 7 and beyond.

The variable obsno in Table 1.1 is the observation number assigned to each person
in the sample. Unlike the other variables, it is not a characteristic of the individual. All
econometrics and statistics software packages assign an observation number to each
data unit. Intuition should tell you that, for data such as that in Table 1.1, it does not
matter which person is labeled as observation one, which person is called Observation
Two, and so on. The fact that the ordering of the data does not matter for econometric
analysis is a key feature of cross-sectional data sets obtained from random sampling.

Different variables sometimes correspond to different time periods in cross-
sectional data sets. For example, in order to determine the effects of government poli-
cies on long-term economic growth, economists have studied the relationship between
growth in real per capita gross domestic product (GDP) over a certain period (say 1960
to 1985) and variables determined in part by government policy in 1960 (government
consumption as a percentage of GDP and adult secondary education rates). Such a data
set might be represented as in Table 1.2, which constitutes part of the data set used in
the study of cross-country growth rates by De Long and Summers (1991).
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Table 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

� � � � � �

� � � � � �

� � � � � �

525 11.56 16 5 0 1

526 3.50 14 5 1 0
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The variable gpcrgdp represents average growth in real per capita GDP over the period
1960 to 1985. The fact that govcons60 (government consumption as a percentage of
GDP) and second60 (percent of adult population with a secondary education) corre-
spond to the year 1960, while gpcrgdp is the average growth over the period from 1960
to 1985, does not lead to any special problems in treating this information as a cross-
sectional data set. The order of the observations is listed alphabetically by country, but
there is nothing about this ordering that affects any subsequent analysis.

Time Series Data

A time series data set consists of observations on a variable or several variables over
time. Examples of time series data include stock prices, money supply, consumer price
index, gross domestic product, annual homicide rates, and automobile sales figures.
Because past events can influence future events and lags in behavior are prevalent in the
social sciences, time is an important dimension in a time series data set. Unlike the
arrangement of cross-sectional data, the chronological ordering of observations in a
time series conveys potentially important information.

A key feature of time series data that makes it more difficult to analyze than cross-
sectional data is the fact that economic observations can rarely, if ever, be assumed to
be independent across time. Most economic and other time series are related, often
strongly related, to their recent histories. For example, knowing something about the
gross domestic product from last quarter tells us quite a bit about the likely range of the
GDP during this quarter, since GDP tends to remain fairly stable from one quarter to
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Table 1.2

A Data Set on Economic Growth Rates and Country Characteristics

obsno country gpcrgdp govcons60 second60

1 Argentina 0.89 9 32

2 Austria 3.32 16 50

3 Belgium 2.56 13 69

4 Bolivia 1.24 18 12

� � � � �

� � � � �

� � � � �

61 Zimbabwe 2.30 17 6
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the next. While most econometric procedures can be used with both cross-sectional and
time series data, more needs to be done in specifying econometric models for time
series data before standard econometric methods can be justified. In addition, modifi-
cations and embellishments to standard econometric techniques have been developed to
account for and exploit the dependent nature of economic time series and to address
other issues, such as the fact that some economic variables tend to display clear trends
over time.

Another feature of time series data that can require special attention is the data fre-
quency at which the data are collected. In economics, the most common frequencies
are daily, weekly, monthly, quarterly, and annually. Stock prices are recorded at daily
intervals (excluding Saturday and Sunday). The money supply in the U.S. economy is
reported weekly. Many macroeconomic series are tabulated monthly, including infla-
tion and employment rates. Other macro series are recorded less frequently, such as
every three months (every quarter). Gross domestic product is an important example of
a quarterly series. Other time series, such as infant mortality rates for states in the
United States, are available only on an annual basis.

Many weekly, monthly, and quarterly economic time series display a strong 
seasonal pattern, which can be an important factor in a time series analysis. For ex-
ample, monthly data on housing starts differs across the months simply due to changing
weather conditions. We will learn how to deal with seasonal time series in Chapter 10.

Table 1.3 contains a time series data set obtained from an article by Castillo-
Freeman and Freeman (1992) on minimum wage effects in Puerto Rico. The earliest
year in the data set is the first observation, and the most recent year available is the last
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Table 1.3

Minimum Wage, Unemployment, and Related Data for Puerto Rico

obsno year avgmin avgcov unemp gnp

1 1950 0.20 20.1 15.4 878.7

2 1951 0.21 20.7 16.0 925.0

3 1952 0.23 22.6 14.8 1015.9

� � � � � �

� � � � � �

� � � � � �

37 1986 3.35 58.1 18.9 4281.6

38 1987 3.35 58.2 16.8 4496.7
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observation. When econometric methods are used to analyze time series data, the data
should be stored in chronological order.

The variable avgmin refers to the average minimum wage for the year, avgcov is
the average coverage rate (the percentage of workers covered by the minimum wage
law), unemp is the unemployment rate, and gnp is the gross national product. We will
use these data later in a time series analysis of the effect of the minimum wage on
employment.

Pooled Cross Sections

Some data sets have both cross-sectional and time series features. For example, suppose
that two cross-sectional household surveys are taken in the United States, one in 1985
and one in 1990. In 1985, a random sample of households is surveyed for variables such
as income, savings, family size, and so on. In 1990, a new random sample of households
is taken using the same survey questions. In order to increase our sample size, we can
form a pooled cross section by combining the two years. Because random samples are
taken in each year, it would be a fluke if the same household appeared in the sample
during both years. (The size of the sample is usually very small compared with the num-
ber of households in the United States.) This important factor distinguishes a pooled
cross section from a panel data set.

Pooling cross sections from different years is often an effective way of analyzing
the effects of a new government policy. The idea is to collect data from the years before
and after a key policy change. As an example, consider the following data set on hous-
ing prices taken in 1993 and 1995, when there was a reduction in property taxes in
1994. Suppose we have data on 250 houses for 1993 and on 270 houses for 1995. One
way to store such a data set is given in Table 1.4.

Observations 1 through 250 correspond to the houses sold in 1993, and observations
251 through 520 correspond to the 270 houses sold in 1995. While the order in which
we store the data turns out not to be crucial, keeping track of the year for each obser-
vation is usually very important. This is why we enter year as a separate variable.

A pooled cross section is analyzed much like a standard cross section, except that
we often need to account for secular differences in the variables across the time. In fact,
in addition to increasing the sample size, the point of a pooled cross-sectional analysis
is often to see how a key relationship has changed over time.

Panel or Longitudinal Data

A panel data (or longitudinal data) set consists of a time series for each cross-
sectional member in the data set. As an example, suppose we have wage, education, and
employment history for a set of individuals followed over a ten-year period. Or we
might collect information, such as investment and financial data, about the same set of
firms over a five-year time period. Panel data can also be collected on geographical
units. For example, we can collect data for the same set of counties in the United States
on immigration flows, tax rates, wage rates, government expenditures, etc., for the years
1980, 1985, and 1990.

The key feature of panel data that distinguishes it from a pooled cross section is the
fact that the same cross-sectional units (individuals, firms, or counties in the above
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examples) are followed over a given time period. The data in Table 1.4 are not consid-
ered a panel data set because the houses sold are likely to be different in 1993 and 1995;
if there are any duplicates, the number is likely to be so small as to be unimportant. In
contrast, Table 1.5 contains a two-year panel data set on crime and related statistics for
150 cities in the United States.

There are several interesting features in Table 1.5. First, each city has been given a
number from 1 through 150. Which city we decide to call city 1, city 2, and so on, is
irrelevant. As with a pure cross section, the ordering in the cross section of a panel data
set does not matter. We could use the city name in place of a number, but it is often use-
ful to have both.
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Table 1.4

Pooled Cross Sections: Two Years of Housing Prices

obsno year hprice proptax sqrft bdrms bthrms

1 1993 85500 42 1600 3 2.0

2 1993 67300 36 1440 3 2.5

3 1993 134000 38 2000 4 2.5

� � � � � � �

� � � � � � �

� � � � � � �

250 1993 243600 41 2600 4 3.0

251 1995 65000 16 1250 2 1.0

252 1995 182400 20 2200 4 2.0

253 1995 97500 15 1540 3 2.0

� � � � � � �

� � � � � � �

� � � � � � �

520 1995 57200 16 1100 2 1.5
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A second useful point is that the two years of data for city 1 fill the first two rows
or observations. Observations 3 and 4 correspond to city 2, and so on. Since each of the
150 cities has two rows of data, any econometrics package will view this as 300 obser-
vations. This data set can be treated as two pooled cross sections, where the same cities
happen to show up in the same year. But, as we will see in Chapters 13 and 14, we can
also use the panel structure to respond to questions that cannot be answered by simply
viewing this as a pooled cross section.

In organizing the observations in Table 1.5, we place the two years of data for each
city adjacent to one another, with the first year coming before the second in all cases.
For just about every practical purpose, this is the preferred way for ordering panel data
sets. Contrast this organization with the way the pooled cross sections are stored in
Table 1.4. In short, the reason for ordering panel data as in Table 1.5 is that we will need
to perform data transformations for each city across the two years.

Because panel data require replication of the same units over time, panel data sets,
especially those on individuals, households, and firms, are more difficult to obtain than
pooled cross sections. Not surprisingly, observing the same units over time leads to sev-
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Table 1.5

A Two-Year Panel Data Set on City Crime Statistics

obsno city year murders population unem police

1 1 1986 5 350000 8.7 440

2 1 1990 8 359200 7.2 471

3 2 1986 2 64300 5.4 75

4 2 1990 1 65100 5.5 75

� � � � � � �

� � � � � � �

� � � � � � �

297 149 1986 10 260700 9.6 286

298 149 1990 6 245000 9.8 334

299 150 1986 25 543000 4.3 520

300 150 1990 32 546200 5.2 493
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eral advantages over cross-sectional data or even pooled cross-sectional data. The ben-
efit that we will focus on in this text is that having multiple observations on the same
units allows us to control certain unobserved characteristics of individuals, firms, and
so on. As we will see, the use of more than one observation can facilitate causal infer-
ence in situations where inferring causality would be very difficult if only a single cross
section were available. A second advantage of panel data is that it often allows us to
study the importance of lags in behavior or the result of decision making. This infor-
mation can be significant since many economic policies can be expected to have an
impact only after some time has passed.

Most books at the undergraduate level do not contain a discussion of econometric
methods for panel data. However, economists now recognize that some questions are
difficult, if not impossible, to answer satisfactorily without panel data. As you will see,
we can make considerable progress with simple panel data analysis, a method which is
not much more difficult than dealing with a standard cross-sectional data set.

A Comment on Data Structures

Part 1 of this text is concerned with the analysis of cross-sectional data, as this poses
the fewest conceptual and technical difficulties. At the same time, it illustrates most of
the key themes of econometric analysis. We will use the methods and insights from
cross-sectional analysis in the remainder of the text.

While the econometric analysis of time series uses many of the same tools as cross-
sectional analysis, it is more complicated due to the trending, highly persistent nature
of many economic time series. Examples that have been traditionally used to illustrate
the manner in which econometric methods can be applied to time series data are now
widely believed to be flawed. It makes little sense to use such examples initially, since
this practice will only reinforce poor econometric practice. Therefore, we will postpone
the treatment of time series econometrics until Part 2, when the important issues con-
cerning trends, persistence, dynamics, and seasonality will be introduced.

In Part 3, we treat pooled cross sections and panel data explicitly. The analysis of
independently pooled cross sections and simple panel data analysis are fairly straight-
forward extensions of pure cross-sectional analysis. Nevertheless, we will wait until
Chapter 13 to deal with these topics.

1.4 CAUSALITY AND THE NOTION OF CETERIS PARIBUS
IN ECONOMETRIC ANALYSIS

In most tests of economic theory, and certainly for evaluating public policy, the econo-
mist’s goal is to infer that one variable has a causal effect on another variable (such 
as crime rate or worker productivity). Simply finding an association between two or
more variables might be suggestive, but unless causality can be established, it is rarely
compelling.

The notion of ceteris paribus—which means “other (relevant) factors being
equal”—plays an important role in causal analysis. This idea has been implicit in some
of our earlier discussion, particularly Examples 1.1 and 1.2, but thus far we have not
explicitly mentioned it.

Chapter 1 The Nature of Econometrics and Economic Data
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You probably remember from introductory economics that most economic ques-
tions are ceteris paribus by nature. For example, in analyzing consumer demand, we
are interested in knowing the effect of changing the price of a good on its quantity de-
manded, while holding all other factors—such as income, prices of other goods, and
individual tastes—fixed. If other factors are not held fixed, then we cannot know the
causal effect of a price change on quantity demanded.

Holding other factors fixed is critical for policy analysis as well. In the job training
example (Example 1.2), we might be interested in the effect of another week of job
training on wages, with all other components being equal (in particular, education and
experience). If we succeed in holding all other relevant factors fixed and then find a link
between job training and wages, we can conclude that job training has a causal effect
on worker productivity. While this may seem pretty simple, even at this early stage it
should be clear that, except in very special cases, it will not be possible to literally hold
all else equal. The key question in most empirical studies is: Have enough other factors
been held fixed to make a case for causality? Rarely is an econometric study evaluated
without raising this issue.

In most serious applications, the number of factors that can affect the variable of
interest—such as criminal activity or wages—is immense, and the isolation of any 
particular variable may seem like a hopeless effort. However, we will eventually see
that, when carefully applied, econometric methods can simulate a ceteris paribus
experiment.

At this point, we cannot yet explain how econometric methods can be used to esti-
mate ceteris paribus effects, so we will consider some problems that can arise in trying
to infer causality in economics. We do not use any equations in this discussion. For each
example, the problem of inferring causality disappears if an appropriate experiment can
be carried out. Thus, it is useful to describe how such an experiment might be struc-
tured, and to observe that, in most cases, obtaining experimental data is impractical. It
is also helpful to think about why the available data fails to have the important features
of an experimental data set.

We rely for now on your intuitive understanding of terms such as random, inde-
pendence, and correlation, all of which should be familiar from an introductory proba-
bility and statistics course. (These concepts are reviewed in Appendix B.) We begin
with an example that illustrates some of these important issues.

