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Introduction 

 
The University of California, Riverside, Survey Research Center (SRC) developed and 

calculated survey weights for the National Asian American Survey (NAAS).  This technical note 
enumerates the variables and data sources used in the weighting adjustments, offers a general 
description of the Iterative Proportional Fitting algorithm developed by Deming and Stephan 
(1940)—known as “raking”—and details its application to the NAAS data set.   

 
NAAS Weighting Adjustment Variables 

 
The National Asian American Survey (NAAS) comprises 5,159 observations drawn from 

a national U.S. sample.  The SRC adjusted NAAS sample proportions to population proportions 
estimated from the 2006-2008 three-year average of the Current Population Survey (CPS) and 
the 2007 American Community Survey (ACS), both conducted by the U.S. Census Bureau.  In 
consultation with NAAS principal investigators, the SRC defined four categorical weighting 
adjustment variables:   

 
- ethnicity, with seven (7) categories:  Indian, Chinese, Filipino, Japanese, 

Korean, Vietnamese, and Other;   
- gender, with two (2) categories:   male and female;   
- education, with three (3) categories:  less than high school, high school 

graduate, and at least some college; and 
- nativity/citizenship, with three (3) categories:  foreign-born citizen, foreign-

born non-citizen, and native-born citizen.    
 
Weighting adjustments were carried out at six different levels of geographical 

aggregation:   
 
1) nationally;  
2) for each of four census regions;  
3) for each of nine census divisions;  
4) for seven states with sufficiently large concentrations of Asian Americans 

(California, Hawaii, New Jersey, New York, Texas, Virginia, and 
Washington);  

5) for 13 Metropolitan Statistical Areas, or MSAs, with sufficiently large 
concentrations of Asian Americans (Washington, D.C., Dallas-Fort Worth, 
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Atlanta, Seattle, Sacramento, Philadelphia, New York City, San Francisco 
Bay Area, Honolulu, Chicago, Los Angeles, San Diego, and Houston); and  

6) by destination type under two definitions in which all MSAs were 
categorized broadly as “new” or “traditional” destinations, then more finely as 
one of six types (“emerging”, “re-emerging”, “pre-merging”, “former”, 
“continuous”, and “post-WWII”).   

 
These geographical categorizations yielded seven weight vectors, two of which correspond to the 
two definitions of destination type.   

Since the number of adjustment cells was very large (7 x 2 x 3 x 3 = 126, multiplied by 
the relevant number of geographical units, e.g., 126 x 7 = 882 in the case of states), we estimated 
survey weights using a technique known as sample balancing or “raking”, described in the 
following section.1  In essence, raking corrects an imbalanced sample by adjusting sample totals 
(and proportions) to known totals in the population totals using the marginal distributions of 
weighting variables when a full cross-classification of these variables is unobtainable or 
impractical.   

 
Post-Stratification and “Raking” Weights 

 
The proportion of respondents in a sample with a given set of characteristics may differ 

from the proportion of people with those characteristics in the population for many reasons.  
These include sampling error, non-coverage error (when the sampling frame omits some 
members of the population), non-response error (when members of some subpopulations respond 
to a survey proportionally more than members of other subpopulations), and the sample design 
itself (as in the cases of oversampling and stratified samples with unequal sampling fractions).  
When for any of these reasons (or others) the proportion of survey respondents differ from their 
known population proportion on one or more characteristics, weighting is often used to adjust 
sample to population proportions.  Auxiliary population information is typically obtained from 
census data or from other studies.   

Post-stratification (PS) is a weighting technique that matches sample proportions to 
population proportions on characteristics chosen after data have been collected (see, e.g., 
Gelman and Carlin 2002; Kalton 1983: 74-75; and Lohr 1999: 114-115).  First, the sample is 
divided into H mutually exclusive categories, or strata, on the basis of observable characteristics 
such as gender, ethnicity, and age, where H is the number of cells resulting from a complete 
cross-classification of the post-stratification variables.  Then the proportion of sample members 
falling in cell h (ph = nh / n) is multiplied by a weighting factor that makes the sample proportion 
equal to the proportion in the corresponding population “adjustment” cell (πh = Nh / N).  The PS 
weight for all sample units in cell h is given by:   
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1 Estimation of raking weights was performed using Stata’s user-contributed “survwgt” routine, developed by 
Nicholas Winter, Economics, University of Virginia.  The routine may be downloaded at:  
http://ideas.repec.org/c/boc/bocode/s427503.html.   
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where Nh is the population size in cell h, N is the total population size, nh is the number of sample 
units in cell h, and n is the total number of sample units.  The weights average to 1: 
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A cell weight over 1 indicates that the sample units in cell h are upweighted to compensate for 
underrepresention (with respect to the population); conversely, a cell weight under 1 means the 
sample units in the cell are being downweighted to compensate for overrepresentation.   