E X A M P L E  1 . 3
( E f f e c t s  o f  F e r t i l i z e r  o n  C r o p  Y i e l d )

Some early econometric studies [for example, Griliches (1957)] considered the effects of
new fertilizers on crop yields. Suppose the crop under consideration is soybeans. Since fer-
tilizer amount is only one factor affecting yields—some others include rainfall, quality of
land, and presence of parasites—this issue must be posed as a ceteris paribus question.
One way to determine the causal effect of fertilizer amount on soybean yield is to conduct
an experiment, which might include the following steps. Choose several one-acre plots of
land. Apply different amounts of fertilizer to each plot and subsequently measure the yields;
this gives us a cross-sectional data set. Then, use statistical methods (to be introduced in
Chapter 2) to measure the association between yields and fertilizer amounts.
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As described earlier, this may not seem like a very good experiment, because we have
said nothing about choosing plots of land that are identical in all respects except for the
amount of fertilizer. In fact, choosing plots of land with this feature is not feasible: some of
the factors, such as land quality, cannot even be fully observed. How do we know the
results of this experiment can be used to measure the ceteris paribus effect of fertilizer? The
answer depends on the specifics of how fertilizer amounts are chosen. If the levels of fer-
tilizer are assigned to plots independently of other plot features that affect yield—that is,
other characteristics of plots are completely ignored when deciding on fertilizer amounts—
then we are in business. We will justify this statement in Chapter 2.

The next example is more representative of the difficulties that arise when inferring
causality in applied economics.

E X A M P L E  1 . 4
( M e a s u r i n g  t h e  R e t u r n  t o  E d u c a t i o n )

Labor economists and policy makers have long been interested in the “return to educa-
tion.” Somewhat informally, the question is posed as follows: If a person is chosen from the
population and given another year of education, by how much will his or her wage
increase? As with the previous examples, this is a ceteris paribus question, which implies
that all other factors are held fixed while another year of education is given to the person.

We can imagine a social planner designing an experiment to get at this issue, much as
the agricultural researcher can design an experiment to estimate fertilizer effects. One
approach is to emulate the fertilizer experiment in Example 1.3: Choose a group of people,
randomly give each person an amount of education (some people have an eighth grade
education, some are given a high school education, etc.), and then measure their wages
(assuming that each then works in a job). The people here are like the plots in the ferti-
lizer example, where education plays the role of fertilizer and wage rate plays the role of
soybean yield. As with Example 1.3, if levels of education are assigned independently of
other characteristics that affect productivity (such as experience and innate ability), then an
analysis that ignores these other factors will yield useful results. Again, it will take some
effort in Chapter 2 to justify this claim; for now we state it without support.

Unlike the fertilizer-yield example, the experiment described in Example 1.4 is
infeasible. The moral issues, not to mention the economic costs, associated with ran-
domly determining education levels for a group of individuals are obvious. As a logis-
tical matter, we could not give someone only an eighth grade education if he or she
already has a college degree.

Even though experimental data cannot be obtained for measuring the return to edu-
cation, we can certainly collect nonexperimental data on education levels and wages for
a large group by sampling randomly from the population of working people. Such data
are available from a variety of surveys used in labor economics, but these data sets have
a feature that makes it difficult to estimate the ceteris paribus return to education.
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People choose their own levels of education, and therefore education levels are proba-
bly not determined independently of all other factors affecting wage. This problem is a
feature shared by most nonexperimental data sets.

One factor that affects wage is experience in the work force. Since pursuing more
education generally requires postponing entering the work force, those with more edu-
cation usually have less experience. Thus, in a nonexperimental data set on wages and
education, education is likely to be negatively associated with a key variable that also
affects wage. It is also believed that people with more innate ability often choose 
higher levels of education. Since higher ability leads to higher wages, we again have a
correlation between education and a critical factor that affects wage.

The omitted factors of experience and ability in the wage example have analogs in
the the fertilizer example. Experience is generally easy to measure and therefore is sim-
ilar to a variable such as rainfall. Ability, on the other hand, is nebulous and difficult to
quantify; it is similar to land quality in the fertilizer example. As we will see through-
out this text, accounting for other observed factors, such as experience, when estimat-
ing the ceteris paribus effect of another variable, such as education, is relatively
straightforward. We will also find that accounting for inherently unobservable factors,
such as ability, is much more problematical. It is fair to say that many of the advances
in econometric methods have tried to deal with unobserved factors in econometric
models.

One final parallel can be drawn between Examples 1.3 and 1.4. Suppose that in the
fertilizer example, the fertilizer amounts were not entirely determined at random.
Instead, the assistant who chose the fertilizer levels thought it would be better to put
more fertilizer on the higher quality plots of land. (Agricultural researchers should have
a rough idea about which plots of land are better quality, even though they may not be
able to fully quantify the differences.) This situation is completely analogous to the
level of schooling being related to unobserved ability in Example 1.4. Because better
land leads to higher yields, and more fertilizer was used on the better plots, any
observed relationship between yield and fertilizer might be spurious.

E X A M P L E  1 . 5
( T h e  E f f e c t  o f  L a w  E n f o r c e m e n t  o n  C i t y  C r i m e  L e v e l s )

The issue of how best to prevent crime has, and will probably continue to be, with us for
some time. One especially important question in this regard is: Does the presence of more
police officers on the street deter crime?

The ceteris paribus question is easy to state: If a city is randomly chosen and given 10
additional police officers, by how much would its crime rates fall? Another way to state the
question is: If two cities are the same in all respects, except that city A has 10 more police
officers than city B, by how much would the two cities’ crime rates differ?

It would be virtually impossible to find pairs of communities identical in all respects
except for the size of their police force. Fortunately, econometric analysis does not require
this. What we do need to know is whether the data we can collect on community crime
levels and the size of the police force can be viewed as experimental. We can certainly
imagine a true experiment involving a large collection of cities where we dictate how many
police officers each city will use for the upcoming year.
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While policies can be used to affect the size of police forces, we clearly cannot tell each
city how many police officers it can hire. If, as is likely, a city’s decision on how many police
officers to hire is correlated with other city factors that affect crime, then the data must be
viewed as nonexperimental. In fact, one way to view this problem is to see that a city’s
choice of police force size and the amount of crime are simultaneously determined. We will
explicitly address such problems in Chapter 16.

The first three examples we have discussed have dealt with cross-sectional data at
various levels of aggregation (for example, at the individual or city levels). The same
hurdles arise when inferring causality in time series problems.

E X A M P L E  1 . 6
( T h e  E f f e c t  o f  t h e  M i n i m u m  W a g e  o n  U n e m p l o y m e n t )

An important, and perhaps contentious, policy issue concerns the effect of the minimum
wage on unemployment rates for various groups of workers. While this problem can be
studied in a variety of data settings (cross-sectional, time series, or panel data), time series
data are often used to look at aggregate effects. An example of a time series data set on
unemployment rates and minimum wages was given in Table 1.3.

Standard supply and demand analysis implies that, as the minimum wage is increased
above the market clearing wage, we slide up the demand curve for labor and total employ-
ment decreases. (Labor supply exceeds labor demand.) To quantify this effect, we can study
the relationship between employment and the minimum wage over time. In addition to
some special difficulties that can arise in dealing with time series data, there are possible
problems with inferring causality. The minimum wage in the United States is not deter-
mined in a vacuum. Various economic and political forces impinge on the final minimum
wage for any given year. (The minimum wage, once determined, is usually in place for sev-
eral years, unless it is indexed for inflation.) Thus, it is probable that the amount of the min-
imum wage is related to other factors that have an effect on employment levels.

We can imagine the U.S. government conducting an experiment to determine the
employment effects of the minimum wage (as opposed to worrying about the welfare of
low wage workers). The minimum wage could be randomly set by the government each
year, and then the employment outcomes could be tabulated. The resulting experimental
time series data could then be analyzed using fairly simple econometric methods. But this
scenario hardly describes how minimum wages are set.

If we can control enough other factors relating to employment, then we can still hope
to estimate the ceteris paribus effect of the minimum wage on employment. In this sense,
the problem is very similar to the previous cross-sectional examples.

Even when economic theories are not most naturally described in terms of causali-
ty, they often have predictions that can be tested using econometric methods. The fol-
lowing is an example of this approach.
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E X A M P L E  1 . 7
( T h e  E x p e c t a t i o n s  H y p o t h e s i s )

The expectations hypothesis from financial economics states that, given all information
available to investors at the time of investing, the expected return on any two investments
is the same. For example, consider two possible investments with a three-month investment
horizon, purchased at the same time: (1) Buy a three-month T-bill with a face value of
$10,000, for a price below $10,000; in three months, you receive $10,000. (2) Buy a six-
month T-bill (at a price below $10,000) and, in three months, sell it as a three-month T-bill.
Each investment requires roughly the same amount of initial capital, but there is an impor-
tant difference. For the first investment, you know exactly what the return is at the time of
purchase because you know the initial price of the three-month T-bill, along with its face
value. This is not true for the second investment: while you know the price of a six-month
T-bill when you purchase it, you do not know the price you can sell it for in three months.
Therefore, there is uncertainty in this investment for someone who has a three-month
investment horizon.

The actual returns on these two investments will usually be different. According to the
expectations hypothesis, the expected return from the second investment, given all infor-
mation at the time of investment, should equal the return from purchasing a three-month
T-bill. This theory turns out to be fairly easy to test, as we will see in Chapter 11.

SUMMARY

In this introductory chapter, we have discussed the purpose and scope of economet-
ric analysis. Econometrics is used in all applied economic fields to test economic the-
ories, inform government and private policy makers, and to predict economic time
series. Sometimes an econometric model is derived from a formal economic model,
but in other cases econometric models are based on informal economic reasoning and
intuition. The goal of any econometric analysis is to estimate the parameters in the
model and to test hypotheses about these parameters; the values and signs of the
parameters determine the validity of an economic theory and the effects of certain
policies.

Cross-sectional, time series, pooled cross-sectional, and panel data are the most
common types of data structures that are used in applied econometrics. Data sets
involving a time dimension, such as time series and panel data, require special treat-
ment because of the correlation across time of most economic time series. Other issues,
such as trends and seasonality, arise in the analysis of time series data but not cross-
sectional data.

In Section 1.4, we discussed the notions of ceteris paribus and causal inference. In
most cases, hypotheses in the social sciences are ceteris paribus in nature: all other rel-
evant factors must be fixed when studying the relationship between two variables.
Because of the nonexperimental nature of most data collected in the social sciences,
uncovering causal relationships is very challenging.
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KEY TERMS

Causal Effect Experimental Data
Ceteris Paribus Nonexperimental Data
Cross-Sectional Data Set Observational Data
Data Frequency Panel Data
Econometric Model Pooled Cross Section
Economic Model Random Sampling
Empirical Analysis Time Series Data
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The simple regression model can be used to study the relationship between two
variables. For reasons we will see, the simple regression model has limita-
tions as a general tool for empirical analysis. Nevertheless, it is sometimes

appropriate as an empirical tool. Learning how to interpret the simple regression
model is good practice for studying multiple regression, which we’ll do in subse-
quent chapters.

2.1 DEFINITION OF THE SIMPLE REGRESSION MODEL

Much of applied econometric analysis begins with the following premise: y and x are
two variables, representating some population, and we are interested in “explaining y in
terms of x,” or in “studying how y varies with changes in x.” We discussed some exam-
ples in Chapter 1, including: y is soybean crop yield and x is amount of fertilizer; y is
hourly wage and x is years of education; y is a community crime rate and x is number
of police officers.

In writing down a model that will “explain y in terms of x,” we must confront three
issues. First, since there is never an exact relationship between two variables, how do
we allow for other factors to affect y? Second, what is the functional relationship
between y and x? And third, how can we be sure we are capturing a ceteris paribus rela-
tionship between y and x (if that is a desired goal)?

We can resolve these ambiguities by writing down an equation relating y to x. A
simple equation is

y � �0 � �1x � u. (2.1)

Equation (2.1), which is assumed to hold in the population of interest, defines the sim-
ple linear regression model. It is also called the two-variable linear regression model
or bivariate linear regression model because it relates the two variables x and y. We now
discuss the meaning of each of the quantities in (2.1). (Incidentally, the term “regres-
sion” has origins that are not especially important for most modern econometric appli-
cations, so we will not explain it here. See Stigler [1986] for an engaging history of
regression analysis.)
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When related by (2.1), the variables y and x have several different names used
interchangeably, as follows. y is called the dependent variable, the explained vari-
able, the response variable, the predicted variable, or the regressand. x is called
the independent variable, the explanatory variable, the control variable, the pre-
dictor variable, or the regressor. (The term covariate is also used for x.) The terms
“dependent variable” and “independent variable” are frequently used in economet-
rics. But be aware that the label “independent” here does not refer to the statistical
notion of independence between random variables (see Appendix B).

The terms “explained” and “explanatory” variables are probably the most descrip-
tive. “Response” and “control” are used mostly in the experimental sciences, where the
variable x is under the experimenter’s control. We will not use the terms “predicted vari-
able” and “predictor,” although you sometimes see these. Our terminology for simple
regression is summarized in Table 2.1.

Table 2.1

Terminology for Simple Regression

y x

Dependent Variable Independent Variable

Explained Variable Explanatory Variable

Response Variable Control Variable

Predicted Variable Predictor Variable

Regressand Regressor

The variable u, called the error term or disturbance in the relationship, represents
factors other than x that affect y. A simple regression analysis effectively treats all fac-
tors affecting y other than x as being unobserved. You can usefully think of u as stand-
ing for “unobserved.”

Equation (2.1) also addresses the issue of the functional relationship between y and
x. If the other factors in u are held fixed, so that the change in u is zero, �u � 0, then x
has a linear effect on y:

�y � �1�x if �u � 0. (2.2)

Thus, the change in y is simply �1 multiplied by the change in x. This means that �1 is
the slope parameter in the relationship between y and x holding the other factors in u
fixed; it is of primary interest in applied economics. The intercept parameter �0 also
has its uses, although it is rarely central to an analysis.

Chapter 2 The Simple Regression Model
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E X A M P L E  2 . 1
( S o y b e a n  Y i e l d  a n d  F e r t i l i z e r )

Suppose that soybean yield is determined by the model

yield � �0 � �1fertilizer � u, (2.3)

so that y � yield and x � fertilizer. The agricultural researcher is interested in the effect of
fertilizer on yield, holding other factors fixed. This effect is given by �1. The error term u
contains factors such as land quality, rainfall, and so on. The coefficient �1 measures the
effect of fertilizer on yield, holding other factors fixed: �yield � �1�fertilizer.

E X A M P L E  2 . 2
( A  S i m p l e  W a g e  E q u a t i o n )

A model relating a person’s wage to observed education and other unobserved factors is

wage � �0 � �1educ � u. (2.4)

If wage is measured in dollars per hour and educ is years of education, then �1 measures
the change in hourly wage given another year of education, holding all other factors fixed.
Some of those factors include labor force experience, innate ability, tenure with current
employer, work ethics, and innumerable other things.

The linearity of (2.1) implies that a one-unit change in x has the same effect on y,
regardless of the initial value of x. This is unrealistic for many economic applications.
For example, in the wage-education example, we might want to allow for increasing
returns: the next year of education has a larger effect on wages than did the previous
year. We will see how to allow for such possibilities in Section 2.4.

The most difficult issue to address is whether model (2.1) really allows us to draw
ceteris paribus conclusions about how x affects y. We just saw in equation (2.2) that �1

does measure the effect of x on y, holding all other factors (in u) fixed. Is this the end
of the causality issue? Unfortunately, no. How can we hope to learn in general about
the ceteris paribus effect of x on y, holding other factors fixed, when we are ignoring all
those other factors?

As we will see in Section 2.5, we are only able to get reliable estimators of �0 and
�1 from a random sample of data when we make an assumption restricting how the
unobservable u is related to the explanatory variable x. Without such a restriction, we
will not be able to estimate the ceteris paribus effect, �1. Because u and x are random
variables, we need a concept grounded in probability.

Before we state the key assumption about how x and u are related, there is one assump-
tion about u that we can always make. As long as the intercept �0 is included in the equa-
tion, nothing is lost by assuming that the average value of u in the population is zero.

Part 1 Regression Analysis with Cross-Sectional Data
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Mathematically,

E(u) � 0. (2.5)

Importantly, assume (2.5) says nothing about the relationship between u and x but sim-
ply makes a statement about the distribution of the unobservables in the population.
Using the previous examples for illustration, we can see that assumption (2.5) is not very
restrictive. In Example 2.1, we lose nothing by normalizing the unobserved factors affect-
ing soybean yield, such as land quality, to have an average of zero in the population of
all cultivated plots. The same is true of the unobserved factors in Example 2.2. Without
loss of generality, we can assume that things such as average ability are zero in the pop-
ulation of all working people. If you are not convinced, you can work through Problem
2.2 to see that we can always redefine the intercept in equation (2.1) to make (2.5) true.

We now turn to the crucial assumption regarding how u and x are related. A natural
measure of the association between two random variables is the correlation coefficient.
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that u and x are uncorrelated goes
a long way toward defining the sense in which u and x should be unrelated in equation
(2.1). But it does not go far enough, because correlation measures only linear depen-
dence between u and x. Correlation has a somewhat counterintuitive feature: it is possi-
ble for u to be uncorrelated with x while being correlated with functions of x, such as
x2. (See Section B.4 for further discussion.) This possibility is not acceptable for most
regression purposes, as it causes problems for interpretating the model and for deriving
statistical properties. A better assumption involves the expected value of u given x.

Because u and x are random variables, we can define the conditional distribution of
u given any value of x. In particular, for any x, we can obtain the expected (or average)
value of u for that slice of the population described by the value of x. The crucial
assumption is that the average value of u does not depend on the value of x. We can
write this as

E(u�x) � E(u) � 0, (2.6)

where the second equality follows from (2.5). The first equality in equation (2.6) is the
new assumption, called the zero conditional mean assumption. It says that, for any
given value of x, the average of the unobservables is the same and therefore must equal
the average value of u in the entire population.

Let us see what (2.6) entails in the wage example. To simplify the discussion,
assume that u is the same as innate ability. Then (2.6) requires that the average level of
ability is the same regardless of years of education. For example, if E(abil�8) denotes
the average ability for the group of all people with eight years of education, and
E(abil�16) denotes the average ability among people in the population with 16 years of
education, then (2.6) implies that these must be the same. In fact, the average ability
level must be the same for all education levels. If, for example, we think that average
ability increases with years of education, then (2.6) is false. (This would happen if, on
average, people with more ability choose to become more educated.) As we cannot
observe innate ability, we have no way of knowing whether or not average ability is the
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same for all education levels. But this is an issue that we must address before applying
simple regression analysis.

In the fertilizer example, if fertilizer amounts are chosen independently of other fea-
tures of the plots, then (2.6) will hold: the
average land quality will not depend on the
amount of fertilizer. However, if more fer-
tilizer is put on the higher quality plots of
land, then the expected value of u changes
with the level of fertilizer, and (2.6) fails.

Assumption (2.6) gives �1 another
interpretation that is often useful. Taking
the expected value of (2.1) conditional on
x and using E(u�x) � 0 gives

E(y�x) � �0 � �1x (2.8)

Equation (2.8) shows that the population regression function (PRF), E(y�x), is a lin-
ear function of x. The linearity means that a one-unit increase in x changes the expect-
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Suppose that a score on a final exam, score, depends on classes
attended (attend ) and unobserved factors that affect exam perfor-
mance (such as student ability):

score � �0 � �1attend � u (2.7)

When would you expect this model to satisfy (2.6)?

F i g u r e  2 . 1

E(y�x) as a linear function of x.

y

x1

E(y�x) � �0 � �1x

x2 x3
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ed value of y by the amount �1. For any given value of x, the distribution of y is cen-
tered about E(y�x), as illustrated in Figure 2.1.

When (2.6) is true, it is useful to break y into two components. The piece �0 � �1x
is sometimes called the systematic part of y—that is, the part of y explained by x—and
u is called the unsystematic part, or the part of y not explained by x. We will use
assumption (2.6) in the next section for motivating estimates of �0 and �1. This assump-
tion is also crucial for the statistical analysis in Section 2.5.

2.2 DERIVING THE ORDINARY LEAST SQUARES
ESTIMATES

Now that we have discussed the basic ingredients of the simple regression model, we
will address the important issue of how to estimate the parameters �0 and �1 in equa-
tion (2.1). To do this, we need a sample from the population. Let {(xi,yi): i�1,…,n}
denote a random sample of size n from the population. Since these data come from
(2.1), we can write

yi � �0 � �1xi � ui (2.9)

for each i. Here, ui is the error term for observation i since it contains all factors affect-
ing yi other than xi.

As an example, xi might be the annual income and yi the annual savings for family
i during a particular year. If we have collected data on 15 families, then n � 15. A scat-
ter plot of such a data set is given in Figure 2.2, along with the (necessarily fictitious)
population regression function.

We must decide how to use these data to obtain estimates of the intercept and slope
in the population regression of savings on income.

There are several ways to motivate the following estimation procedure. We will use
(2.5) and an important implication of assumption (2.6): in the population, u has a zero
mean and is uncorrelated with x. Therefore, we see that u has zero expected value and
that the covariance between x and u is zero:

E(u) � 0 (2.10)

Cov(x,u) � E(xu) � 0, (2.11)

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the
unknown parameters �0 and �1, equations (2.10) and (2.11) can be written as

E(y � �0 � �1x) � 0 (2.12)

and

E[x(y � �0 � �1x)] � 0, (2.13)

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability
distribution of (x,y) in the population. Since there are two unknown parameters to esti-
mate, we might hope that equations (2.12) and (2.13) can be used to obtain good esti-
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mators of �0 and �1. In fact, they can be. Given a sample of data, we choose estimates
�̂0 and �̂1 to solve the sample counterparts of (2.12) and (2.13):

n�1 �
n

i�1
(yi � �̂0 � �̂1xi) � 0. (2.14)

n�1 �
n

i�1
xi(yi � �̂0 � �̂1xi) � 0. (2.15)

This is an example of the method of moments approach to estimation. (See Section C.4
for a discussion of different estimation approaches.) These equations can be solved for
�̂0 and �̂1.

Using the basic properties of the summation operator from Appendix A, equation
(2.14) can be rewritten as

ȳ � �̂0 � �̂1x̄, (2.16)

where ȳ � n�1 �
n

i�1
yi is the sample average of the yi and likewise for x̄. This equation allows

us to write �̂0 in terms of �̂1, ȳ, and x̄:
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Scatterplot of savings and income for 15 families, and the population regression
E(savings�income) � �0 � �1income.

E(savings�income) � �0 � �1income

savings

0
income

0
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�̂0 � ȳ � �̂1x̄. (2.17)

Therefore, once we have the slope estimate �̂1, it is straightforward to obtain the inter-
cept estimate �̂0, given ȳ and x̄.

Dropping the n�1 in (2.15) (since it does not affect the solution) and plugging (2.17)
into (2.15) yields

�
n

i�1
xi(yi � (ȳ � �̂1x̄) � �̂1xi) � 0

which, upon rearrangement, gives

�
n

i�1
xi(yi � ȳ) � �̂1 �

n

i�1
xi(xi � x̄).

From basic properties of the summation operator [see (A.7) and (A.8)],

�
n

i�1
xi(xi � x̄) � �

n

i�1
(xi � x̄)2 and �

n

i�1
xi(yi � ȳ) � �

n

i�1
(xi � x̄)(yi � ȳ).

Therefore, provided that

�
n

i�1
(xi � x̄)2 � 0, (2.18)

the estimated slope is

�̂1 � . (2.19)

Equation (2.19) is simply the sample covariance between x and y divided by the sam-
ple variance of x. (See Appendix C. Dividing both the numerator and the denominator
by n � 1 changes nothing.) This makes sense because �1 equals the population covari-
ance divided by the variance of x when E(u) � 0 and Cov(x,u) � 0. An immediate
implication is that if x and y are positively correlated in the sample, then �̂1 is positive;
if x and y are negatively correlated, then �̂1 is negative.

Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only
assumption needed to compute the estimates for a particular sample is (2.18). This is
hardly an assumption at all: (2.18) is true provided the xi in the sample are not all equal
to the same value. If (2.18) fails, then we have either been unlucky in obtaining our
sample from the population or we have not specified an interesting problem (x does not
vary in the population.). For example, if y � wage and x � educ, then (2.18) fails only
if everyone in the sample has the same amount of education. (For example, if everyone
is a high school graduate. See Figure 2.3.) If just one person has a different amount of
education, then (2.18) holds, and the OLS estimates can be computed.

�
n

i�1
(xi � x̄) (yi � ȳ)

�
n

i�1
(xi � x̄)2
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The estimates given in (2.17) and (2.19) are called the ordinary least squares
(OLS) estimates of �0 and �1. To justify this name, for any �̂0 and �̂1, define a fitted
value for y when x � xi such as

ŷi � �̂0 � �̂1xi, (2.20)

for the given intercept and slope. This is the value we predict for y when x � xi. There
is a fitted value for each observation in the sample. The residual for observation i is the
difference between the actual yi and its fitted value:

ûi � yi � ŷi � yi � �̂0 � �̂1xi. (2.21)

Again, there are n such residuals. (These are not the same as the errors in (2.9), a point
we return to in Section 2.5.) The fitted values and residuals are indicated in Figure 2.4.

Now, suppose we choose �̂0 and �̂1 to make the sum of squared residuals,

�
n

i�1
ûi

2 � �
n

i�1
(yi � �̂0 � �̂1xi)

2, (2.22)
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A scatterplot of wage against education when educi � 12 for all i.
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as small as possible. The appendix to this chapter shows that the conditions necessary
for (�̂0,�̂1) to minimize (2.22) are given exactly by equations (2.14) and (2.15), without
n�1. Equations (2.14) and (2.15) are often called the first order conditions for the OLS
estimates, a term that comes from optimization using calculus (see Appendix A). From
our previous calculations, we know that the solutions to the OLS first order conditions
are given by (2.17) and (2.19). The name “ordinary least squares” comes from the fact
that these estimates minimize the sum of squared residuals.

Once we have determined the OLS intercept and slope estimates, we form the OLS
regression line:

ŷ � �̂0 � �̂1x, (2.23)

where it is understood that �̂0 and �̂1 have been obtained using equations (2.17) and
(2.19). The notation ŷ, read as “y hat,” emphasizes that the predicted values from equa-
tion (2.23) are estimates. The intercept, �̂0, is the predicted value of y when x � 0,
although in some cases it will not make sense to set x � 0. In those situations, �̂0 is not,
in itself, very interesting. When using (2.23) to compute predicted values of y for vari-
ous values of x, we must account for the intercept in the calculations. Equation (2.23)
is also called the sample regression function (SRF) because it is the estimated version
of the population regression function E(y�x) � �0 � �1x. It is important to remember
that the PRF is something fixed, but unknown, in the population. Since the SRF is
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Fitted values and residuals.

y � �0 � �1x

y

ˆ ˆˆ

x1 xi x

yi

yi � Fitted valuey1

ûi � residual

ˆ

d  7/14/99 4:30 PM  Page 31



obtained for a given sample of data, a new sample will generate a different slope and
intercept in equation (2.23).

In most cases the slope estimate, which we can write as

�̂1 � �ŷ/�x, (2.24)

is of primary interest. It tells us the amount by which ŷ changes when x increases by
one unit. Equivalently,

�ŷ � �̂1�x, (2.25)

so that given any change in x (whether positive or negative), we can compute the pre-
dicted change in y.

We now present several examples of simple regression obtained by using real data.
In other words, we find the intercept and slope estimates with equations (2.17) and
(2.19). Since these examples involve many observations, the calculations were done
using an econometric software package. At this point, you should be careful not to read
too much into these regressions; they are not necessarily uncovering a causal relation-
ship. We have said nothing so far about the statistical properties of OLS. In Section 2.5,
we consider statistical properties after we explicitly impose assumptions on the popu-
lation model equation (2.1).

E X A M P L E  2 . 3
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

For the population of chief executive officers, let y be annual salary (salary) in thousands of
dollars. Thus, y � 856.3 indicates an annual salary of $856,300, and y � 1452.6 indicates
a salary of $1,452,600. Let x be the average return equity (roe) for the CEO’s firm for the
previous three years. (Return on equity is defined in terms of net income as a percentage
of common equity.) For example, if roe � 10, then average return on equity is 10 percent.