But full post-stratification is unfeasible in many instances.  The number of PS cells is 
often very large and can even exceed the sample size.  Sparse data and zero cell counts make 
estimation of PS weights highly unstable or impossible.  Also, complete cross-classifications of 
the population are often unobtainable and only marginal totals are known.  A common solution 
to this problem is to “post-stratify on the margins”, or “rake” the sample to marginal 
“adjustment” totals (Gelman 2007: 155; see also Deville et al. 1993).   

Deming and Stephen (1940) proposed the “iterative proportional fitting” algorithm for 
estimating raking weights.  The algorithm sets initial weighting factors for each cross-
classification term to 1 and adjusts the weight factors for the first cross-classification term so that 
the weighted sample becomes representative with respect to the population (i.e., matches the 
marginal population distribution) for that term.  The resulting weight factors are similarly 
adjusted for the next cross-classification term.  Since this disturbs the representativeness of the 
other cross-classification terms, the process is repeated sequentially for each cross-classification 
term until the weighting factors converge (see Bethlehem 2002: 281 for a description of the 
algorithm).   

So, for a two-way table with row variable I and column variable J, each cell proportion in 
sample row i is multiplied by a factor that makes the marginal proportion for that row (pi+ = 
∑ ூ
ୀଵ ) equal to the row marginal proportion in the population (πi+ = ∑ ூߨ

ୀଵ ).2  The resulting 
sample cell proportions in each column j are then multiplied by a factor that makes the sample 
column proportions (p+j = ∑ 


ୀଵ ) equal to the population column proportions (π+j = ∑ ߨ


ୀଵ ).  

The sample cell proportions are adjusted to the row marginals again, then the column marginals 
iteratively until they no longer change appreciably.  The repeated lateral and vertical adjustments 
evoke a “raking” motion that gives its name to the algorithm.   

Formally, Deming and Stephen proposed least squares minimization of a sum of 
residuals:   

 
ܵ ൌ ∑ሺ݉ െ ݊ሻଶ/݊, 

 
where nh is the observed cell frequency in cell h, and mh is the calculated or adjusted cell 
frequency.  Adjusted cell frequencies are constrained such that when summed across rows or 
columns, the sum is equal to the marginal totals.  For the two-way case, the marginal constraints 
are:   

                                                 
2 The raking procedure can be performed on cell frequency counts as well as proportions, substituting sample row 
(fi+) and column (f+i) marginal totals for sample marginal proportions, and population row (Fi+) and column (F+j) 
marginal totals for sample marginal proportions.  In this case, the resulting cell weights are equivalent to expansion 
factors.  The Stata “survwgt” routine, in fact, rakes to marginal totals.   
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∑ ݉

ୀଵ ൌ ݉ା  for i=(1, …, I)  and 

 
∑ ݉
ூ
ୀଵ ൌ ݉ା  for j=(1, …, J). 

 
Deming and Stephen derived normal equations that allow for analytic solutions for two- and 
three-way contingency tables when some or all of the marginal totals are known.  However, they 
proposed the “iterative proportions” algorithm described above, which allowed for much more 
rapid estimation of mi—often converging after just two or three iterations.   

Little and Wu (1991) showed that the raking weights can be estimated in the Generalized 
Linear Model (GLM) framework.  For a two-way contingency table, the model is:   

 
݂൫ߨො ⁄ ൯ ൌ ߤ  ߤ   ߤ

 
where pij is the observed sample cell proportion, ߨො is the adjusted cell proportion corresponding 
to mh in Deming and Stephen’s notation), µ is the intercept, the µi’s are row effects (with 
ANOVA-type contrasts or dummy variable identifying constraints), and the µj’s are column 
effects (also with identifying constraints).  Two of the link functions they propose are the identity 
link, leading to the least squares estimators proposed by Deming and Stephen, and the natural 
logarithm, leading to a log-linear model.  The raking weights are given by ൫ߨො ⁄ ൯, and ߨො is 
estimated such that it is as close to 1 as possible and conforms to the marginal constraints given 
by Deming and Stephen (reformulated here in Little and Wu’s notation):   
 

∑ ොߨ ൌ ାூߨ
ୀଵ  for i=(1, …, I) 

 
∑ ොߨ ൌ ାߨ

ୀଵ    for j=(1, …, J). 