To study the relationship between this measure of firm performance and CEO com-
pensation, we postulate the simple model

salary � �0 � �1roe � u.

The slope parameter �1 measures the change in annual salary, in thousands of dollars, when
return on equity increases by one percentage point. Because a higher roe is good for the
company, we think �1 � 0.

The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these
data were obtained from Business Week (5/6/91). In this sample, the average annual salary
is $1,281,120, with the smallest and largest being $223,000 and $14,822,000, respective-
ly. The average return on equity for the years 1988, 1989, and 1990 is 17.18 percent, with
the smallest and largest values being 0.5 and 56.3 percent, respectively.

Using the data in CEOSAL1.RAW, the OLS regression line relating salary to roe is

sal̂ary � 963.191 � 18.501 roe, (2.26)
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where the intercept and slope estimates have been rounded to three decimal places; we
use “salary hat” to indicate that this is an estimated equation. How do we interpret the
equation? First, if the return on equity is zero, roe � 0, then the predicted salary is the inter-
cept, 963.191, which equals $963,191 since salary is measured in thousands. Next, we can
write the predicted change in salary as a function of the change in roe: �sal̂ary � 18.501
(�roe). This means that if the return on equity increases by one percentage point, �roe �
1, then salary is predicted to change by about 18.5, or $18,500. Because (2.26) is a linear
equation, this is the estimated change regardless of the initial salary.

We can easily use (2.26) to compare predicted salaries at different values of roe.
Suppose roe � 30. Then sal̂ary � 963.191 � 18.501(30) � 1518.221, which is just over
$1.5 million. However, this does not mean that a particular CEO whose firm had an
roe � 30 earns $1,518,221. There are many other factors that affect salary. This is just 
our prediction from the OLS regression line (2.26). The estimated line is graphed in Fig-
ure 2.5, along with the population regression function E(salary�roe). We will never know
the PRF, so we cannot tell how close the SRF is to the PRF. Another sample of data will
give a different regression line, which may or may not be closer to the population regres-
sion line.
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The OLS regression line sal̂ary � 963.191 � 18.50 roe and the (unknown) population
regression function.

salary

963.191

salary � 963.191 � 18.501 roe

E(salary�roe) � �0 � �1roe
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ˆ
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E X A M P L E  2 . 4
( W a g e  a n d  E d u c a t i o n )

For the population of people in the work force in 1976, let y � wage, where wage is mea-
sured in dollars per hour. Thus, for a particular person, if wage � 6.75, the hourly wage is
$6.75. Let x � educ denote years of schooling; for example, educ � 12 corresponds to a
complete high school education. Since the average wage in the sample is $5.90, the con-
sumer price index indicates that this amount is equivalent to $16.64 in 1997 dollars.

Using the data in WAGE1.RAW where n � 526 individuals, we obtain the following OLS
regression line (or sample regression function):

wâge � �0.90 � 0.54 educ. (2.27)

We must interpret this equation with caution. The intercept of �0.90 literally means that a
person with no education has a predicted hourly wage of �90 cents an hour. This, of
course, is silly. It turns out that no one in the sample has less than eight years of education,
which helps to explain the crazy prediction for a zero education value. For a person with

eight years of education, the predicted wage
is wâge � �0.90 � 0.54(8) � 3.42, or
$3.42 per hour (in 1976 dollars).

The slope estimate in (2.27) implies that
one more year of education increases hourly
wage by 54 cents an hour. Therefore, four
more years of education increase the pre-

dicted wage by 4(0.54) � 2.16 or $2.16 per hour. These are fairly large effects. Because of
the linear nature of (2.27), another year of education increases the wage by the same
amount, regardless of the initial level of education. In Section 2.4, we discuss some meth-
ods that allow for nonconstant marginal effects of our explanatory variables.

E X A M P L E  2 . 5
( V o t i n g  O u t c o m e s  a n d  C a m p a i g n  E x p e n d i t u r e s )

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for
173 two-party races for the U.S. House of Representatives in 1988. There are two candi-
dates in each race, A and B. Let voteA be the percentage of the vote received by Candidate
A and shareA be the the percentage of total campaign expenditures accounted for by
Candidate A. Many factors other than shareA affect the election outcome (including the
quality of the candidates and possibly the dollar amounts spent by A and B). Nevertheless,
we can estimate a simple regression model to find out whether spending more relative to
one’s challenger implies a higher percentage of the vote.

The estimated equation using the 173 observations is

vot̂eA � 40.90 � 0.306 shareA. (2.28)

This means that, if the share of Candidate A’s expenditures increases by one percent-
age point, Candidate A receives almost one-third of a percentage point more of the
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The estimated wage from (2.27), when educ � 8, is $3.42 in 1976
dollars. What is this value in 1997 dollars? (Hint: You have enough
information in Example 2.4 to answer this question.)
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total vote. Whether or not this is a causal effect is unclear, but the result is what we
might expect.

In some cases, regression analysis is not used to determine causality but to simply
look at whether two variables are positively or negatively related, much like a standard

correlation analysis. An example of this
occurs in Problem 2.12, where you are
asked to use data from Biddle and
Hamermesh (1990) on time spent sleeping
and working to investigate the tradeoff
between these two factors.

A Note on Terminolgy

In most cases, we will indicate the estimation of a relationship through OLS by writing
an equation such as (2.26), (2.27), or (2.28). Sometimes, for the sake of brevity, it is
useful to indicate that an OLS regression has been run without actually writing out the
equation. We will often indicate that equation (2.23) has been obtained by OLS in say-
ing that we run the regression of

y on x, (2.29)

or simply that we regress y on x. The positions of y and x in (2.29) indicate which is the
dependent variable and which is the independent variable: we always regress the depen-
dent variable on the independent variable. For specific applications, we replace y and x
with their names. Thus, to obtain (2.26), we regress salary on roe or to obtain (2.28),
we regress voteA on shareA.

When we use such terminology in (2.29), we will always mean that we plan to esti-
mate the intercept, �̂0, along with the slope, �̂1. This case is appropriate for the vast
majority of applications. Occasionally, we may want to estimate the relationship
between y and x assuming that the intercept is zero (so that x � 0 implies that ŷ � 0);
we cover this case briefly in Section 2.6. Unless explicitly stated otherwise, we always
estimate an intercept along with a slope.

2.3 MECHANICS OF OLS

In this section, we cover some algebraic properties of the fitted OLS regression line.
Perhaps the best way to think about these properties is to realize that they are features
of OLS for a particular sample of data. They can be contrasted with the statistical prop-
erties of OLS, which requires deriving features of the sampling distributions of the esti-
mators. We will discuss statistical properties in Section 2.5.

Several of the algebraic properties we are going to derive will appear mundane.
Nevertheless, having a grasp of these properties helps us to figure out what happens to
the OLS estimates and related statistics when the data are manipulated in certain ways,
such as when the measurement units of the dependent and independent variables change.
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In Example 2.5, what is the predicted vote for Candidate A if shareA
� 60 (which means 60 percent)? Does this answer seem reasonable?
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Fitted Values and Residuals

We assume that the intercept and slope estimates, �̂0 and �̂1, have been obtained for the
given sample of data. Given �̂0 and �̂1, we can obtain the fitted value ŷi for each obser-
vation. [This is given by equation (2.20).] By definition, each fitted value of ŷi is on the
OLS regression line. The OLS residual associated with observation i, ûi, is the differ-
ence between yi and its fitted value, as given in equation (2.21). If ûi is positive, the line
underpredicts yi; if ûi is negative, the line overpredicts yi. The ideal case for observation
i is when ûi � 0, but in most cases every residual is not equal to zero. In other words,
none of the data points must actually lie on the OLS line.

E X A M P L E  2 . 6
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

Table 2.2 contains a listing of the first 15 observations in the CEO data set, along with the
fitted values, called salaryhat, and the residuals, called uhat.

Table 2.2

Fitted Values and Residuals for the First 15 CEOs

obsno roe salary salaryhat uhat

1 14.1 1095 1224.058 �129.0581

2 10.9 1001 1164.854 �163.8542

3 23.5 1122 1397.969 �275.9692

4 5.9 578 1072.348 �494.3484

5 13.8 1368 1218.508 149.4923

6 20.0 1145 1333.215 �188.2151

7 16.4 1078 1266.611 �188.6108

8 16.3 1094 1264.761 �170.7606

9 10.5 1237 1157.454 79.54626

10 26.3 833 1449.773 �616.7726

11 25.9 567 1442.372 �875.3721

12 26.8 933 1459.023 �526.0231
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Table 2.2 (concluded)

obsno roe salary salaryhat uhat

13 14.8 1339 1237.009 101.9911

14 22.3 937 1375.768 �438.7678

15 56.3 2011 2004.808 �006.191895

The first four CEOs have lower salaries than what we predicted from the OLS regression line
(2.26); in other words, given only the firm’s roe, these CEOs make less than what we pre-
dicted. As can be seen from the positive uhat, the fifth CEO makes more than predicted
from the OLS regression line.

Algebraic Properties of OLS Statistics

There are several useful algebraic properties of OLS estimates and their associated sta-
tistics. We now cover the three most important of these.

(1) The sum, and therefore the sample average of the OLS residuals, is zero. 
Mathematically,

�
n

i�1
ûi � 0. (2.30)

This property needs no proof; it follows immediately from the OLS first order condi-
tion (2.14), when we remember that the residuals are defined by ûi � yi � �̂0 � �̂1xi.
In other words, the OLS estimates �̂0 and �̂1 are chosen to make the residuals add up to
zero (for any data set). This says nothing about the residual for any particular observa-
tion i.

(2) The sample covariance between the regressors and the OLS residuals is zero.
This follows from the first order condition (2.15), which can be written in terms of the
residuals as

�
n

i�1
xiûi � 0. (2.31)

The sample average of the OLS residuals is zero, so the left hand side of (2.31) is pro-
portional to the sample covariance between xi and ûi.

(3) The point (x̄,ȳ) is always on the OLS regression line. In other words, if we take
equation (2.23) and plug in x̄ for x, then the predicted value is ȳ. This is exactly what
equation (2.16) shows us.
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E X A M P L E  2 . 7
( W a g e  a n d  E d u c a t i o n )

For the data in WAGE1.RAW, the average hourly wage in the sample is 5.90, rounded to
two decimal places, and the average education is 12.56. If we plug educ � 12.56 into the
OLS regression line (2.27), we get wâge � �0.90 � 0.54(12.56) � 5.8824, which equals
5.9 when rounded to the first decimal place. The reason these figures do not exactly agree
is that we have rounded the average wage and education, as well as the intercept and slope
estimates. If we did not initially round any of the values, we would get the answers to agree
more closely, but this practice has little useful effect.

Writing each yi as its fitted value, plus its residual, provides another way to intepret
an OLS regression. For each i, write

yi � ŷi � ûi. (2.32)

From property (1) above, the average of the residuals is zero; equivalently, the sample
average of the fitted values, ŷi, is the same as the sample average of the yi, or ȳ̂ � ȳ.
Further, properties (1) and (2) can be used to show that the sample covariance
between ŷi and ûi is zero. Thus, we can view OLS as decomposing each yi into two
parts, a fitted value and a residual. The fitted values and residuals are uncorrelated in
the sample.

Define the total sum of squares (SST), the explained sum of squares (SSE), and
the residual sum of squares (SSR) (also known as the sum of squared residuals), as
follows:

SST � �
n

i�1
(yi � ȳ)2. (2.33)

SSE � �
n

i�1
(ŷi � ȳ)2. (2.34)

SSR � �
n

i�1
ûi

2. (2.35)

SST is a measure of the total sample variation in the yi; that is, it measures how spread
out the yi are in the sample. If we divide SST by n � 1, we obtain the sample variance
of y, as discussed in Appendix C. Similarly, SSE measures the sample variation in the
ŷi (where we use the fact that ȳ̂ � ȳ), and SSR measures the sample variation in the ûi.
The total variation in y can always be expressed as the sum of the explained variation
and the unexplained variation SSR. Thus,

SST � SSE � SSR. (2.36)
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Proving (2.36) is not difficult, but it requires us to use all of the properties of the sum-
mation operator covered in Appendix A. Write

�
n

i�1
(yi � ȳ)2 � �

n

i�1
[(yi � ŷi) � (ŷi � ȳ)]2

� �
n

i�1
[ûi � (ŷi � ȳ)]2

� �
n

i�1
ûi

2 � 2 �
n

i�1
ûi(ŷi � ȳ) � �

n

i�1
(ŷi � ȳ)2

� SSR � 2 �
n

i�1
ûi(ŷi � ȳ) � SSE.

Now (2.36) holds if we show that

�
n

i�1
ûi(ŷi � ȳ) � 0. (2.37)

But we have already claimed that the sample covariance between the residuals and the
fitted values is zero, and this covariance is just (2.37) divided by n�1. Thus, we have
established (2.36).

Some words of caution about SST, SSE, and SSR are in order. There is no uniform
agreement on the names or abbreviations for the three quantities defined in equations
(2.33), (2.34), and (2.35). The total sum of squares is called either SST or TSS, so there
is little confusion here. Unfortunately, the explained sum of squares is sometimes called
the “regression sum of squares.” If this term is given its natural abbreviation, it can eas-
ily be confused with the term residual sum of squares. Some regression packages refer
to the explained sum of squares as the “model sum of squares.”

To make matters even worse, the residual sum of squares is often called the “error
sum of squares.” This is especially unfortunate because, as we will see in Section 2.5,
the errors and the residuals are different quantities. Thus, we will always call (2.35) the
residual sum of squares or the sum of squared residuals. We prefer to use the abbrevia-
tion SSR to denote the sum of squared residuals, because it is more common in econo-
metric packages.

Goodness-of-Fit

So far, we have no way of measuring how well the explanatory or independent variable,
x, explains the dependent variable, y. It is often useful to compute a number that sum-
marizes how well the OLS regression line fits the data. In the following discussion, be
sure to remember that we assume that an intercept is estimated along with the slope.

Assuming that the total sum of squares, SST, is not equal to zero—which is true
except in the very unlikely event that all the yi equal the same value—we can divide
(2.36) by SST to get 1 � SSE/SST � SSR/SST. The R-squared of the regression,
sometimes called the coefficient of determination, is defined as
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R2 � SSE/SST � 1 � SSR/SST. (2.38)

R2 is the ratio of the explained variation compared to the total variation, and thus it is
interpreted as the fraction of the sample variation in y that is explained by x. The sec-
ond equality in (2.38) provides another way for computing R2.

From (2.36), the value of R2 is always between zero and one, since SSE can be no
greater than SST. When interpreting R2, we usually multiply it by 100 to change it into
a percent: 100	R2 is the percentage of the sample variation in y that is explained by x.

If the data points all lie on the same line, OLS provides a perfect fit to the data. In
this case, R2 � 1. A value of R2 that is nearly equal to zero indicates a poor fit of the
OLS line: very little of the variation in the yi is captured by the variation in the ŷi (which
all lie on the OLS regression line). In fact, it can be shown that R2 is equal to the square
of the sample correlation coefficient between yi and ŷi. This is where the term
“R-squared” came from. (The letter R was traditionally used to denote an estimate of a
population correlation coefficient, and its usage has survived in regression analysis.)

E X A M P L E  2 . 8
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

In the CEO salary regression, we obtain the following:

sal̂ary � 963.191 � 18.501 roe (2.39)

n � 209, R2 � 0.0132

We have reproduced the OLS regression line and the number of observations for clarity.
Using the R-squared (rounded to four decimal places) reported for this equation, we can
see how much of the variation in salary is actually explained by the return on equity. The
answer is: not much. The firm’s return on equity explains only about 1.3% of the variation
in salaries for this sample of 209 CEOs. That means that 98.7% of the salary variations for
these CEOs is left unexplained! This lack of explanatory power may not be too surprising
since there are many other characteristics of both the firm and the individual CEO that
should influence salary; these factors are necessarily included in the errors in a simple
regression analysis.

In the social sciences, low R-squareds in regression equations are not uncommon,
especially for cross-sectional analysis. We will discuss this issue more generally under
multiple regression analysis, but it is worth emphasizing now that a seemingly low R-
squared does not necessarily mean that an OLS regression equation is useless. It is still
possible that (2.39) is a good estimate of the ceteris paribus relationship between salary
and roe; whether or not this is true does not depend directly on the size of R-squared.
Students who are first learning econometrics tend to put too much weight on the size of
the R-squared in evaluating regression equations. For now, be aware that using
R-squared as the main gauge of success for an econometric analysis can lead to trouble.

Sometimes the explanatory variable explains a substantial part of the sample varia-
tion in the dependent variable.
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E X A M P L E  2 . 9
( V o t i n g  O u t c o m e s  a n d  C a m p a i g n  E x p e n d i t u r e s )

In the voting outcome equation in (2.28), R2 � 0.505. Thus, the share of campaign expen-
ditures explains just over 50 percent of the variation in the election outcomes for this sam-
ple. This is a fairly sizable portion.

2.4 UNITS OF MEASUREMENT AND FUNCTIONAL
FORM

Two important issues in applied economics are (1) understanding how changing the
units of measurement of the dependent and/or independent variables affects OLS esti-
mates and (2) knowing how to incorporate popular functional forms used in economics
into regression analysis. The mathematics needed for a full understanding of func-
tional form issues is reviewed in Appendix A.

The Effects of Changing Units of Measurement on OLS
Statistics

In Example 2.3, we chose to measure annual salary in thousands of dollars, and the
return on equity was measured as a percent (rather than as a decimal). It is crucial to
know how salary and roe are measured in this example in order to make sense of the
estimates in equation (2.39).

We must also know that OLS estimates change in entirely expected ways when the
units of measurement of the dependent and independent variables change. In Example
2.3, suppose that, rather than measuring salary in thousands of dollars, we measure it in
dollars. Let salardol be salary in dollars (salardol � 845,761 would be interpreted as
$845,761.). Of course, salardol has a simple relationship to the salary measured in
thousands of dollars: salardol � 1,000	salary. We do not need to actually run the
regression of salardol on roe to know that the estimated equation is:

salârdol � 963,191 � 18,501 roe. (2.40)

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and the
slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation.
Looking at (2.40), if roe � 0, then salârdol � 963,191, so the predicted salary is
$963,191 [the same value we obtained from equation (2.39)]. Furthermore, if roe
increases by one, then the predicted salary increases by $18,501; again, this is what we
concluded from our earlier analysis of equation (2.39).

Generally, it is easy to figure out what happens to the intercept and slope estimates
when the dependent variable changes units of measurement. If the dependent variable
is multiplied by the constant c—which means each value in the sample is multiplied by
c—then the OLS intercept and slope estimates are also multiplied by c. (This assumes
nothing has changed about the independent variable.) In the CEO salary example, c �
1,000 in moving from salary to salardol.
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We can also use the CEO salary example to see what happens when we change
the units of measurement of the indepen-
dent variable. Define roedec � roe/100
to be the decimal equivalent of roe; thus,
roedec � 0.23 means a return on equity of
23 percent. To focus on changing the units
of measurement of the independent vari-
able, we return to our original dependent

variable, salary, which is measured in thousands of dollars. When we regress salary on
roedec, we obtain

sal̂ary � 963.191 � 1850.1 roedec. (2.41)

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it
should be. Changing roe by one percentage point is equivalent to �roedec � 0.01. From
(2.41), if �roedec � 0.01, then �sal̂ary � 1850.1(0.01) � 18.501, which is what is
obtained by using (2.39). Note that, in moving from (2.39) to (2.41), the independent
variable was divided by 100, and so the OLS slope estimate was multiplied by 100, pre-
serving the interpretation of the equation. Generally, if the independent variable is
divided or multiplied by some nonzero constant, c, then the OLS slope coefficient is
also multiplied or divided by c respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a
zero return on equity. In general, changing the units of measurement of only the inde-
pendent variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for
OLS regression. We can also ask what happens to R2 when the unit of measurement
of either the independent or the dependent variable changes. Without doing any alge-
bra, we should know the result: the goodness-of-fit of the model should not depend on
the units of measurement of our variables. For example, the amount of variation in
salary, explained by the return on equity, should not depend on whether salary is mea-
sured in dollars or in thousands of dollars or on whether return on equity is a percent
or a decimal. This intuition can be verified mathematically: using the definition of R2,
it can be shown that R2 is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression

So far we have focused on linear relationships between the dependent and independent
variables. As we mentioned in Chapter 1, linear relationships are not nearly general
enough for all economic applications. Fortunately, it is rather easy to incorporate many
nonlinearities into simple regression analysis by appropriately defining the dependent
and independent variables. Here we will cover two possibilities that often appear in
applied work.

In reading applied work in the social sciences, you will often encounter regression
equations where the dependent variable appears in logarithmic form. Why is this done?
Recall the wage-education example, where we regressed hourly wage on years of edu-
cation. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that
each additional year of education is predicted to increase hourly wage by 54 cents.
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Q U E S T I O N  2 . 4

Suppose that salary is measured in hundreds of dollars, rather than
in thousands of dollars, say salarhun. What will be the OLS intercept
and slope estimates in the regression of salarhun on roe?
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Because of the linear nature of (2.27), 54 cents is the increase for either the first year of
education or the twentieth year; this may not be reasonable.

Suppose, instead, that the percentage increase in wage is the same given one more
year of education. Model (2.27) does not imply a constant percentage increase: the per-
centage increases depends on the initial wage. A model that gives (approximately) a
constant percentage effect is

log(wage) � �0 � �1educ � u, (2.42)

where log(	) denotes the natural logarithm. (See Appendix A for a review of loga-
rithms.) In particular, if �u � 0, then

%�wage � (100 	�1)�educ. (2.43)

Notice how we multiply �1 by 100 to get the percentage change in wage given one addi-
tional year of education. Since the percentage change in wage is the same for each addi-
tional year of education, the change in wage for an extra year of education increases as
education increases; in other words, (2.42) implies an increasing return to education.
By exponentiating (2.42), we can write wage � exp(�0 � �1educ � u). This equation
is graphed in Figure 2.6, with u � 0.
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wage � exp(�0 � �1educ), with �1 � 0.

wage

educ0
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Estimating a model such as (2.42) is straightforward when using simple regression.
Just define the dependent variable, y, to be y � log(wage). The independent variable is
represented by x � educ. The mechanics of OLS are the same as before: the intercept
and slope estimates are given by the formulas (2.17) and (2.19). In other words, we
obtain �̂0 and �̂1 from the OLS regression of log(wage) on educ.

E X A M P L E  2 . 1 0
( A  L o g  W a g e  E q u a t i o n )

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we
obtain the following relationship:

log(̂wage) � 0.584 � 0.083 educ (2.44)

n � 526, R2 � 0.186.

The coefficient on educ has a percentage interpretation when it is multiplied by 100: wage
increases by 8.3 percent for every additional year of education. This is what economists
mean when they refer to the “return to another year of education.”

It is important to remember that the main reason for using the log of wage in (2.42) is
to impose a constant percentage effect of education on wage. Once equation (2.42) is
obtained, the natural log of wage is rarely mentioned. In particular, it is not correct to say
that another year of education increases log(wage) by 8.3%.

The intercept in (2.42) is not very meaningful, as it gives the predicted log(wage),
when educ � 0. The R-squared shows that educ explains about 18.6 percent of the vari-
ation in log(wage) (not wage). Finally, equation (2.44) might not capture all of the non-
linearity in the relationship between wage and schooling. If there are “diploma effects,”
then the twelfth year of education—graduation from high school—could be worth much
more than the eleventh year. We will learn how to allow for this kind of nonlinearity in
Chapter 7.

Another important use of the natural log is in obtaining a constant elasticity model.

E X A M P L E  2 . 1 1
( C E O  S a l a r y  a n d  F i r m  S a l e s )

We can estimate a constant elasticity model relating CEO salary to firm sales. The data set
is the same one used in Example 2.3, except we now relate salary to sales. Let sales be
annual firm sales, measured in millions of dollars. A constant elasticity model is

log(salary) � �0 � �1log(sales) � u, (2.45)

where �1 is the elasticity of salary with respect to sales. This model falls under the simple
regression model by defining the dependent variable to be y � log(salary) and the inde-
pendent variable to be x � log(sales). Estimating this equation by OLS gives
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log(salâry) � 4.822 � 0.257 log(sales) (2.46)

n � 209, R2 � 0.211.

The coefficient of log(sales) is the estimated elasticity of salary with respect to sales. It
implies that a 1 percent increase in firm sales increases CEO salary by about 0.257 per-
cent—the usual interpretation of an elasticity.

The two functional forms covered in this section will often arise in the remainder of
this text. We have covered models containing natural logarithms here because they
appear so frequently in applied work. The interpretation of such models will not be
much different in the multiple regression case.

It is also useful to note what happens to the intercept and slope estimates if we change
the units of measurement of the dependent variable when it appears in logarithmic form.
Because the change to logarithmic form approximates a proportionate change, it makes
sense that nothing happens to the slope. We can see this by writing the rescaled vari-
able as c1yi for each observation i. The original equation is log(yi) � �0 � �1xi � ui. If
we add log(c1) to both sides, we get log(c1) � log(yi) � [log(c1) � �0] � �1xi � ui, or
log(c1yi) � [log(c1) � �0] � �1xi � ui. (Remember that the sum of the logs is equal to
the log of their product as shown in Appendix A.) Therefore, the slope is still �1, but the
intercept is now log(c1) � �0. Similarly, if the independent variable is log(x), and we
change the units of measurement of x before taking the log, the slope remains the same
but the intercept does not change. You will be asked to verify these claims in Problem 2.9.

We end this subsection by summarizing four combinations of functional forms
available from using either the original variable or its natural log. In Table 2.3, x and y
stand for the variables in their original form. The model with y as the dependent vari-
able and x as the independent variable is called the level-level model, because each vari-
able appears in its level form. The model with log(y) as the dependent variable and x as
the independent variable is called the log-level model. We will not explicitly discuss the
level-log model here, because it arises less often in practice. In any case, we will see
examples of this model in later chapters.
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Table 2.3

Summary of Functional Forms Involving Logarithms

Dependent Independent Interpretation
Model Variable Variable of �1

level-level y x �y � �1�x

level-log y log(x) �y � (�1/100)%�x

log-level log(y) x %�y � (100�1)�x

log-log log(y) log(x) %�y � �1%�x
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The last column in Table 2.3 gives the interpretation of �1. In the log-level model,
100 	�1 is sometimes called the semi-elasticity of y with respect to x. As we mentioned
in Example 2.11, in the log-log model, �1 is the elasticity of y with respect to x. Table
2.3 warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression

The simple regression model that we have studied in this chapter is also called the sim-
ple linear regression model. Yet, as we have just seen, the general model also allows for
certain nonlinear relationships. So what does “linear” mean here? You can see by look-
ing at equation (2.1) that y � �0 � �1x � u. The key is that this equation is linear in the
parameters, �0 and �1. There are no restrictions on how y and x relate to the original
explained and explanatory variables of interest. As we saw in Examples 2.7 and 2.8, y
and x can be natural logs of variables, and this is quite common in applications. But we
need not stop there. For example, nothing prevents us from using simple regression to
estimate a model such as cons � �0 � �1�inc

—
� u, where cons is annual consumption

and inc is annual income.
While the mechanics of simple regression do not depend on how y and x are

defined, the interpretation of the coefficients does depend on their definitions. For suc-
cessful empirical work, it is much more important to become proficient at interpreting
coefficients than to become efficient at computing formulas such as (2.19). We will get
much more practice with interpreting the estimates in OLS regression lines when we
study multiple regression.

There are plenty of models that cannot be cast as a linear regression model because
they are not linear in their parameters; an example is cons � 1/(�0 � �1inc) � u.
Estimation of such models takes us into the realm of the nonlinear regression model,
which is beyond the scope of this text. For most applications, choosing a model that can
be put into the linear regression framework is sufficient.