 
Adjusting cell proportions to simple marginal totals—i.e., of single variables taken one at 

a time—is the equivalent of the log-linear independence model (subject to the marginal 
constraints noted above).  Estimating raking weights as additive row and column effects “will 
not work well when interactions exist” (Little and Wu 1991: 88; see also Lang and Agresti 
1994).  For its part, full post-stratification can be formulated as the saturated model in the log-
linear framework.  In the two-way case:   

 
݈݊൫ߨො ⁄ ൯ ൌ ߤ  ߤ  ߤ   ,ߤ

 
where the last term denotes the interaction effects of row i and column j.  Extensions to multi-
way tables are straightforward.   

As noted above, however, full post-stratification is often unfeasible.  A compromise 
solution is to post-stratify to “joint marginals”—that is, the joint probability of two variables 
assuming given values, independently of the values other variables assume.  Post-stratification to 
joint marginals accommodates interaction effects among the raking variables while obviating the 
necessity for cell probabilities obtained by full post-stratification, difficult or impossible under 
conditions of sparse data.   
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So, for example, in a three way contingency table with variables I, J, and K, the joint 
marginal probabilities for I and J sum the joint distribution of all three variables over the values 
of K:   

 

ߨ ൌ ାߨ



ୀଵ

 

 
If we wanted to rake to the joint marginals for each two-way interaction between I, J, and K 
   :the log-linear model is ,(ା, respectivelyߨ ା, andߨ ,ାߨ)

 
݈݊൫ߨො ⁄ ൯ ൌ ߤ  ߤ  ߤ  ߤ  ߤ  ߤ   ߤ

 
Note that this is equivalent to the saturated model with the parameter for the highest-

order, three-way interaction (μijk) set to 0.  This formulation of log-linear raking models (and 
raking models using other link functions in the GLM framework) is highly flexible, since any 
combination of lower-order interactions may be specified to calculate the raking adjustment 
weights.    

 
NAAS Weights 

 
The SRC estimating raking weights for the National Asian American Survey (NAAS) 

using the procedure for post-stratifying to joint marginals described in the preceding paragraphs.  
Recapitulating, there were four raking variables:   

 
I = ethnicity (7 levels) 
J = gender (2 levels) 
K = education (3 levels) 
L = nativity/citizenship (3 levels) 

 
An additional variable, state (M), was used to estimate national-level raking weights.   

Theory and prior empirical knowledge led the NAAS principal investigators to believe 
that the gender, education, and nativity composition of the sample would differ across ethnic 
groups.  This belief implies three bivariate interactions:  ethnicity x gender (IJ), ethnicity x 
education (IK), and ethnicity x nativity (IL).  In addition, at the national level, the ethnic 
composition of the sample varies by state, resulting in the bivariate interaction ethnicity x state 
(IL).   
 
National Weights 
 

The national-level raking weights to four sets of joint marginals:  IJ, IK, IL, and IM.  The 
log-linear formulation of the raking model is:   

 
݈݊൫ߨො ⁄ ൯ ൌ ߤ  ߤ  ߤ  ߤߤ  ߤ  ߤ  ߤ  ߤ   ߤ
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Note that the model includes no three-way or higher-order interactions, and omits most of two-
way interactions.   

 
Census Region and District, MSA, and Destination Type Weights 

 
Since data in the NAAS sample (and in the CPS and ACS estimated totals) was much 

sparser at lower geographical levels of aggregation, a simpler model was used to estimate raking 
weights for these survey subdomains.  Cell frequencies were raked to the joint marginal totals of 
ethnicity x gender (IJ), but only to the simple marginal totals for education (K) and nativity (L).  
The common model for all these subdomains is:   

 
݈݊൫ߨො ⁄ ൯ ൌ ߤ  ߤ  ߤ  ߤߤ   ߤ

 
Conclusion 

 
Raking is a well-established technique to adjust sample proportions (and frequencies) to 

known proportions (and totals) in the population when the full cross-classification of the sample 
is unknown or results in low cell counts.  In these cases, post-stratification is impossible or 
unstable.  However, raking to single marginal totals doesn’t allow survey researchers for 
interactions that may exist between the raking variables.  A suitable compromise is “raking” or 
“post-stratifying to joint marginals”, the technique described in this note and used to estimate 
sample weights for the NAAS.   
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