2.5 EXPECTED VALUES AND VARIANCES OF THE OLS
ESTIMATORS

In Section 2.1, we defined the population model y � �0 � �1x � u, and we claimed that
the key assumption for simple regression analysis to be useful is that the expected value
of u given any value of x is zero. In Sections 2.2, 2.3, and 2.4, we discussed the alge-
braic properties of OLS estimation. We now return to the population model and study
the statistical properties of OLS. In other words, we now view �̂0 and �̂1 as estimators
for the parameters �0 and �1 that appear in the population model. This means that we
will study properties of the distributions of �̂0 and �̂1 over different random samples
from the population. (Appendix C contains definitions of estimators and reviews some
of their important properties.)

Unbiasedness of OLS

We begin by establishing the unbiasedness of OLS under a simple set of assumptions.
For future reference, it is useful to number these assumptions using the prefix “SLR”
for simple linear regression. The first assumption defines the population model.
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A S S U M P T I O N  S L R . 1  ( L I N E A R  I N  P A R A M E T E R S )

In the population model, the dependent variable y is related to the independent variable x
and the error (or disturbance) u as

y � �0 � �1x � u, (2.47)

where �0 and �1 are the population intercept and slope parameters, respectively.

To be realistic, y, x, and u are all viewed as random variables in stating the population
model. We discussed the interpretation of this model at some length in Section 2.1 and
gave several examples. In the previous section, we learned that equation (2.47) is not as
restrictive as it initially seems; by choosing y and x appropriately, we can obtain inter-
esting nonlinear relationships (such as constant elasticity models).

We are interested in using data on y and x to estimate the parameters �0 and, espe-
cially, �1. We assume that our data were obtained as a random sample. (See Appendix
C for a review of random sampling.)

A S S U M P T I O N  S L R . 2  ( R A N D O M  S A M P L I N G )

We can use a random sample of size n, {(xi,yi): i � 1,2,…,n}, from the population
model.

We will have to address failure of the random sampling assumption in later chapters that
deal with time series analysis and sample selection problems. Not all cross-sectional
samples can be viewed as outcomes of random samples, but many can be.

We can write (2.47) in terms of the random sample as

yi � �0 � �1xi � ui, i � 1,2,…,n, (2.48)

where ui is the error or disturbance for observation i (for example, person i, firm i, city
i, etc.). Thus, ui contains the unobservables for observation i which affect yi. The ui

should not be confused with the residuals, ûi, that we defined in Section 2.3. Later on,
we will explore the relationship between the errors and the residuals. For interpret-
ing �0 and �1 in a particular application, (2.47) is most informative, but (2.48) is also
needed for some of the statistical derivations.

The relationship (2.48) can be plotted for a particular outcome of data as shown in
Figure 2.7.

In order to obtain unbiased estimators of �0 and �1, we need to impose the zero con-
ditional mean assumption that we discussed in some detail in Section 2.1. We now
explicitly add it to our list of assumptions.

A S S U M P T I O N  S L R . 3  ( Z E R O  C O N D I T I O N A L  M E A N )

E(u�x) � 0.
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For a random sample, this assumption implies that E(ui�xi) � 0, for all i � 1,2,…,n.
In addition to restricting the relationship between u and x in the population, the zero

conditional mean assumption—coupled with the random sampling assumption—
allows for a convenient technical simplification. In particular, we can derive the statis-
tical properties of the OLS estimators as conditional on the values of the xi in our sam-
ple. Technically, in statistical derivations, conditioning on the sample values of the inde-
pendent variable is the same as treating the xi as fixed in repeated samples. This process
involves several steps. We first choose n sample values for x1, x2, …, xn (These can be
repeated.). Given these values, we then obtain a sample on y (effectively by obtaining
a random sample of the ui). Next another sample of y is obtained, using the same val-
ues for x1, …, xn. Then another sample of y is obtained, again using the same xi. And
so on.

The fixed in repeated samples scenario is not very realistic in nonexperimental con-
texts. For instance, in sampling individuals for the wage-education example, it makes
little sense to think of choosing the values of educ ahead of time and then sampling
individuals with those particular levels of education. Random sampling, where individ-
uals are chosen randomly and their wage and education are both recorded, is represen-
tative of how most data sets are obtained for empirical analysis in the social sciences.
Once we assume that E(u�x) � 0, and we have random sampling, nothing is lost in
derivations by treating the xi as nonrandom. The danger is that the fixed in repeated
samples assumption always implies that ui and xi are independent. In deciding when
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Graph of yi � �0 � �1xi � ui.
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simple regression analysis is going to produce unbiased estimators, it is critical to think
in terms of Assumption SLR.3.

Once we have agreed to condition on the xi, we need one final assumption for unbi-
asedness.

A S S U M P T I O N  S L R . 4  ( S A M P L E  V A R I A T I O N  I N

T H E  I N D E P E N D E N T  V A R I A B L E )

In the sample, the independent variables xi, i � 1,2,…,n, are not all equal to the same con-
stant. This requires some variation in x in the population.

We encountered Assumption SLR.4 when we derived the formulas for the OLS esti-

mators; it is equivalent to �
n

i�1
(xi � x̄)2 � 0. Of the four assumptions made, this is the

least important because it essentially never fails in interesting applications. If Assump-
tion SLR.4 does fail, we cannot compute the OLS estimators, which means statistical
analysis is irrelevant.

Using the fact that �
n

i�1
(xi � x̄)(yi � ȳ) � �

n

i�1
(xi � x̄)yi (see Appendix A), we can

write the OLS slope estimator in equation (2.19) as

�̂1 � . (2.49)

Because we are now interested in the behavior of �̂1 across all possible samples, �̂1 is
properly viewed as a random variable.

We can write �̂1 in terms of the population coefficients and errors by substituting the
right hand side of (2.48) into (2.49). We have

�̂1 � � , (2.50)

where we have defined the total variation in xi as sx
2 � �

n

i�1
(xi � x̄)2 in order to simplify

the notation. (This is not quite the sample variance of the xi because we do not divide
by n � 1.) Using the algebra of the summation operator, write the numerator of �̂1 as

�
n

i�1
(xi � x̄)�0 � �

n

i�1
(xi � x̄)�1xi � �

n

i�1
(xi � x̄)ui

(2.51)

� �0 �
n

i�1
(xi � x̄) � �1 �

n

i�1
(xi � x̄)xi � �

n

i�1
(xi � x̄)ui.

�
n

i�1
(xi � x̄)(�0 � �1xi � ui)

_

sx
2

�
n

i�1
(xi � x̄)yi

_

sx
2

�
n

i�1
(xi � x̄)yi

�
n

i�1
(xi � x̄)2
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As shown in Appendix A, �
n

i�1
(xi � x̄) � 0 and �

n

i�1
(xi � x̄)xi � �

n

i�1
(xi � x̄)2 � sx

2.

Therefore, we can write the numerator of �̂1 as �1sx
2 � �

n

i�1
(xi � x̄)ui. Writing this over 

the denominator gives

�̂1 � �1 � � �1 � (1/sx
2) �

n

i�1
diui, (2.52)

where di � xi � x̄. We now see that the estimator �̂1 equals the population slope �1, plus
a term that is a linear combination in the errors {u1,u2,…,un}. Conditional on the val-
ues of xi, the randomness in �̂1 is due entirely to the errors in the sample. The fact that
these errors are generally different from zero is what causes �̂1 to differ from �1.

Using the representation in (2.52), we can prove the first important statistical prop-
erty of OLS.

T H E O R E M  2 . 1  ( U N B I A S E D N E S S  O F  O L S )

Using Assumptions SLR.1 through SLR.4,

E(�̂0) � �0, and E(�̂1) � �1 (2.53)

for any values of �0 and �1. In other words, �̂0 is unbiased for �0, and �̂1 is unbiased for �1.

P R O O F :  In this proof, the expected values are conditional on the sample values of
the independent variable. Since sx

2 and di are functions only of the xi, they are nonrandom
in the conditioning. Therefore, from (2.53),

E(�̂1) � �1 � E[(1/sx
2) �

n

i�1
diui] � �1 � (1/sx

2) �
n

i�1
E(diui)

� �1 � (1/sx
2) �

n

i�1
diE(ui) � �1 � (1/sx

2) �
n

i�1
di	0 � �1,

where we have used the fact that the expected value of each ui (conditional on {x1,x2,...,xn})
is zero under Assumptions SLR.2 and SLR.3.

The proof for �̂0 is now straightforward. Average (2.48) across i to get ȳ � �0 � �1x̄ �

ū, and plug this into the formula for �̂0:

�̂0 � ȳ � �̂1x̄ � �0 � �1x̄ � ū � �̂1x̄ � �0 � (�1 � �̂1)x̄ � ū.

Then, conditional on the values of the xi,

E(�̂0) � �0 � E[(�1 � �̂1)x̄] � E(ū) � �0 � E[(�1 � �̂1)]x̄,

since E(ū) � 0 by Assumptions SLR.2 and SLR.3. But, we showed that E(�̂1) � �1, which
implies that E[(�̂1 � �1)] � 0. Thus, E(�̂0) � �0. Both of these arguments are valid for any
values of �0 and �1, and so we have established unbiasedness.

�
n

i�1
(xi � x̄)ui

_

sx
2
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Remember that unbiasedness is a feature of the sampling distributions of �̂1 and �̂0,
which says nothing about the estimate that we obtain for a given sample. We hope that,
if the sample we obtain is somehow “typical,” then our estimate should be “near” the
population value. Unfortunately, it is always possible that we could obtain an unlucky
sample that would give us a point estimate far from �1, and we can never know for sure
whether this is the case. You may want to review the material on unbiased estimators in
Appendix C, especially the simulation exercise in Table C.1 that illustrates the concept
of unbiasedness.

Unbiasedness generally fails if any of our four assumptions fail. This means that it
is important to think about the veracity of each assumption for a particular application.
As we have already discussed, if Assumption SLR.4 fails, then we will not be able to
obtain the OLS estimates. Assumption SLR.1 requires that y and x be linearly related,
with an additive disturbance. This can certainly fail. But we also know that y and x can
be chosen to yield interesting nonlinear relationships. Dealing with the failure of (2.47)
requires more advanced methods that are beyond the scope of this text.

Later, we will have to relax Assumption SLR.2, the random sampling assumption,
for time series analysis. But what about using it for cross-sectional analysis? Random
sampling can fail in a cross section when samples are not representative of the under-
lying population; in fact, some data sets are constructed by intentionally oversampling
different parts of the population. We will discuss problems of nonrandom sampling in
Chapters 9 and 17.

The assumption we should concentrate on for now is SLR.3. If SLR.3 holds, the
OLS estimators are unbiased. Likewise, if SLR.3 fails, the OLS estimators generally
will be biased. There are ways to determine the likely direction and size of the bias,
which we will study in Chapter 3.

The possibility that x is correlated with u is almost always a concern in simple
regression analysis with nonexperimental data, as we indicated with several examples
in Section 2.1. Using simple regression when u contains factors affecting y that are also
correlated with x can result in spurious correlation: that is, we find a relationship
between y and x that is really due to other unobserved factors that affect y and also hap-
pen to be correlated with x.

E X A M P L E  2 . 1 2
( S t u d e n t  M a t h  P e r f o r m a n c e  a n d  t h e  S c h o o l  L u n c h  P r o g r a m )

Let math10 denote the percentage of tenth graders at a high school receiving a passing
score on a standardized mathematics exam. Suppose we wish to estimate the effect of
the federally funded school lunch program on student performance. If anything, we
expect the lunch program to have a positive ceteris paribus effect on performance: all
other factors being equal, if a student who is too poor to eat regular meals becomes eli-
gible for the school lunch program, his or her performance should improve. Let lnchprg
denote the percentage of students who are eligible for the lunch program. Then a simple
regression model is

math10 � �0 � �1lnchprg � u, (2.54)
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where u contains school and student characteristics that affect overall school performance.
Using the data in MEAP93.RAW on 408 Michigan high schools for the 1992–93 school
year, we obtain

mat̂h10 � 32.14 � 0.319 lnchprg

n � 408, R2 � 0.171

This equation predicts that if student eligibility in the lunch program increases by 10 per-
centage points, the percentage of students passing the math exam falls by about 3.2 per-
centage points. Do we really believe that higher participation in the lunch program actually
causes worse performance? Almost certainly not. A better explanation is that the error term
u in equation (2.54) is correlated with lnchprg. In fact, u contains factors such as the pover-
ty rate of children attending school, which affects student performance and is highly corre-
lated with eligibility in the lunch program. Variables such as school quality and resources are
also contained in u, and these are likely correlated with lnchprg. It is important to remem-
ber that the estimate �0.319 is only for this particular sample, but its sign and magnitude
make us suspect that u and x are correlated, so that simple regression is biased.

In addition to omitted variables, there are other reasons for x to be correlated with
u in the simple regression model. Since the same issues arise in multiple regression
analysis, we will postpone a systematic treatment of the problem until then.

Variances of the OLS Estimators

In addition to knowing that the sampling distribution of �̂1 is centered about �1 (�̂1 is
unbiased), it is important to know how far we can expect �̂1 to be away from �1 on aver-
age. Among other things, this allows us to choose the best estimator among all, or at
least a broad class of, the unbiased estimators. The measure of spread in the distribu-
tion of �̂1 (and �̂0) that is easiest to work with is the variance or its square root, the stan-
dard deviation. (See Appendix C for a more detailed discussion.)

It turns out that the variance of the OLS estimators can be computed under
Assumptions SLR.1 through SLR.4. However, these expressions would be somewhat
complicated. Instead, we add an assumption that is traditional for cross-sectional analy-
sis. This assumption states that the variance of the unobservable, u, conditional on x, is
constant. This is known as the homoskedasticity or “constant variance” assumption.

A S S U M P T I O N  S L R . 5  ( H O M O S K E D A S T I C I T Y )

Var(u�x) � 
2.

We must emphasize that the homoskedasticity assumption is quite distinct from 
the zero conditional mean assumption, E(u�x) � 0. Assumption SLR.3 involves the
expected value of u, while Assumption SLR.5 concerns the variance of u (both condi-
tional on x). Recall that we established the unbiasedness of OLS without Assumption
SLR.5: the homoskedasticity assumption plays no role in showing that �̂0 and �̂1 are
unbiased. We add Assumption SLR.5 because it simplifies the variance calculations for
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�̂0 and �̂1 and because it implies that ordinary least squares has certain efficiency prop-
erties, which we will see in Chapter 3. If we were to assume that u and x are indepen-
dent, then the distribution of u given x does not depend on x, and so E(u�x) � E(u) � 0
and Var(u�x) � 
2. But independence is sometimes too strong of an assumption.

Because Var(u�x) � E(u2�x) � [E(u�x)]2 and E(u�x) � 0, 
2 � E(u2�x), which means

2 is also the unconditional expectation of u2. Therefore, 
2 � E(u2) � Var(u), because
E(u) � 0. In other words, 
2 is the unconditional variance of u, and so 
2 is often called
the error variance or disturbance variance. The square root of 
2, 
, is the standard
deviation of the error. A larger 
 means that the distribution of the unobservables affect-
ing y is more spread out.

It is often useful to write Assumptions SLR.3 and SLR.5 in terms of the condi-
tional mean and conditional variance of y:

E(y�x) � �0 � �1x. (2.55)

Var(y�x) � 
2. (2.56)

In other words, the conditional expectation of y given x is linear in x, but the variance of
y given x is constant. This situation is graphed in Figure 2.8 where �0 � 0 and �1 � 0.
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F i g u r e  2 . 8

The simple regression model under homoskedasticity.
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E(y�x) � �0 � �1x
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When Var(u�x) depends on x, the error term is said to exhibit heteroskedasticity (or
nonconstant variance). Since Var(u�x) � Var(y�x), heteroskedasticity is present when-
ever Var(y�x) is a function of x.

E X A M P L E  2 . 1 3
( H e t e r o s k e d a s t i c i t y  i n  a  W a g e  E q u a t i o n )

In order to get an unbiased estimator of the ceteris paribus effect of educ on wage, we
must assume that E(u�educ) � 0, and this implies E(wage�educ) � �0 � �1educ. If we also
make the homoskedasticity assumption, then Var(u�educ) � 
2 does not depend on the
level of education, which is the same as assuming Var(wage�educ) � 
2. Thus, while aver-
age wage is allowed to increase with education level—it is this rate of increase that we
are interested in describing—the variability in wage about its mean is assumed to be con-
stant across all education levels. This may not be realistic. It is likely that people with more
education have a wider variety of interests and job opportunities, which could lead to
more wage variability at higher levels of education. People with very low levels of educa-
tion have very few opportunities and often must work at the minimum wage; this serves
to reduce wage variability at low education levels. This situation is shown in Figure 2.9.
Ultimately, whether Assumption SLR.5 holds is an empirical issue, and in Chapter 8 we will
show how to test Assumption SLR.5.
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F i g u r e  2 . 9

Var (wage�educ) increasing with educ.
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With the homoskedasticity assumption in place, we are ready to prove the fol-
lowing:

T H E O R E M  2 . 2  ( S A M P L I N G  V A R I A N C E S  O F  T H E

O L S  E S T I M A T O R S )

Under Assumptions SLR.1 through SLR.5,

Var(�̂1) � � 
2/sx
2 (2.57)

Var(�̂0) � , (2.58)

where these are conditional on the sample values {x1,…,xn}.

P R O O F :  We derive the formula for Var(�̂1), leaving the other derivation as an

exercise. The starting point is equation (2.52): �̂1 � �1 � (1/sx
2) �

n

i�1
diui. Since �1 is just a

constant, and we are conditioning on the xi, sx
2 and di � xi � x̄ are also nonrandom.

Furthermore, because the ui are independent random variables across i (by random
sampling), the variance of the sum is the sum of the variances. Using these facts, we have

Var(�̂1) � (1/sx
2)2Var ��

n

i�1
diui� � (1/sx

2)2 ��
n

i�1
d i

2Var(ui)�
� (1/sx

2)2 ��
n

i�1
d i

2
2� [since Var(ui) � 
2 for all i]

� 
2(1/sx
2)2 ��

n

i�1
d i

2� � 
2(1/sx
2)2sx

2 � 
2/sx
2,

which is what we wanted to show.

The formulas (2.57) and (2.58) are the “standard” formulas for simple regression
analysis, which are invalid in the presence of heteroskedasticity. This will be important
when we turn to confidence intervals and hypothesis testing in multiple regression
analysis.

For most purposes, we are interested in Var(�̂1). It is easy to summarize how this
variance depends on the error variance, 
2, and the total variation in {x1,x2,…,xn}, sx

2.
First, the larger the error variance, the larger is Var(�̂1). This makes sense since more
variation in the unobservables affecting y makes it more difficult to precisely estimate
�1. On the other hand, more variability in the independent variable is preferred: as the
variability in the xi increases, the variance of �̂1 decreases. This also makes intuitive


2n�1 �
n

i�1
xi

2

�
n

i�1
(xi � x̄)2


2

�
n

i�1
(xi � x̄)2

Chapter 2 The Simple Regression Model

55

d  7/14/99 4:31 PM  Page 55



sense since the more spread out is the sample of independent variables, the easier it is
to trace out the relationship between E(y�x) and x. That is, the easier it is to estimate �1.
If there is little variation in the xi, then it can be hard to pinpoint how E(y�x) varies with
x. As the sample size increases, so does the total variation in the xi. Therefore, a larger
sample size results in a smaller variance for �̂1.

This analysis shows that, if we are interested in �̂1, and we have a choice, then we
should choose the xi to be as spread out as possible. This is sometimes possible with
experimental data, but rarely do we have this luxury in the social sciences: usually we

must take the xi that we obtain via random
sampling. Sometimes we have an opportu-
nity to obtain larger sample sizes, although
this can be costly.

For the purposes of constructing confi-
dence intervals and deriving test statistics,
we will need to work with the standard
deviations of �̂1 and �̂0, sd(�̂1) and sd(�̂0).

Recall that these are obtained by taking the square roots of the variances in (2.57) and
(2.58). In particular, sd(�̂1) � 
/sx, where 
 is the square root of 
2, and sx is the square
root of sx

2.

Estimating the Error Variance

The formulas in (2.57) and (2.58) allow us to isolate the factors that contribute to
Var(�̂1) and Var(�̂0). But these formulas are unknown, except in the extremely rare case
that 
2 is known. Nevertheless, we can use the data to estimate 
2, which then allows
us to estimate Var(�̂1) and Var(�̂0).

This is a good place to emphasize the difference between the the errors (or distur-
bances) and the residuals, since this distinction is crucial for constructing an estimator
of 
2. Equation (2.48) shows how to write the population model in terms of a random-
ly sampled observation as yi � �0 � �1xi � ui, where ui is the error for observation i.
We can also express yi in terms of its fitted value and residual as in equation (2.32):
yi � �̂0 � �̂1xi � ûi. Comparing these two equations, we see that the error shows up in
the equation containing the population parameters, �0 and �1. On the other hand, the
residuals show up in the estimated equation with �̂0 and �̂1. The errors are never observ-
able, while the residuals are computed from the data.

We can use equations (2.32) and (2.48) to write the residuals as a function of the
errors:

ûi � yi � �̂0 � �̂1xi � (�0 � �1xi � ui) � �̂0 � �̂1xi,

or

ûi � ui � (�̂0 � �0) � (�̂1 � �1)xi. (2.59)

Although the expected value of �̂0 equals �0, and similarly for �̂1, ûi is not the same as
ui. The difference between them does have an expected value of zero.

Now that we understand the difference between the errors and the residuals, we can
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Q U E S T I O N  2 . 5

Show that, when estimating �0, it is best to have x̄ � 0. What is Var(�̂0)

in this case? (Hint: For any sample of numbers, �
n

i�1
xi

2 � �
n

i�1
(xi � x̄)2,

with equality only if x̄ � 0.)
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return to estimating 
2. First, 
2 � E(u2), so an unbiased “estimator” of 
2 is n�1 �
n

i�1
ui

2.

Unfortunately, this is not a true estimator, because we do not observe the errors ui. But,
we do have estimates of the ui, namely the OLS residuals ûi. If we replace the errors

with the OLS residuals, have n�1 �
n

i�1
ûi

2 � SSR/n. This is a true estimator, because it

gives a computable rule for any sample of data on x and y. One slight drawback
to this estimator is that it turns out to be biased (although for large n the bias is small).
Since it is easy to compute an unbiased estimator, we use that instead.

The estimator SSR/n is biased essentially because it does not account for two
restrictions that must be satisfied by the OLS residuals. These restrictions are given by
the two OLS first order conditions:

�
n

i�1
ûi � 0, �

n

i�1
xiûi � 0. (2.60)

One way to view these restrictions is this: if we know n � 2 of the residuals, we can
always get the other two residuals by using the restrictions implied by the first order
conditions in (2.60). Thus, there are only n � 2 degrees of freedom in the OLS resid-
uals [as opposed to n degrees of freedom in the errors. If we replace ûi with ui in (2.60),
the restrictions would no longer hold.] The unbiased estimator of 
2 that we will use
makes a degrees-of-freedom adjustment:


̂ 2 � �
n

i�1
ûi

2 � SSR/(n � 2). (2.61)

(This estimator is sometimes denoted s2, but we continue to use the convention of
putting “hats” over estimators.)

T H E O R E M  2 . 3  ( U N B I A S E D  E S T I M A T I O N  O F  � 2 )

Under Assumptions SLR.1 through SLR.5,

E(
̂ 2) � 
2.

P R O O F :  If we average equation (2.59) across all i and use the fact that the OLS
residuals average out to zero, we have 0 � ū � (�̂0 � �0) � (�̂1 � �1)x̄; subtracting this
from (2.59) gives ûi � (ui � ū) � (�̂1 � �1)(xi � x̄). Therefore, ûi

2 � (ui � ū)2 � (�̂1 �

�1)
2(xi � x̄)2 � 2(ui � ū)(�̂1 � �1)(xi � x̄). Summing across all i gives �

n

i�1
ûi

2 � �
n

i�1
(ui � ū)2

� (�̂1 � �1)
2 �

n

i�1
(xi � x̄)2 � 2(�̂1 � �1) �

n

i�1
ui(xi � x̄). Now, the expected value of the first

term is (n � 1)
2, something that is shown in Appendix C. The expected value of the second
term is simply 
2  because E[(�̂1 � �1)

2] � Var(�̂1) � 
2/sx
2. Finally, the third term can be

written as 2(�̂1 � �1)
2s2

x; taking expectations gives 2
2. Putting these three terms

together gives E ��
n

i�1
ûi

2� � (n � 1)
2 � 
2 � 2
2 � (n � 2)
2, so that E[SSR/(n � 2)] � 
2.

1

(n � 2)
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If 
̂ 2 is plugged into the variance formulas (2.57) and (2.58), then we have unbiased
estimators of Var(�̂1) and Var(�̂0). Later on, we will need estimators of the standard
deviations of �̂1 and �̂0, and this requires estimating 
. The natural estimator of 
 is


̂ � �
̂2
—

, (2.62)

and is called the standard error of the regression (SER). (Other names for 
̂ are the
standard error of the estimate and the root mean squared error, but we will not use
these.) Although 
̂ is not an unbiased estimator of 
, we can show that it is a consis-
tent estimator of 
 (see Appendix C), and it will serve our purposes well.

The estimate 
̂ is interesting since it is an estimate of the standard deviation in the
unobservables affecting y; equivalently, it estimates the standard deviation in y after the
effect of x has been taken out. Most regression packages report the value of 
̂ along
with the R-squared, intercept, slope, and other OLS statistics (under one of the several
names listed above). For now, our primary interest is in using 
̂ to estimate the stan-
dard deviations of �̂0 and �̂1. Since sd(�̂1) � 
/sx, the natural estimator of 
sd(�̂1) is

se(�̂1) � 
̂/sx � 
̂/ ��
n

i�1
(xi � x̄)2 �1/2

;

this is called the standard error of �̂1. Note that se(�̂1) is viewed as a random variable
when we think of running OLS over different samples of y; this is because 
̂ varies with
different samples. For a given sample, se(�̂1) is a number, just as �̂1 is simply a number
when we compute it from the given data.

Similarly, se(�̂0) is obtained from sd(�̂0) by replacing 
 with 
̂ . The standard error
of any estimate gives us an idea of how precise the estimator is. Standard errors play a
central role throughout this text; we will use them to construct test statistics and confi-
dence intervals for every econometric procedure we cover, starting in Chapter 4.

2.6 REGRESSION THROUGH THE ORIGIN

In rare cases, we wish to impose the restriction that, when x � 0, the expected value of
y is zero. There are certain relationships for which this is reasonable. For example, if
income (x) is zero, then income tax revenues (y) must also be zero. In addition, there
are problems where a model that originally has a nonzero intercept is transformed into
a model without an intercept.

Formally, we now choose a slope estimator, which we call �̃1, and a line of the form

ỹ � �̃1x, (2.63)

where the tildas over �̃1 and y are used to distinguish this problem from the much more
common problem of estimating an intercept along with a slope. Obtaining (2.63) is
called regression through the origin because the line (2.63) passes through the point
x � 0, ỹ � 0. To obtain the slope estimate in (2.63), we still rely on the method of ordi-
nary least squares, which in this case minimizes the sum of squared residuals
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�
n

i�1
(yi � �̃1xi)

2. (2.64)

Using calculus, it can be shown that �̃1 must solve the first order condition

�
n

i�1
xi(yi � �̃1xi) � 0. (2.65)

From this we can solve for �̃1:

�̃1 � , (2.66)

provided that not all the xi are zero, a case we rule out.
Note how �̃1 compares with the slope estimate when we also estimate the intercept

(rather than set it equal to zero). These two estimates are the same if, and only if, x̄ �
0. (See equation (2.49) for �̂1.) Obtaining an estimate of �1 using regression through the
origin is not done very often in applied work, and for good reason: if the intercept �0 �
0 then �̃1 is a biased estimator of �1. You will be asked to prove this in Problem 2.8.

SUMMARY

We have introduced the simple linear regression model in this chapter, and we have cov-
ered its basic properties. Given a random sample, the method of ordinary least squares
is used to estimate the slope and intercept parameters in the population model. We have
demonstrated the algebra of the OLS regression line, including computation of fitted
values and residuals, and the obtaining of predicted changes in the dependent variable
for a given change in the independent variable. In Section 2.4, we discussed two issues
of practical importance: (1) the behavior of the OLS estimates when we change the
units of measurement of the dependent variable or the independent variable; (2) the use
of the natural log to allow for constant elasticity and constant semi-elasticity models.

In Section 2.5, we showed that, under the four Assumptions SLR.1 through SLR.4,
the OLS estimators are unbiased. The key assumption is that the error term u has zero
mean given any value of the independent variable x. Unfortunately, there are reasons to
think this is false in many social science applications of simple regression, where the
omitted factors in u are often correlated with x. When we add the assumption that the
variance of the error given x is constant, we get simple formulas for the sampling vari-
ances of the OLS estimators. As we saw, the variance of the slope estimator �̂1 increases
as the error variance increases, and it decreases when there is more sample variation in
the independent variable. We also derived an unbiased estimator for 
2 � Var(u).

In Section 2.6, we briefly discussed regression through the origin, where the slope
estimator is obtained under the assumption that the intercept is zero. Sometimes this is
useful, but it appears infrequently in applied work.

�
n

i�1
xiyi

�
n

i�1
xi

2
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Much work is left to be done. For example, we still do not know how to test
hypotheses about the population parameters, �0 and �1. Thus, although we know that
OLS is unbiased for the population parameters under Assumptions SLR.1 through
SLR.4, we have no way of drawing inference about the population. Other topics, such
as the efficiency of OLS relative to other possible procedures, have also been omitted.

The issues of confidence intervals, hypothesis testing, and efficiency are central to
multiple regression analysis as well. Since the way we construct confidence intervals
and test statistics is very similar for multiple regression—and because simple regres-
sion is a special case of multiple regression—our time is better spent moving on to mul-
tiple regression, which is much more widely applicable than simple regression. Our
purpose in Chapter 2 was to get you thinking about the issues that arise in econometric
analysis in a fairly simple setting.

KEY TERMS

PROBLEMS

2.1 Let kids denote the number of children ever born to a woman, and let educ denote
years of education for the woman. A simple model relating fertility to years of educa-
tion is

kids � �0 � �1educ � u,

where u is the unobserved error.
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Coefficient of Determination
Constant Elasticity Model
Control Variable
Covariate
Degrees of Freedom
Dependent Variable
Elasticity
Error Term (Disturbance)
Error Variance
Explained Sum of Squares (SSE)
Explained Variable
Explanatory Variable
First Order Conditions
Fitted Value
Heteroskedasticity
Homoskedasticity
Independent Variable
Intercept Parameter
Ordinary Least Squares (OLS)
OLS Regression Line

Population Regression Function (PRF)
Predicted Variable
Predictor Variable
Regressand
Regression Through the Origin
Regressor
Residual
Residual Sum of Squares (SSR)
Response Variable
R-squared
Sample Regression Function (SRF)
Semi-elasticity
Simple Linear Regression Model
Slope Parameter
Standard Error of �̂1

Standard Error of the Regression (SER)
Sum of Squared Residuals
Total Sum of Squares (SST)
Zero Conditional Mean Assumption
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(i) What kinds of factors are contained in u? Are these likely to be corre-
lated with level of education?

(ii) Will a simple regression analysis uncover the ceteris paribus effect of
education on fertility? Explain.

2.2 In the simple linear regression model y � �0 � �1x � u, suppose that E(u) � 0.
Letting 0 � E(u), show that the model can always be rewritten with the same slope,
but a new intercept and error, where the new error has a zero expected value.

2.3 The following table contains the ACT scores and the GPA (grade point average)
for 8 college students. Grade point average is based on a four-point scale and has been
rounded to one digit after the decimal.

Student GPA ACT

1 2.8 21

2 3.4 24

3 3.0 26

4 3.5 27

5 3.6 29

6 3.0 25

7 2.7 25

8 3.7 30

(i) Estimate the relationship between GPA and ACT using OLS; that is,
obtain the intercept and slope estimates in the equation

GP̂A � �̂0 � �̂1ACT.

Comment on the direction of the relationship. Does the intercept have a
useful interpretation here? Explain. How much higher is the GPA pre-
dicted to be, if the ACT score is increased by 5 points?

(ii) Compute the fitted values and residuals for each observation and verify
that the residuals (approximately) sum to zero.

(iii) What is the predicted value of GPA when ACT � 20?
(iv) How much of the variation in GPA for these 8 students is explained by

ACT? Explain.

2.4 The data set BWGHT.RAW contains data on births to women in the United States.
Two variables of interest are the dependent variable, infant birth weight in ounces
(bwght), and an explanatory variable, average number of cigarettes the mother smoked
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per day during pregnancy (cigs). The following simple regression was estimated using
data on n � 1388 births:

bwĝht � 119.77 � 0.514 cigs

(i) What is the predicted birth weight when cigs � 0? What about when
cigs � 20 (one pack per day)? Comment on the difference.

(ii) Does this simple regression necessarily capture a causal relationship
between the child’s birth weight and the mother’s smoking habits?
Explain.

2.5 In the linear consumption function

côns � �̂0 � �̂1inc,

the (estimated) marginal propensity to consume (MPC) out of income is simply the
slope, �̂1, while the average propensity to consume (APC) is côns/inc � �̂0/inc � �̂1.
Using observations for 100 families on annual income and consumption (both measured
in dollars), the following equation is obtained:

côns � �124.84 � 0.853 inc

n � 100, R2 � 0.692

(i) Interpret the intercept in this equation and comment on its sign and
magnitude.

(ii) What is predicted consumption when family income is $30,000?
(iii) With inc on the x-axis, draw a graph of the estimated MPC and APC.

2.6 Using data from 1988 for houses sold in Andover, MA, from Kiel and McClain
(1995), the following equation relates housing price (price) to the distance from a
recently built garbage incinerator (dist):

log(pr̂ice) � 9.40 � 0.312 log(dist)

n � 135, R2 � 0.162

(i) Interpret the coefficient on log(dist). Is the sign of this estimate what
you expect it to be?

(ii) Do you think simple regression provides an unbiased estimator of the
ceteris paribus elasticity of price with respect to dist? (Think about the
city’s decision on where to put the incinerator.)

(iii) What other factors about a house affect its price? Might these be corre-
lated with distance from the incinerator?

2.7 Consider the savings function

sav � �0 � �1inc � u, u � �inc
—

	e,

where e is a random variable with E(e) � 0 and Var(e) � 
e
2. Assume that e is inde-

pendent of inc.
(i) Show that E(u�inc) � 0, so that the key zero conditional mean assump-

tion (Assumption SLR.3) is satisfied. [Hint: If e is independent of inc,
then E(e�inc) � E(e).]
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(ii) Show that Var(u�inc) � 
e
2inc, so that the homoskedasticity Assumption

SLR.5 is violated. In particular, the variance of sav increases with inc.
[Hint: Var(e�inc) � Var(e), if e and inc are independent.]

(iii) Provide a discussion that supports the assumption that the variance of
savings increases with family income.

2.8 Consider the standard simple regression model y � �0 � �1x � u under
Assumptions SLR.1 through SLR.4. Thus, the usual OLS estimators �̂0 and �̂1 are unbi-
ased for their respective population parameters. Let �̃1 be the estimator of �1 obtained
by assuming the intercept is zero (see Section 2.6).

(i) Find E(�̃1) in terms of the xi, �0, and �1. Verify that �̃1 is unbiased for
�1 when the population intercept (�0) is zero. Are there other cases
where �̃1 is unbiased?

(ii) Find the variance of �̃1. (Hint: The variance does not depend on �0.)

(iii) Show that Var(�̃1) � Var(�̂1). [Hint: For any sample of data, �
n

i�1
xi

2 � �
n

i�1

(xi � x̄)2, with strict inequality unless x̄ � 0.]
(iv) Comment on the tradeoff between bias and variance when choosing

between �̂1 and �̃1.

2.9 (i) Let �̂0 and �̂1 be the intercept and slope from the regression of yi on xi, using n
observations. Let c1 and c2, with c2 � 0, be constants. Let �̃0 and �̃1 be the intercept and
slope from the regression c1yi on c2xi. Show that �̃1 � (c1/c2)�̂1 and �̃0 � c1�̂0, thereby
verifying the claims on units of measurement in Section 2.4. [Hint: To obtain �̃1, plug
the scaled versions of x and y into (2.19). Then, use (2.17) for �̃0, being sure to plug in
the scaled x and y and the correct slope.]

(ii) Now let �̃0 and �̃1 be from the regression (c1 � yi) on (c2 � xi) (with no
restriction on c1 or c2). Show that �̃1 � �̂1 and �̃0 � �̂0 � c1 � c2�̂1.

COMPUTER EXERCISES

2.10 The data in 401K.RAW are a subset of data analyzed by Papke (1995) to study the
relationship between participation in a 401(k) pension plan and the generosity of the
plan. The variable prate is the percentage of eligible workers with an active account;
this is the variable we would like to explain. The measure of generosity is the plan
match rate, mrate. This variable gives the average amount the firm contributes to each
worker’s plan for each $1 contribution by the worker. For example, if mrate � 0.50,
then a $1 contribution by the worker is matched by a 50¢ contribution by the firm.

(i) Find the average participation rate and the average match rate in the
sample of plans.

(ii) Now estimate the simple regression equation

prâte � �̂0 � �̂1mrate,

and report the results along with the sample size and R-squared.
(iii) Interpret the intercept in your equation. Interpret the coefficient on mrate.
(iv) Find the predicted prate when mrate � 3.5. Is this a reasonable predic-

tion? Explain what is happening here.
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(v) How much of the variation in prate is explained by mrate? Is this a lot
in your opinion?

2.11 The data set in CEOSAL2.RAW contains information on chief executive officers
for U.S. corporations. The variable salary is annual compensation, in thousands of dol-
lars, and ceoten is prior number of years as company CEO.

(i) Find the average salary and the average tenure in the sample.
(ii) How many CEOs are in their first year as CEO (that is, ceoten � 0)?

What is the longest tenure as a CEO?
(iii) Estimate the simple regression model

log(salary) � �0 � �1ceoten � u,

and report your results in the usual form. What is the (approximate) pre-
dicted percentage increase in salary given one more year as a CEO?

2.12 Use the data in SLEEP75.RAW from Biddle and Hamermesh (1990) to study whether
there is a tradeoff between the time spent sleeping per week and the time spent in paid
work. We could use either variable as the dependent variable. For concreteness, estimate
the model

sleep � �0 � �1totwrk � u,

where sleep is minutes spent sleeping at night per week and totwrk is total minutes
worked during the week.

(i) Report your results in equation form along with the number of obser-
vations and R2. What does the intercept in this equation mean?

(ii) If totwrk increases by 2 hours, by how much is sleep estimated to fall?
Do you find this to be a large effect?

2.13 Use the data in WAGE2.RAW to estimate a simple regression explaining monthly
salary (wage) in terms of IQ score (IQ).

(i) Find the average salary and average IQ in the sample. What is the stan-
dard deviation of IQ? (IQ scores are standardized so that the average in
the population is 100 with a standard deviation equal to 15.)

(ii) Estimate a simple regression model where a one-point increase in IQ
changes wage by a constant dollar amount. Use this model to find the
predicted increase in wage for an increase in IQ of 15 points. Does IQ
explain most of the variation in wage?

(iii) Now estimate a model where each one-point increase in IQ has the
same percentage effect on wage. If IQ increases by 15 points, what is
the approximate percentage increase in predicted wage?

2.14 For the population of firms in the chemical industry, let rd denote annual expen-
ditures on research and development, and let sales denote annual sales (both are in mil-
lions of dollars).

(i) Write down a model (not an estimated equation) that implies a constant
elasticity between rd and sales. Which parameter is the elasticity?

(ii) Now estimate the model using the data in RDCHEM.RAW. Write out the
estimated equation in the usual form. What is the estimated elasticity of
rd with respect to sales? Explain in words what this elasticity means.
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A P P E N D I X  2 A

Minimizing the Sum of Squared Residuals

We show that the OLS estimates �̂0 and �̂1 do minimize the sum of squared residuals,
as asserted in Section 2.2. Formally, the problem is to characterize the solutions �̂0 and
�̂1 to the minimization problem

min
b0,b1 

�
n

i�1
(yi � b0 � b1xi)

2,

where b0 and b1 are the dummy arguments for the optimization problem; for simplicity,
call this function Q(b0,b1). By a fundamental result from multivariable calculus (see
Appendix A), a necessary condition for �̂0 and �̂1 to solve the minimization problem is
that the partial derivatives of Q(b0,b1) with respect to b0 and b1 must be zero when eval-
uated at �̂0, �̂1: �Q(�̂0,�̂1)/�b0 � 0 and �Q(�̂0,�̂1)/�b1 � 0. Using the chain rule from
calculus, these two equations become

�2 �
n

i�1
(yi � �̂0 � �̂1xi) � 0.

�2 �
n

i�1
xi(yi � �̂0 � �̂1xi) � 0.

These two equations are just (2.14) and (2.15) multiplied by �2n and, therefore, are
solved by the same �̂0 and �̂1.

How do we know that we have actually minimized the sum of squared residuals?
The first order conditions are necessary but not sufficient conditions. One way to veri-
fy that we have minimized the sum of squared residuals is to write, for any b0 and b1,

Q(b0,b1) � �
n

i�1
(yi � �̂0 � �̂1xi � (�̂0 � b0) � (�̂1 � b1)xi)

2

� �
n

i�1
(ûi � (�̂0 � b0) � (�̂1 � b1)xi)

2

� �
n

i�1
ûi

2 � n(�̂0 � b0)
2 � (�̂1 � b1)

2 �
n

i�1
xi

2 � 2(�̂0 � b0)(�̂1 � b1) �
n

i�1
xi,

where we have used equations (2.30) and (2.31). The sum of squared residuals does not
depend on b0 or b1, while the sum of the last three terms can be written as

�
n

i�1
[(�̂0 � b0) � (�̂1 � b1)xi]

2,

as can be verified by straightforward algebra. Because this is a sum of squared terms,
it can be at most zero. Therefore, it is smallest when b0 = �̂0 and b1 = �̂1.
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